
CMSC427	
Transformations	I

Credit:	slides	9+	from	Prof.	Zwicker



• Types	of	transformations
• Specific:	translation,	rotation,	scaling,	shearing
• Classes:	rigid,	affine,	projective

• Representing	transformations
• Unifying	representation	with	homogeneous	coordinates
• Transformations	represented	as	matrices

• Composing	transformations
• Sequencing	matrices
• Sequencing	using	OpenGL	stack	model

• Transformation	examples
• Rotating	or	scaling	about	a	point
• Rotating	to	a	new	coordinate	frame

• Applications
• Modeling	transformations	(NOW)
• Viewing	transformations	(LATER)

Transformations: outline



• Create	instance	of	
object	in	object	
coordinate	space
• Create	circle	at	origin

• Transform	object	to	
world	coordinate	space
• Scale	by	1.5
• Move	down	by	2	unit

• Do	so	for	other	objects
• Two	rects make	hat
• Three	circles	make	body
• Two	lines	make	arms

• Object	coordinate	
space

• World	coordinate	space

Modeling with transformations



• Rigid
• Translate,	rotate,	
uniform	scale
• No	distortion	to	object

• Affine
• Translate,	rotate,	scale	
(non-uniform),	shear,	
reflect
• Limited	distortions
• Preserve	parallel	lines

Classes of transformations



• Affine
• Preserves	parallel	lines

• Projective
• Foreshortens	
• Lines	converge
• For	viewing/rendering

Classes of transformations



• Affine
• Reshape,	size	object

• Rigid
• Place,	move	object

• Projective
• View	object
• Later	…

• Non-linear,	arbitrary
• Twists,	pinches,	pulls
• Not	in	this	unit

Classes of transformations: summary



• Scale	a	point	p	by	s	and	
translate	by	T
• Vector	multiplication	and	
addition
• Repeat	and	we	get

• Gets	unwieldy
• Instead	– unify	notation	
with	homogeneous	
coordinates	and	matrices

First try: scale and rotate vertices in vector notation

𝑞 = 𝑠 ∗ 𝑝 + 𝑇

T

p

q

𝑞 = 𝑠( 𝑠 ∗ 𝑝 + 𝑇 + 𝑇(

𝑞 = 2 ∗ 2,3 +< 2,2 >
𝑞 = (6,8)



Matrix practice

𝑀 = 2 0
0 2

𝑅 = 1 1
0 3

𝑃 = 2
3

𝑀𝑅 = 2 0
0 2  1 1

0 3 =	

𝑅𝑀 = 1 1
0 3

2 0
0 2 =

𝑀𝑃 = 2 0
0 2  23 =	



Matrix practice

𝑀 = 2 0
1 2

𝑅 = 1 1
0 3

𝑃 = 2
3

𝑀𝑅 = 2 0
1 2  1 1

0 3 = 2 7
1 6

𝑅𝑀 = 1 1
0 3

2 0
1 2 = 3 2

3 6

𝑀𝑃 = 2 0
1 2  23 = 4
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Matrix transpose and column vectors

𝑃 = 2
3 = 2 3 9

𝑅9 = 1 1
0 3

9
=

𝐻9 = 2 1 3
4 1 5

9
=



Matrix transpose and column vectors

𝑃 = 2
3 = 2 3 9

𝑅9 = 1 1
0 3

9
= 1 0

1 3

𝐻9 = 2 1 3
4 1 5

9
= 

2 4
1 1
3 5



Matrices

Abstract	point	of	view
• Mathematical	objects	with	set	of	operations
• Addition,	subtraction,	multiplication,	multiplicative	
inverse,	etc.

