CMSC427 Transformations: Types (introduction)

Credit: slides 9+ from Prof. Zwicker

Transformations: outline

- Types of transformations
 - Specific: translation, rotation, scaling, shearing
 - Classes: rigid, affine, projective
- Matrix review
- Representing transformations
 - Unifying representation with homogeneous coordinates
 - Transformations represented as matrices
- Composing transformations
 - Sequencing matrices
 - Sequencing using OpenGL stack model
- Transformation examples
 - Rotating or scaling about a point
 - Rotating to a new coordinate frame

- Rigid
 - Translate, rotate, uniform scale
 - No distortion to object

- Affine
 - Translate, rotate, scale (non-uniform), shear, reflect
 - Limited distortions
 - Preserve parallel lines

Classes of transformations

- Affine
 - Preserves parallel lines
- Projective
 - Foreshortens
 - Lines converge
 - For viewing/rendering

Modeling with transformations

- Create instance of object in object coordinate space
 - Create circle at origin
- Transform object to world coordinate space
 - Scale by 1.5
 - Move down by 2 unit
- Do so for other objects
 - Two rects make hat
 - Three circles make body
 - Two lines make arms

 Object coordinate space

• World coordinate space

Classes of transformations: summary and applications

- Affine
 - Reshape, size object
- Rigid
 - Place, move object
- Projective
 - View object
 - Later ...
- Non-linear, arbitrary
 - Twists, pinches, pulls
 - Not in this unit

