CMSC427
 Transformations I

Credit: slides 9+ from Prof. Zwicker

Transformations: outline

- Types of transformations
- Specific: translation, rotation, scaling, shearing
- Classes: rigid, affine, projective
- Representing transformations
- Unifying representation with homogeneous coordinates
- Transformations represented as matrices
- Composing transformations
- Sequencing matrices
- Sequencing using OpenGL stack model
- Transformation examples
- Rotating or scaling about a point
- Rotating to a new coordinate frame
- Applications
- Modeling transformations (NOW)
- Viewing transformations (LATER)

Modeling with transformations

- Create instance of object in object coordinate space
- Create circle at origin
- Transform object to world coordinate space
- Scale by 1.5
- Move down by 2 unit
- Do so for other objects
- Two rects make hat
- Three circles make body
- Two lines make arms
- Object coordinate space
- World coordinate space

Classes of transformations

- Rigid
- Translate, rotate, uniform scale
- No distortion to object
- Affine
- Translate, rotate, scale (non-uniform), shear, reflect
- Limited distortions
- Preserve parallel lines

Classes of transformations

- Affine
- Preserves parallel lines
- Projective
- Foreshortens
- Lines converge
- For viewing/rendering

Classes of transformations: summary

- Affine
- Reshape, size object
- Rigid
- Place, move object

- Projective
- View object
- Later ...
- Non-linear, arbitrary
- Twists, pinches, pulls
- Not in this unit

First try: scale and rotate vertices in vector notation

- Scale a point p by s and translate by T
- Vector multiplication and addition
- Repeat and we get

$$
q=s_{2}(s * p+T)+T_{2}
$$

- Gets unwieldy
- Instead - unify notation with homogeneous coordinates and matrices

$$
q=s * p+T
$$

$$
q=2 *(2,3)+<2,2>
$$

$$
q=(6,8)
$$

Matrix practice

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] & M R=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]= \\
R=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right] & R M=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]= \\
P=\left[\begin{array}{l}
2 \\
3
\end{array}\right] & M P=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=
\end{array}
$$

Matrix practice

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right] & M R=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 7 \\
1 & 6
\end{array}\right] \\
R=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right] & R M=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
3 & 6
\end{array}\right] \\
P=\left[\begin{array}{l}
2 \\
3
\end{array}\right] & M P=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
\end{array}
$$

Matrix transpose and column vectors

$$
\begin{aligned}
& R^{T}=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]^{T}= \\
& H^{T}=\left[\begin{array}{lll}
2 & 1 & 3 \\
4 & 1 & 5
\end{array}\right]^{T}= \\
& P=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
2 & 3
\end{array}\right]^{T}
\end{aligned}
$$

Matrix transpose and column vectors

$$
\begin{aligned}
& R^{T}=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right] \\
& H^{T}=\left[\begin{array}{lll}
l & 1 & 3 \\
4 & 1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ll}
2 & 4 \\
1 & 1 \\
3 & 5
\end{array}\right] \\
& P=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
2 & 3
\end{array}\right]^{T}
\end{aligned}
$$

Matrices

Abstract point of view

- Mathematical objects with set of operations
- Addition, subtraction, multiplication, multiplicative inverse, etc.
- Similar to integers, real numbers, etc.

But

- Properties of operations are different
- E.g., multiplication is not commutative
- Represent different intuitive concepts
- Scalar numbers represent distances
- Matrices can represent coordinate systems, rigid motions, in 3D and higher dimensions, etc.