• Similar	to	integers,	real	numbers,	etc.
But	
• Properties	of	operations	are	different
• E.g.,	multiplication	is	not	commutative

• Represent	different	intuitive	concepts
• Scalar	numbers	represent	distances
• Matrices can	represent	coordinate	systems,	rigid	
motions,	in	3D	and	higher	dimensions,	etc.
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Matrices

Practical	point	of	view
• Rectangular	array	of	numbers

• Square	matrix	if	
• In	graphics	often	
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Matrix addition
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Multiplication with scalar
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Matrix multiplication
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Matrix multiplication
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Matrix multiplication
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Matrix multiplication
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Matrix multiplication

Special	case:	matrix-vector	multiplication
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Linearity

• Distributive	law	holds

i.e.,	matrix	multiplication	is	linear
http://en.wikipedia.org/wiki/Linear_map

• But	multiplication	is	not	commutative,

in	general
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Identity matrix
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Matrix inverse

Definition
If	a	square	matrix						is	non-singular,	there	exists	a	
unique	inverse such	that

• Note

• Computation
• Gaussian	elimination,	Cramer’s	rule	(OctaveOnline)
• Review	in	your	linear	algebra	book,	or	quick	summary

http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html

23



Java vs. OpenGL matrices

• OpenGL	(underlying	3D	graphics	API	used	in	the	
Java	code,	more	later)
http://en.wikipedia.org/wiki/OpenGL

• Matrix	elements	stored	in	
array	of	floats	float M[16];
• “Column	major”	ordering

• Java	base	code
• “Row	major”	indexing
• Conversion	from
Java	to	OpenGL
convention	hidden
somewhere	in	
basecode!
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Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems
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Vectors & coordinate systems

• Vectors	defined	by	orientation,	length
• Describe	using	three	basis	vectors	
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Points in 3D

• How	do	we	represent	3D	points?
• Are	three	basis	vectors	enough	to	define	the	location	of	
a	point?
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Points in 3D

• Describe	using	three	basis	vectors	and reference	point,
origin
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Vectors vs. points

• Vectors

• Points

• Representation	of	vectors	and	points	using	4th coordinate	is	
called	homogeneous	coordinates
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Homogeneous coordinates

• Represent	an	affine	space
http://en.wikipedia.org/wiki/Affine_space

• Intuitive	definition
• Affine	spaces	consist	of	a	vector	space	and	a	set	of	
points
• There	is	a	subtraction operation	that	takes	two	points	
and	returns	a	vector
• Axiom	I:	for	any	point	a and	vector	v,	there	exists	point	

b,	such	that	(b-a) = v
• Axiom	II:	for	any	points	a, b, c we	have

(b-a)+(c-b) = c-a
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Affine space

Vector	space,
http://en.wikipedia.org/wiki/Vector_space

• [xyz]	coordinates
• represents	vectors

Affine	space
http://en.wikipedia.org/wiki/Affine_space

• [xyz1],	[xyz0]
homogeneous
coordinates
• distinguishes	points	
and	vectors
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Homogeneous coordinates

• Subtraction	of	two	points	yields	a	vector

• Using	homogeneous	coordinates
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Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems
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Affine transformations

• Transformation,	or	mapping:	function	that	maps	
each	3D	point	to	a	new	3D	point
„f: R3 -> R3“
• Affine	transformations:	class	of	transformations	to	
position	3D	objects	in	space
• Affine	transformations	include
• Rigid	transformations

• Rotation
• Translation

• Non-rigid	transformations
• Scaling
• Shearing
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Affine transformations

• Definition:	mappings that preserve colinearity and
ratios of distances
http://en.wikipedia.org/wiki/Affine_transformation

• Straight	lines are preserved
• Parallel	lines are preserved

• Linear	transformations +	translation
• Nice:	All	desired transformations (translation,	
rotation)	implemented using homogeneous
coordinates and matrix-vector multiplication
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Translation

Point Vector
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Matrix formulation

Point Vector
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Matrix formulation

• Inverse translation

• Verify that
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Note

• What	happens	when	you	translate	a	vector?
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Rotation

First:	rotating	a	vector	in	2D
• Convention:	positive	angle	rotates	
counterclockwise
• Express	using	rotation	matrix
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Rotating a vector in 2D
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Rotating a vector in 2D
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Rotating a vector in 2D
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Rotation in 3D

Rotation	around	z-axis
• z-coordinate	does	not	change

• What	is	the	matrix	for																														?	

v0= R z(µ)v
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Other coordinate axes

• Same	matrix	to	rotate	points	and	vectors
• Points	are	rotated	around	origin
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Rotation in 3D

• Concatenate	rotations	around	x,y,z axes	to	obtain	
rotation	around	arbitrary	axes	through	origin

