
CMSC427	
Transformations	I

Credit:	slides	9+	from	Prof.	Zwicker

• Types	of	transformations
• Specific:	translation,	rotation,	scaling,	shearing
• Classes:	rigid,	affine,	projective

• Representing	transformations
• Unifying	representation	with	homogeneous	coordinates
• Transformations	represented	as	matrices

• Composing	transformations
• Sequencing	matrices
• Sequencing	using	OpenGL	stack	model

• Transformation	examples
• Rotating	or	scaling	about	a	point
• Rotating	to	a	new	coordinate	frame

• Applications
• Modeling	transformations	(NOW)
• Viewing	transformations	(LATER)

Transformations: outline

• Create	instance	of	
object	in	object	
coordinate	space
• Create	circle	at	origin

• Transform	object	to	
world	coordinate	space
• Scale	by	1.5
• Move	down	by	2	unit

• Do	so	for	other	objects
• Two	rects make	hat
• Three	circles	make	body
• Two	lines	make	arms

• Object	coordinate	
space

• World	coordinate	space

Modeling with transformations

• Rigid
• Translate,	rotate,	
uniform	scale
• No	distortion	to	object

• Affine
• Translate,	rotate,	scale	
(non-uniform),	shear,	
reflect
• Limited	distortions
• Preserve	parallel	lines

Classes of transformations

• Affine
• Preserves	parallel	lines

• Projective
• Foreshortens	
• Lines	converge
• For	viewing/rendering

Classes of transformations

• Affine
• Reshape,	size	object

• Rigid
• Place,	move	object

• Projective
• View	object
• Later	…

• Non-linear,	arbitrary
• Twists,	pinches,	pulls
• Not	in	this	unit

Classes of transformations: summary

• Scale	a	point	p	by	s	and	
translate	by	T
• Vector	multiplication	and	
addition
• Repeat	and	we	get

• Gets	unwieldy
• Instead	– unify	notation	
with	homogeneous	
coordinates	and	matrices

First try: scale and rotate vertices in vector notation

𝑞 = 𝑠 ∗ 𝑝 + 𝑇

T

p

q

𝑞 = 𝑠(𝑠 ∗ 𝑝 + 𝑇 + 𝑇(

𝑞 = 2 ∗ 2,3 +< 2,2 >
𝑞 = (6,8)

Matrix practice

𝑀 = 2 0
0 2

𝑅 = 1 1
0 3

𝑃 = 2
3

𝑀𝑅 = 2 0
0 2 1 1

0 3 =	

𝑅𝑀 = 1 1
0 3

2 0
0 2 =

𝑀𝑃 = 2 0
0 2 23 =	

Matrix practice

𝑀 = 2 0
1 2

𝑅 = 1 1
0 3

𝑃 = 2
3

𝑀𝑅 = 2 0
1 2 1 1

0 3 = 2 7
1 6

𝑅𝑀 = 1 1
0 3

2 0
1 2 = 3 2

3 6

𝑀𝑃 = 2 0
1 2 23 = 4

8

Matrix transpose and column vectors

𝑃 = 2
3 = 2 3 9

𝑅9 = 1 1
0 3

9
=

𝐻9 = 2 1 3
4 1 5

9
=

Matrix transpose and column vectors

𝑃 = 2
3 = 2 3 9

𝑅9 = 1 1
0 3

9
= 1 0

1 3

𝐻9 = 2 1 3
4 1 5

9
=

2 4
1 1
3 5

Matrices

Abstract	point	of	view
• Mathematical	objects	with	set	of	operations
• Addition,	subtraction,	multiplication,	multiplicative	
inverse,	etc.

• Similar	to	integers,	real	numbers,	etc.
But	
• Properties	of	operations	are	different
• E.g.,	multiplication	is	not	commutative

• Represent	different	intuitive	concepts
• Scalar	numbers	represent	distances
• Matrices can	represent	coordinate	systems,	rigid	
motions,	in	3D	and	higher	dimensions,	etc.

