CMSC427

Transformations:
Homogeneous
coordinates (again)

Credit: slides 9+ from Prof. Zwicker

Vectors \& coordinate systems

- Vectors defined by orientation, length
- Describe using three basis vectors
$\mathbf{X}, \mathbf{y}, \mathbf{z}$

$$
\mathbf{v}=v_{x} \mathbf{x}+v_{y} \mathbf{y}+v_{z} \mathbf{z}
$$

Points in 3D

- How do we represent 3D points?
- Are three basis vectors enough to define the location of a point?

Points in 3D

- Describe using three basis vectors and reference point, origin

Vectors vs. points

- Vectors

$$
\mathbf{v}=v_{x} \mathbf{x}+v_{y} \mathbf{y}+v_{z} \mathbf{z}+0 \cdot \mathbf{o} \quad\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]
$$

- Points

$$
\mathbf{p}=p_{x} \mathbf{x}+p_{y} \mathbf{y}+p_{z} \mathbf{z}+1 \cdot \mathbf{o} \quad\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]
$$

- Representation of vectors and points using $4^{\text {th }}$ coordinate is called homogeneous coordinates

Homogeneous coordinates

- Represent an affine space http://en.wikipedia.org/wiki/Affine space
- Intuitive definition
- Affine spaces consist of a vector space and a set of points
- There is a subtraction operation that takes two points and returns a vector
- Axiom l: for any point \mathbf{a} and vector \mathbf{v}, there exists point \mathbf{b}, such that $(\mathbf{b}-\mathbf{a})=\mathbf{v}$
- Axiom II: for any points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have $(b-a)+(c-b)=\mathbf{c - a}$

Affine space

Vector space,
http://en.wikipedia.org/wiki/Vector_space

- [xyz] coordinates
- represents vectors

Affine space
http://en.wikipedia.org/wiki/Affine space

- [xyz1], [xyz0] homogeneous coordinates
- distinguishes points and vectors

Homogeneous coordinates

- Subtraction of two points yields a vector

- Using homogeneous coordinates

$$
\mathbf{p}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
q_{x} \\
q_{y} \\
q_{z} \\
1
\end{array}\right] \quad \mathbf{q}-\mathbf{p}=\left[\begin{array}{c}
q_{x}-p_{x} \\
q_{y}-p_{y} \\
q_{z}-p_{z} \\
0
\end{array}\right]
$$