Matrices

Practical point of view

- Rectangular array of numbers

$$
\mathbf{M}=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \ldots & m_{1, n} \\
m_{2,1} & m_{2,2} & \ldots & m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{m, 1} & m_{2,2} & \ldots & m_{m, n}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

- Square matrix if $\mathbf{m}=\mathbf{n}$
- In graphics often $\mathbf{m}=\mathbf{n}=3, \mathbf{m}=\mathbf{n}=4$

Matrix addition

$\mathbf{A}+\mathbf{B}=\left[\begin{array}{cccc}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \ldots & a_{1, n}+b_{1, n} \\ a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \ldots & a_{2, n}+b_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m, 1}+b_{m, 1} & a_{2,2}+b_{2,2} & \ldots & a_{m, n}+b_{m, n}\end{array}\right]$
$\mathbf{A}, \mathbf{B} \in \mathbf{R}^{m \times n}$

Multiplication with scalar

$$
s \mathbf{M}=\mathbf{M} s=\left[\begin{array}{cccc}
s m_{1,1} & s m_{1,2} & \ldots & s m_{1, n} \\
s m_{2,1} & s m_{2,2} & \ldots & s m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
s m_{m, 1} & s m_{2,2} & \ldots & s m_{m, n}
\end{array}\right]
$$

Matrix multiplication

$$
\begin{gathered}
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r} \\
\mathbf{A B}=p \\
\mathbf{A} \\
\mathbf{A} \\
\mathbf{B} \\
\mathbf{A}
\end{gathered}
$$

Matrix multiplication

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

A

Matrix multiplication

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

A

Matrix multiplication

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

$$
(\mathbf{A B})_{i, j}=\mathbf{C}_{i, j}=\sum_{k=1}^{q} a_{i, k} b_{k, j}, \quad i \in 1 . . p, j \in 1 . . r
$$

Matrix multiplication

Special case: matrix-vector multiplication

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}=\mathbf{y}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{x} \in \mathbf{R}^{q}, \mathbf{y} \in \mathbf{R}^{p} \\
& (\mathbf{A x})_{i}=\mathbf{y}_{i}=\sum_{k=1}^{q} a_{i, k} x_{k}
\end{aligned}
$$

Linearity

- Distributive law holds
i.e., matrix $\mathbf{A}(s \mathbf{B}+t \mathbf{C})=s \mathbf{A B}+t \mathbf{A C}$
http://en.wikipedia.org/wiki/Linear_map
- But multiplication is not commutative,
in general

$\mathrm{AB} \neq \mathrm{BA}$

Identity matrix

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

$\mathbf{M I}=\mathbf{I M}=\mathbf{M}, \quad$ for any $\mathbf{M} \in \mathbf{R}^{n \times n}$

Matrix inverse

Definition

If a square matrix M is non-singular, there exists a unique inverse \mathbf{M}^{-1} such that

$$
\mathbf{M M}^{-1}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}
$$

- Note

$$
(\mathbf{M P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1} \mathbf{M}^{-1}
$$

- Computation
- Gaussian elimination, Cramer's rule (OctaveOnline)
- Review in your linear algebra book, or quick summary http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html

Java vs. OpenGL matrices

- OpenGL (underlying 3D graphics API used in the Java code, more later)

http://en.wikipedia.org/wiki/OpenGL

- Matrix elements stored in array of floats float M[16];
- "Column major" ordering
- Java base code
- "Row major" indexing
$\left[\begin{array}{cccc}m[0] & m[4] & m[8] & m[12] \\ m[1] & m[5] & m[9] & m[13] \\ m[2] & m[6] & m[10] & m[14] \\ m[3] & m[7] & m[11] & m[15]\end{array}\right]$
- Conversion from Java to OpenGL convention hidden somewhere in basecode!
$\left[\begin{array}{cccc}m(0,0) & m(0,1) & m(0,2) & m(0,3) \\ m(1,0) & m(1,1) & m(1,2) & m(1,3) \\ m(2,0) & m(2,1) & m(2,2) & m(2,3) \\ m(3,0) & m(3,1) & m(3,2) & m(3,3)\end{array}\right]$

Today

Transformations \& matrices

- Introduction
- Matrices
- Homogeneous coordinates
- Affine transformations
- Concatenating transformations
- Change of coordinates
- Common coordinate systems

Vectors \& coordinate systems

- Vectors defined by orientation, length
- Describe using three basis vectors
$\mathbf{x}, \mathbf{y}, \mathbf{z}$

$$
\mathbf{v}=v_{x} \mathbf{x}+v_{y} \mathbf{y}+v_{z} \mathbf{z}
$$

Points in 3D

- How do we represent 3D points?
- Are three basis vectors enough to define the location of a point?