12

Matrices

Practical	point	of	view
• Rectangular	array	of	numbers

• Square	matrix	if	
• In	graphics	often	

13

Matrix addition

14

Multiplication with scalar

15

Matrix multiplication

16

Matrix multiplication

17

Matrix multiplication

18

Matrix multiplication

19

Matrix multiplication

Special	case:	matrix-vector	multiplication

20

Linearity

• Distributive	law	holds

i.e.,	matrix	multiplication	is	linear
http://en.wikipedia.org/wiki/Linear_map

• But	multiplication	is	not	commutative,

in	general

21

Identity matrix

22

Matrix inverse

Definition
If	a	square	matrix						is	non-singular,	there	exists	a	
unique	inverse such	that

• Note

• Computation
• Gaussian	elimination,	Cramer’s	rule	(OctaveOnline)
• Review	in	your	linear	algebra	book,	or	quick	summary

http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html

23

Java vs. OpenGL matrices

• OpenGL	(underlying	3D	graphics	API	used	in	the	
Java	code,	more	later)
http://en.wikipedia.org/wiki/OpenGL

• Matrix	elements	stored	in	
array	of	floats	float M[16];
• “Column	major”	ordering

• Java	base	code
• “Row	major”	indexing
• Conversion	from
Java	to	OpenGL
convention	hidden
somewhere	in	
basecode!

24

Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems

25

Vectors & coordinate systems

• Vectors	defined	by	orientation,	length
• Describe	using	three	basis	vectors	

26

Points in 3D

• How	do	we	represent	3D	points?
• Are	three	basis	vectors	enough	to	define	the	location	of	
a	point?

27

Points in 3D

• Describe	using	three	basis	vectors	and reference	point,
origin

28

Vectors vs. points

• Vectors

• Points

• Representation	of	vectors	and	points	using	4th coordinate	is	
called	homogeneous	coordinates

29

Homogeneous coordinates

• Represent	an	affine	space
http://en.wikipedia.org/wiki/Affine_space

• Intuitive	definition
• Affine	spaces	consist	of	a	vector	space	and	a	set	of	
points
• There	is	a	subtraction operation	that	takes	two	points	
and	returns	a	vector
• Axiom	I:	for	any	point	a and	vector	v,	there	exists	point	

b,	such	that	(b-a) = v
• Axiom	II:	for	any	points	a, b, c we	have

(b-a)+(c-b) = c-a

30

Affine space

Vector	space,
http://en.wikipedia.org/wiki/Vector_space

• [xyz]	coordinates
• represents	vectors

Affine	space
http://en.wikipedia.org/wiki/Affine_space

• [xyz1],	[xyz0]
homogeneous
coordinates
• distinguishes	points	
and	vectors

31

Homogeneous coordinates

• Subtraction	of	two	points	yields	a	vector

• Using	homogeneous	coordinates

32

Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems

33

Affine transformations

• Transformation,	or	mapping:	function	that	maps	
each	3D	point	to	a	new	3D	point
„f: R3 -> R3“
• Affine	transformations:	class	of	transformations	to	
position	3D	objects	in	space
• Affine	transformations	include
• Rigid	transformations

• Rotation
• Translation

• Non-rigid	transformations
• Scaling
• Shearing

34

Affine transformations

• Definition:	mappings that preserve colinearity and
ratios of distances
http://en.wikipedia.org/wiki/Affine_transformation

• Straight	lines are preserved
• Parallel	lines are preserved

• Linear	transformations +	translation
• Nice:	All	desired transformations (translation,	
rotation)	implemented using homogeneous
coordinates and matrix-vector multiplication

35

Translation

Point Vector

36

Matrix formulation

Point Vector

37

Matrix formulation

• Inverse translation

• Verify that

38

Note

• What	happens	when	you	translate	a	vector?

39

Rotation

First:	rotating	a	vector	in	2D
• Convention:	positive	angle	rotates	
counterclockwise
• Express	using	rotation	matrix

40

Rotating a vector in 2D

41

Rotating a vector in 2D

42

Rotating a vector in 2D

43

Rotation in 3D

Rotation	around	z-axis
• z-coordinate	does	not	change

• What	is	the	matrix	for																														?	

v0= R z(µ)v

44

Other coordinate axes

• Same	matrix	to	rotate	points	and	vectors
• Points	are	rotated	around	origin

45

Rotation in 3D

• Concatenate	rotations	around	x,y,z axes	to	obtain	
rotation	around	arbitrary	axes	through	origin

• are	called	Euler	angles
http://en.wikipedia.org/wiki/Euler_angles

• Disadvantage:	result	depends	on	order!

