CMSC427 Fall 2017

Hw 3 - Vectors

Due by 5 pm on Friday, Sept. 25th
On Elms as a pdf

1. Warm up. Is the angle between $<2,3,2>$ and $<-3,1,2>$ obtuse or acute?
2. For what values of α is \mathbf{a} orthogonal to $\mathbf{b}-\alpha \mathbf{a}$? What about the special case where $\|\mathbf{a}\|=1$? The case where $\|\mathbf{a}\|=0$?
3. Given a helix curve in parametric vector form as $\mathrm{P}(\mathrm{t})=<\mathrm{r}^{*} \cos (\mathrm{t}), \mathrm{h}^{*} \mathrm{t}, \mathrm{r}^{*} \sin (\mathrm{t})>$, what is the tangent vector T to the curve? What is the normal vector N (which is T^{\prime})? And what is the binormal vector B (which is $\mathrm{T} \times \mathrm{N}$)?
4. For the previous problem the appropriate range of t isn't important - for actually drawing a helix, picking the range of t to appropriate scale h and the number of twists is important. Redo the helix equation so as t goes from 0 to 1 , the helix makes N full turns and rises to a height h .
5. For the lecture example for the midpoint of a triangle, calculated by first blending the line segment between two points P 0 and P 1 , and then blending that equation with the third point P 2 , show that (a) if you hold s constant then varying t sweeps out a line, and (b) those lines of constant s are parallel to the line from P0 to P1.
6. If you have $\mathrm{a} \cdot(\mathrm{bxc})=0$, what does it mean for the relationship of the three vectors?
7. Find the normal vector to the triplets below, if it exists:
a) $\quad \mathrm{P} 1=(1,1,1), \mathrm{P} 2=(1,2,1), \mathrm{P} 3=(3,0,4)$
b) $\quad \mathrm{P} 1=(8,16,2), \mathrm{P} 2=(-8,-16,-2), \mathrm{P} 3=(4,8,1)$