Points in 3D

- Describe using three basis vectors and reference point, origin

Vectors vs. points

- Vectors

$$
\mathbf{v}=v_{x} \mathbf{x}+v_{y} \mathbf{y}+v_{z} \mathbf{z}+0 \cdot \mathbf{o} \quad\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]
$$

- Points

$$
\mathbf{p}=p_{x} \mathbf{x}+p_{y} \mathbf{y}+p_{z} \mathbf{z}+1 \cdot \mathbf{o} \quad\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]
$$

- Representation of vectors and points using $4^{\text {th }}$ coordinate is called homogeneous coordinates

Homogeneous coordinates

- Represent an affine space
http://en.wikipedia.org/wiki/Affine space
- Intuitive definition
- Affine spaces consist of a vector space and a set of points
- There is a subtraction operation that takes two points and returns a vector
- Axiom I: for any point a and vector \mathbf{v}, there exists point \mathbf{b}, such that $(\mathbf{b}-\mathbf{a})=\mathbf{v}$
- Axiom II: for any points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have $(b-a)+(c-b)=\mathbf{c - a}$

Affine space

Vector space,
http://en.wikipedia.org/wiki/Vector_space

- [xyz] coordinates
- represents vectors

Affine space
http://en.wikipedia.org/wiki/Affine_space

- [xyz1], [xyz0] homogeneous coordinates
- distinguishes points and vectors

Homogeneous coordinates

- Subtraction of two points yields a vector

- Using homogeneous coordinates

$$
\mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
q_{x} \\
q_{y} \\
q_{z} \\
1
\end{array}\right] \quad \mathbf{q}-\mathbf{p}=\left[\begin{array}{c}
q_{x}-p_{x} \\
q_{y}-p_{y} \\
q_{z}-p_{z} \\
0
\end{array}\right]
$$

Today

Transformations \& matrices

- Introduction
- Matrices
- Homogeneous coordinates
- Affine transformations
- Concatenating transformations
- Change of coordinates
- Common coordinate systems

Affine transformations

- Transformation, or mapping: function that maps each 3D point to a new 3D point „f: \mathbf{R}^{3}-> $\mathbf{R}^{3 "}$
- Affine transformations: class of transformations to position 3D objects in space
- Affine transformations include
- Rigid transformations
- Rotation
- Translation
- Non-rigid transformations
- Scaling
- Shearing

Affine transformations

- Definition: mappings that preserve colinearity and ratios of distances
http://en.wikipedia.org/wiki/Affine_transformation
- Straight lines are preserved
- Parallel lines are preserved
- Linear transformations + translation
- Nice: All desired transformations (translation, rotation) implemented using homogeneous coordinates and matrix-vector multiplication

Translation

$$
\begin{aligned}
& \text { Point } \\
& \text { Vector } \\
& \mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad \mathbf{t}=\left[\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z} \\
0
\end{array}\right] \\
& \mathbf{p}^{\prime}=\mathbf{p}+\mathbf{t}=\left[\begin{array}{c}
p_{x}+t_{x} \\
p_{y}+t_{y} \\
p_{z}+t_{z} \\
1
\end{array}\right]
\end{aligned}
$$