46

Gimbal
https://en.wikipedia.org/wiki/Gimbal

Rotation around arbitrary axis

• Still:	origin	does	not	change
• Counterclockwise	rotation
• Angle				,	unit	axis
•

• Intuitive	derivation	see
http://mathworld.wolfram.com/RotationFormula.html

47

Summary

• Different	ways	to	describe	rotations	mathematically
• Sequence	of	rotations	around	three	axes	(Euler	angles)
• Rotation	around	arbitrary	angles	(axis-angle	
representation)
• Other	options	exist	(quaternions,	etc.)

• Rotations	preserve
• Angles
• Lengths
• Handedness	of	coordinate	system

• Rigid	transforms
• Rotations	and	translations

48

Rotation matrices

• Orthonormal
• Rows,	columns	are	unit	length	and	orthogonal

• Inverse	of	rotation	matrix?

49

Rotation matrices

• Orthonormal
• Rows,	columns	are	unit	length	and	orthogonal

• Inverse	of	rotation	matrix?
• Its	transpose

50

Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

51

Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

52

Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

• How	do	we	obtain																												 …?

53

Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

• How	do	we	obtain																										 …?

54

Scaling

• Origin does not change

55

Scaling

• Inverse	scaling?

56

Scaling

• Inverse	scaling?

57

Shear

• Pure	shear	if	only	one	parameter	is	non-zero
• Cartoon-like	effects

58

Summary affine transformations

• Linear	transformations	(rotation,	scale,	shear,	
reflection)	+	translation

Vector	space,
http://en.wikipedia.org/wiki/Vector_space

• vectors	as	[xyz]
coordinates
• represents	vectors
• linear	transformations

Affine	space
http://en.wikipedia.org/wiki/Affine_space

• points	and	vectors
as	[xyz1],	[xyz0]
homogeneous
coordinates
• distinguishes	points	
and	vectors
• linear	tranforms and
translation

59

Summary affine transformations

• Implemented	using	4x4	matrices,	homogeneous	
coordinates
• Last	row	of	4x4	matrix	is	always	[0 0 0 1]

• Any	such	matrix	represents	an	affine	
transformation	in	3D
• Factorization	into	scale,	shear,	rotation,	etc.	is	
always	possible,	but	non-trivial
• Polar	decomposition

http://en.wikipedia.org/wiki/Polar_decomposition

60

Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems

61

Concatenating transformations

• Build	“chains”	of	transformations

• Apply								followed	by							followed	by

• Overall	transformation
is	an	affine	transformation

• Multiplication	on	the	left	

62

Concatenating transformations

• Result	depends	on	order	because	matrix	
multiplication	not	commutative
• Thought	experiment
• Translation	followed	by	rotation	vs.	rotation	followed	by	
translation

63

Rotating with pivot

Rotation around
origin

Rotation with
pivot

64

1. Translation 2. Rotation 3. Translation

Rotating with pivot

65

Rotating with pivot

1. Translation 2. Rotation 3. Translation

66

Concatenating transformations

• Arbitrary	sequence	of	transformations

• Note:	associativity

So	either	is	valid
T=M3.multiply(M2); Mtotal=T.multiply(M1)
or
T=M2.multiply(M1); Mtotal=M3.multiply(T)

67

• Transformations	are	used	for	modeling
• Classes	of	transformation:	rigid	and	affine
• Why	we	use	homo.	coordinates	and	matrices
• How	to	do	matrix	mults,	inversion,	transpose
• Homogenous	coordinates,	vectors	vs.	points
• Properties	of	affine	transformations
• Transforms:	translation,	scale,	rotation,	shear
• Only	starting	with	3D	rotations	– don’t	be	concerned

• Order	of	transformations
• They	don’t	commute,	but	are	associative
• Translate	to	origin	for	scaling,	rotation

Transformation: summary