• are	called	Euler	angles
http://en.wikipedia.org/wiki/Euler_angles

• Disadvantage:	result	depends	on	order!
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Gimbal
https://en.wikipedia.org/wiki/Gimbal



Rotation around arbitrary axis

• Still:	origin	does	not	change
• Counterclockwise	rotation
• Angle				,	unit	axis
•

• Intuitive	derivation	see
http://mathworld.wolfram.com/RotationFormula.html
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Summary

• Different	ways	to	describe	rotations	mathematically
• Sequence	of	rotations	around	three	axes	(Euler	angles)
• Rotation	around	arbitrary	angles	(axis-angle	
representation)
• Other	options	exist	(quaternions,	etc.)

• Rotations	preserve
• Angles
• Lengths
• Handedness	of	coordinate	system

• Rigid	transforms
• Rotations	and	translations
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Rotation matrices

• Orthonormal
• Rows,	columns	are	unit	length	and	orthogonal

• Inverse	of	rotation	matrix?
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Rotation matrices

• Orthonormal
• Rows,	columns	are	unit	length	and	orthogonal

• Inverse	of	rotation	matrix?
• Its	transpose
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Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?
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Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?
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Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

• How	do	we	obtain																												 …?
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Rotations

• Given	a	rotation	matrix													
• How	do	we	obtain															 ?

• How	do	we	obtain																										 …?
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Scaling

• Origin does not change
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Scaling

• Inverse	scaling?
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Scaling

• Inverse	scaling?
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Shear

• Pure	shear	if	only	one	parameter	is	non-zero
• Cartoon-like	effects
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Summary affine transformations

• Linear	transformations	(rotation,	scale,	shear,	
reflection)	+	translation

Vector	space,
http://en.wikipedia.org/wiki/Vector_space

• vectors	as	[xyz]
coordinates
• represents	vectors
• linear	transformations

Affine	space
http://en.wikipedia.org/wiki/Affine_space

• points	and	vectors
as	[xyz1],	[xyz0]
homogeneous
coordinates
• distinguishes	points	
and	vectors
• linear	tranforms and
translation
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Summary affine transformations

• Implemented	using	4x4	matrices,	homogeneous	
coordinates
• Last	row	of	4x4	matrix	is	always	[0 0 0 1]

• Any	such	matrix	represents	an	affine	
transformation	in	3D
• Factorization	into	scale,	shear,	rotation,	etc.	is	
always	possible,	but	non-trivial
• Polar	decomposition

http://en.wikipedia.org/wiki/Polar_decomposition
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Today

Transformations	&	matrices
• Introduction
• Matrices
• Homogeneous	coordinates
• Affine	transformations
• Concatenating	transformations
• Change	of	coordinates
• Common	coordinate	systems
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Concatenating transformations

• Build	“chains”	of	transformations

• Apply								followed	by							followed	by

• Overall	transformation
is	an	affine	transformation

• Multiplication	on	the	left	
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Concatenating transformations

• Result	depends	on	order	because	matrix	
multiplication	not	commutative
• Thought	experiment
• Translation	followed	by	rotation	vs.	rotation	followed	by	
translation
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Rotating with pivot

Rotation around 
origin

Rotation with 
pivot
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1. Translation 2. Rotation 3. Translation

Rotating with pivot
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Rotating with pivot

1. Translation 2. Rotation 3. Translation

66



Concatenating transformations

• Arbitrary	sequence	of	transformations

• Note:	associativity

So	either	is	valid
T=M3.multiply(M2); Mtotal=T.multiply(M1)
or
T=M2.multiply(M1); Mtotal=M3.multiply(T)
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• Transformations	are	used	for	modeling
• Classes	of	transformation:	rigid	and	affine
• Why	we	use	homo.	coordinates	and	matrices
• How	to	do	matrix	mults,	inversion,	transpose
• Homogenous	coordinates,	vectors	vs.	points
• Properties	of	affine	transformations
• Transforms:	translation,	scale,	rotation,	shear
• Only	starting	with	3D	rotations	– don’t	be	concerned

• Order	of	transformations
• They	don’t	commute,	but	are	associative
• Translate	to	origin	for	scaling,	rotation

Transformation: summary