Matrix formulation

> Point
> Vector
> $\mathbf{p}=\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$
> $\mathbf{t}=\left[\begin{array}{c}t_{x} \\ t_{y} \\ t_{z} \\ 0\end{array}\right]$
> $\mathbf{p}^{\prime}=\mathbf{p}+\mathbf{t}=\left[\begin{array}{c}p_{x}+t_{x} \\ p_{y}+t_{y} \\ p_{z}+t_{z} \\ 1\end{array}\right]$
$\underbrace{\left[\begin{array}{c}p_{x}^{\prime} \\ p_{y}^{\prime} \\ p_{z}^{\prime} \\ 1\end{array}\right]}_{\mathbf{p}^{\prime}}=\underbrace{\left[\begin{array}{llll}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]}_{\mathbf{T}(\mathbf{t})} \underbrace{\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]}_{\mathbf{p}}$
$\mathbf{p}^{\prime}=\mathbf{T}(\mathbf{t}) \mathbf{p}$

Matrix formulation

- Inverse translation

$$
\begin{gathered}
\mathbf{T}(\mathbf{t})^{-1}=\mathbf{T}(-\mathbf{t}) \\
\mathbf{T}(\mathbf{t})=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{T}(-\mathbf{t})=\left[\begin{array}{cccc}
1 & 0 & 0 & -t_{x} \\
0 & 1 & 0 & -t_{y} \\
0 & 0 & 1 & -t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

- Verify that

$$
\mathbf{T}(-\mathbf{t}) \mathbf{T}(\mathbf{t})=\mathbf{T}(\mathbf{t}) \mathbf{T}(-\mathbf{t})=\mathbf{I}
$$

- What happens when you translate a vector?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]=?
$$

Rotation

First: rotating a vector in 2D

- Convention: positive angle rotates counterclockwise
- Express using rotation matrix
$\mathbf{R}(\theta)$

$$
\mathbf{v}^{\prime}=\mathbf{R}(\theta) \mathbf{v}
$$

Rotating a vector in 2D

Rotating a vector in 2D

$\mathbf{R}(\theta)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$
$\mathbf{R}(\theta)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$

Rotating a vector in 2D

$$
(-\sin \theta, \cos \theta) \stackrel{(0,1)}{(\cos \theta, \sin \theta)}
$$

$\mathbf{R}(\theta)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right] \quad \mathbf{R}(\theta)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
$\mathbf{R}(\theta)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right] \quad \mathbf{R}(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Rotation in 3D

Rotation around z-axis

- z-coordinate does not change

$$
\begin{aligned}
& \mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{v}^{0}=\mathbf{R}_{\mathrm{z}}(\mu) \mathrm{V}
\end{aligned}
$$

- What is the matrix for

$$
\begin{aligned}
& \text { What is the matrix for } \\
& \theta=0, \theta=90, \theta=180
\end{aligned} \quad \mathbf{R}_{z}(\theta) \mathbf{v}=\left[\begin{array}{c}
\cos (\theta) v_{x}-\sin (\theta) v_{y} \\
\sin (\theta) v_{x}+\cos (\theta) v_{y} \\
v_{z} \\
1
\end{array}\right]
$$

Other coordinate axes

- Same matrix to rotate points and vectors
- Points are rotated around origin
$\mathbf{R}_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{R}_{y}(\theta)=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\mathbf{R}_{z}(\theta)=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotation in 3D

- Concatenate rotations around x, y, z axes to obtain rotation around arbitrary axes through origin

$$
\mathbf{R}_{x, y, z}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right)
$$

- $\theta_{x}, \theta_{y}, \theta_{z}$ are called Euler angles
- Disadvantage: result depends on order!

https://en.wikipedia.org/wiki/Gimbal
$\mathbf{R}_{x}\left(\theta_{x}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{z}\left(\theta_{z}\right) \neq \mathbf{R}_{z}\left(\theta_{z}\right) \mathbf{R}_{y}\left(\theta_{y}\right) \mathbf{R}_{x}\left(\theta_{x}\right)$

