CMSC427
 Transformations:
 Matrix Review

Credit: slides 9+ from Prof. Zwicker

Matrix practice

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] & M R=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]= \\
R=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right] & R M=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]= \\
P=\left[\begin{array}{l}
2 \\
3
\end{array}\right] & M P=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=
\end{array}
$$

Matrix practice

$$
\begin{array}{ll}
M=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right] & M R=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 7 \\
1 & 6
\end{array}\right] \\
R=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right] & R M=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
3 & 6
\end{array}\right] \\
P=\left[\begin{array}{l}
2 \\
3
\end{array}\right] & M P=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
\end{array}
$$

Matrix transpose and column vectors

$$
\begin{aligned}
& R^{T}=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]^{T}= \\
& H^{T}=\left[\begin{array}{lll}
2 & 1 & 3 \\
4 & 1 & 5
\end{array}\right]^{T}= \\
& P=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
2 & 3
\end{array}\right]^{T}
\end{aligned}
$$

Matrix transpose and column vectors

$$
\begin{gathered}
R^{T}=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 0 \\
1 & 3
\end{array}\right] \\
H^{T}=\left[\begin{array}{lll}
l l l \\
4 & 1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ll}
2 & 4 \\
1 & 1 \\
3 & 5
\end{array}\right] \\
P=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{ll}
2 & 3
\end{array}\right]^{T}
\end{gathered}
$$

Matrices

Abstract point of view

- Mathematical objects with set of operations
- Addition, subtraction, multiplication, multiplicative inverse, etc.
- Similar to integers, real numbers, etc.

But

- Properties of operations are different
- E.g., multiplication is not commutative
- Represent different intuitive concepts
- Scalar numbers represent distances
- Matrices can represent coordinate systems, rigid motions, in 3D and higher dimensions, etc.

Matrices

Practical point of view

- Rectangular array of numbers

$$
\mathbf{M}=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \ldots & m_{1, n} \\
m_{2,1} & m_{2,2} & \ldots & m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{m, 1} & m_{2,2} & \ldots & m_{m, n}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

- Square matrix if $\mathbf{m}=\mathbf{n}$
- In graphics often $\mathbf{m}=\mathbf{n}=3, \mathbf{m}=\mathbf{n}=4$

Matrix addition

$\mathbf{A}+\mathbf{B}=\left[\begin{array}{cccc}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \ldots & a_{1, n}+b_{1, n} \\ a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \ldots & a_{2, n}+b_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m, 1}+b_{m, 1} & a_{2,2}+b_{2,2} & \ldots & a_{m, n}+b_{m, n}\end{array}\right]$
$\mathbf{A}, \mathbf{B} \in \mathbf{R}^{m \times n}$

Multiplication with scalar

$$
s \mathbf{M}=\mathbf{M} s=\left[\begin{array}{cccc}
s m_{1,1} & s m_{1,2} & \ldots & s m_{1, n} \\
s m_{2,1} & s m_{2,2} & \ldots & s m_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
s m_{m, 1} & s m_{2,2} & \ldots & s m_{m, n}
\end{array}\right]
$$

Matrix multiplication

$$
\begin{gathered}
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r} \\
\mathbf{A B}=p \\
\mathbf{A} \\
\mathbf{A} \\
\mathbf{B}
\end{gathered}
$$

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

Matrix multiplication

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

A

Matrix multiplication

$$
\mathbf{A B}=\mathbf{C}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{B} \in \mathbf{R}^{q, r}, \mathbf{C} \in \mathbf{R}^{p, r}
$$

$$
(\mathbf{A B})_{i, j}=\mathbf{C}_{i, j}=\sum_{k=1}^{q} a_{i, k} b_{k, j}, \quad i \in 1 . . p, j \in 1 . . r
$$

Matrix multiplication

Special case: matrix-vector multiplication

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}=\mathbf{y}, \quad \mathbf{A} \in \mathbf{R}^{p, q}, \mathbf{x} \in \mathbf{R}^{q}, \mathbf{y} \in \mathbf{R}^{p} \\
& (\mathbf{A x})_{i}=\mathbf{y}_{i}=\sum_{k=1}^{q} a_{i, k} x_{k}
\end{aligned}
$$

Linearity

- Distributive law holds
i.e., matrix $\mathbf{A}(s \mathbf{B}+t \mathbf{C})=s \mathbf{A B}+t \mathbf{A C}$
http://en.wikipedia.org/wiki/Linear map
- But multiplication is not commutative,
in general
$\mathrm{AB} \neq \mathrm{BA}$

Identity matrix

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right] \in \mathbf{R}^{n \times n}
$$

$\mathbf{M I}=\mathbf{I M}=\mathbf{M}, \quad$ for any $\mathbf{M} \in \mathbf{R}^{n \times n}$

Matrix inverse

Definition

If a square matrix M is non-singular, there exists a unique inverse \mathbf{M}^{-1} such that

$$
\mathbf{M M}^{-1}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}
$$

- Note

$$
(\mathbf{M P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1} \mathbf{M}^{-1}
$$

- Computation
- Gaussian elimination, Cramer's rule (OctaveOnline)
- Review in your linear algebra book, or quick summary http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html

Java vs. OpenGL matrices

- OpenGL (underlying 3D graphics API used in the Java code, more later)

http://en.wikipedia.org/wiki/OpenGL

- Matrix elements stored in array of floats float M[16];
- "Column major" ordering
- Java base code
- "Row major" indexing
$\left[\begin{array}{cccc}m[0] & m[4] & m[8] & m[12] \\ m[1] & m[5] & m[9] & m[13] \\ m[2] & m[6] & m[10] & m[14] \\ m[3] & m[7] & m[11] & m[15]\end{array}\right]$
- Conversion from Java to OpenGL convention hidden somewhere in basecode!
$\left[\begin{array}{cccc}m(0,0) & m(0,1) & m(0,2) & m(0,3) \\ m(1,0) & m(1,1) & m(1,2) & m(1,3) \\ m(2,0) & m(2,1) & m(2,2) & m(2,3) \\ m(3,0) & m(3,1) & m(3,2) & m(3,3)\end{array}\right]$