Rotation around arbitrary axis

- Still: origin does not change
- Counterclockwise rotation
- Angle θ, unit axis a

$$
c_{\theta}=\cos \theta, s_{\theta}=\sin \theta
$$

$$
\mathbf{R}(\mathbf{a}, \theta)=\left[\begin{array}{cccc}
a_{x}^{2}+c_{\theta}\left(1-a_{x}^{2}\right) & a_{x} a_{y}\left(1-c_{\theta}\right)-a_{z} s_{\theta} & a_{x} a_{z}\left(1-c_{\theta}\right)+a_{y} s_{\theta} & 0 \\
a_{x} a_{y}\left(1-c_{\theta}\right)+a_{z} s_{\theta} & a_{y}^{2}+c_{\theta}\left(1-a_{y}^{2}\right) & a_{y} a_{z}\left(1-c_{\theta}\right)-a_{x} s_{\theta} & 0 \\
a_{x} a_{z}\left(1-c_{\theta}\right)-a_{y} s_{\theta} & a_{y} a_{z}\left(1-c_{\theta}\right)+a_{x} s_{\theta} & a_{z}^{2}+c_{\theta}\left(1-a_{z}^{2}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Summary

- Different ways to describe rotations mathematically
- Sequence of rotations around three axes (Euler angles)
- Rotation around arbitrary angles (axis-angle representation)
- Other options exist (quaternions, etc.)
- Rotations preserve
- Angles
- Lengths
- Handedness of coordinate system
- Rigid transforms
- Rotations and translations

Rotation matrices

- Orthonormal
- Rows, columns are unit length and orthogonal
- Inverse of rotation matrix?

Rotation matrices

- Orthonormal
- Rows, columns are unit length and orthogonal
- Inverse of rotation matrix?
- Its transpose

$$
\mathbf{R}(\mathbf{a}, \theta)^{-1}=\mathbf{R}(\mathbf{a}, \theta)^{T}
$$

Rotations

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, \theta)$
- How do we obtain $\mathbf{R}(\mathbf{a},-\theta)$?

Rotations

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, \theta)$
- How do we obtain $\mathbf{R}(\mathbf{a},-\theta)$?

$$
\mathbf{R}(\mathbf{a},-\theta)=\mathbf{R}(\mathbf{a}, \theta)^{-1}=\mathbf{R}(\mathbf{a}, \theta)^{T}
$$

Rotations

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, \theta)$
- How do we obtain $\mathbf{R}(\mathbf{a},-\theta)$?

$$
\mathbf{R}(\mathbf{a},-\theta)=\mathbf{R}(\mathbf{a}, \theta)^{-1}=\mathbf{R}(\mathbf{a}, \theta)^{T}
$$

- How do we obtain $\mathbf{R}(\mathbf{a}, 2 \theta), \mathbf{R}(\mathbf{a}, 3 \theta) \ldots$?

Rotations

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, \theta)$
- How do we obtain $\mathbf{R}(\mathbf{a},-\theta)$?

$$
\mathbf{R}(\mathbf{a},-\theta)=\mathbf{R}(\mathbf{a}, \theta)^{-1}=\mathbf{R}(\mathbf{a}, \theta)^{T}
$$

- How do we obtain $\mathbf{R}(\mathbf{a}, 2 \theta), \mathbf{R}(\mathbf{a}, 3 \theta)$...?

$$
\begin{gathered}
\mathbf{R}(\mathbf{a}, 2 \theta)=\mathbf{R}(\mathbf{a}, \theta)^{2}=\mathbf{R}(\mathbf{a}, \theta) \mathbf{R}(\mathbf{a}, \theta) \\
\mathbf{R}(\mathbf{a}, 3 \theta)=\mathbf{R}(\mathbf{a}, \theta)^{3}=\mathbf{R}(\mathbf{a}, \theta) \mathbf{R}(\mathbf{a}, \theta) \mathbf{R}(\mathbf{a}, \theta)
\end{gathered}
$$

Scaling

- Origin does not change

$$
\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scaling

- Inverse scaling?

$$
\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)^{-1}=
$$

Scaling

- Inverse scaling?

$$
\mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)^{-1}=\mathbf{S}\left(1 / s_{x}, 1 / s_{y}, 1 / s_{z}\right)
$$

Shear

$$
\mathbf{p}^{\prime}=\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right] \mathbf{p}
$$

- Pure shear if only one parameter is non-zero
- Cartoon-like effects

$$
\mathbf{Z}\left(z_{1} \ldots z_{6}\right)=\left[\begin{array}{cccc}
1 & z_{1} & z_{2} & 0 \\
z_{3} & 1 & z_{4} & 0 \\
z_{5} & z_{6} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Summary affine transformations

- Linear transformations (rotation, scale, shear, reflection) + translation

Vector space,
http://en.wikipedia.org/wiki/Vector_space

- vectors as [xyz] coordinates
- represents vectors
- linear transformations

Affine space
http://en.wikipedia.org/wiki/Affine_space

- points and vectors as [xyz1], [xyz0] homogeneous coordinates
- distinguishes points and vectors
- linear tranforms and translation

Summary affine transformations

- Implemented using 4×4 matrices, homogeneous coordinates
- Last row of 4×4 matrix is always $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$
- Any such matrix represents an affine transformation in 3D
- Factorization into scale, shear, rotation, etc. is always possible, but non-trivial
- Polar decomposition
http://en.wikipedia.org/wiki/Polar_decomposition

Today

Transformations \& matrices

- Introduction
- Matrices
- Homogeneous coordinates
- Affine transformations
- Concatenating transformations
- Change of coordinates
- Common coordinate systems

Concatenating transformations

- Build "chains" of transformations

$$
\mathbf{M}_{3}, \mathbf{M}_{2}, \mathbf{M}_{1} \in \mathbf{R}^{4 \times 4}
$$

- Apply \mathbf{M}_{1} followed by \mathbf{M}_{2} followed by M_{3}

$$
\mathbf{M}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}
$$

- Overall transformation is an affine transformation

$$
\mathbf{p}^{\prime}=\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p}=\mathbf{M} \mathbf{p}
$$

- Multiplication on the left

Concatenating transformations

- Result depends on order because matrix multiplication not commutative
- Thought experiment
- Translation followed by rotation vs. rotation followed by translation

Rotating with pivot

Rotation around origin

Rotation with pivot

Rotating with pivot

1. Translation T 2. Rotation R 3. Translation \mathbf{T}^{-1}

Rotating with pivot

1. Translation T 2. Rotation R 3. Translation \mathbf{T}^{-1}

$$
\mathrm{p}^{\prime}=\mathrm{T}^{-1} \mathbf{R T p}
$$

Concatenating transformations

- Arbitrary sequence of transformations

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{p} \\
\mathbf{M}_{\text {total }} & =\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1} \\
\mathbf{p}^{\prime} & =\mathbf{M}_{t o t a l} \mathbf{p}
\end{aligned}
$$

- Note: associativity

$$
\mathbf{M}_{t o t a l}=\left(\mathbf{M}_{3} \mathbf{M}_{2}\right) \mathbf{M}_{1}=\mathbf{M}_{3}\left(\mathbf{M}_{2} \mathbf{M}_{1}\right)
$$

So either is valid
T=M3.multiply(M2); Mtotal=T.multiply(M1)
or
T=M2.multiply(M1); Mtotal=M3.multiply(T)

Transformation: summary

- Transformations are used for modeling
- Classes of transformation: rigid and affine
- Why we use homo. coordinates and matrices
- How to do matrix mults, inversion, transpose
- Homogenous coordinates, vectors vs. points
- Properties of affine transformations
- Transforms: translation, scale, rotation, shear
- Only starting with 3D rotations - don't be concerned
- Order of transformations
- They don't commute, but are associative
- Translate to origin for scaling, rotation

