CMSC427
Transformations:
Affine basics
(translations, scaling)

Credit: slides 9+ from Prof. Zwicker

Today

Transformations & matrices

- Introduction
- Matrices
- Homogeneous coordinates
- Affine transformations
- Concatenating transformations
- Change of coordinates
- Common coordinate systems

Classes of transformations

- Rigid
 - Translate, rotate, uniform scale
 - No distortion to object

- Affine
 - Translate, rotate, scale (non-uniform), shear, reflect
 - Limited distortions
 - Preserve parallel lines

First try: scale and rotate vertices in vector notation

- Scale a point p by s and translate by T
- Vector multiplication and addition
- Repeat and we get

$$q = s_2(s * p + T) + T_2$$

- Gets unwieldy
- Instead unify notation with homogeneous coordinates and matrices

$$q = s * p + T$$

 $q = 2 * (2,3) + < 2,2 >$
 $q = (6,8)$

Affine transformations

- Transformation, or mapping: function that maps each 3D point to a new 3D point "f: $\mathbf{R}^3 \rightarrow \mathbf{R}^{3"}$
- Affine transformations: class of transformations to position 3D objects in space
- Affine transformations include
 - Rigid transformations
 - Rotation
 - Translation
 - Non-rigid transformations
 - Scaling
 - Shearing

Affine transformations

 Definition: mappings that preserve colinearity and ratios of distances

http://en.wikipedia.org/wiki/Affine_transformation

- Straight lines are preserved
- Parallel lines are preserved
- Linear transformations + translation
- Nice: All desired transformations (translation, rotation) implemented using homogeneous coordinates and matrix-vector multiplication

Translation

Point Vector
$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \\ 0 \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{p} + \mathbf{t} = \left[egin{array}{c} p_x + t_x \ p_y + t_y \ p_z + t_z \ 1 \end{array}
ight]$$

Matrix formulation

Vector

$$\mathbf{p} = \left[egin{array}{c} p_x \ p_y \ p_z \ 1 \end{array}
ight] \qquad \mathbf{t} = \left[egin{array}{c} t_x \ t_y \ t_z \ 0 \end{array}
ight]$$

$$\mathbf{p}' = \mathbf{p} + \mathbf{t} = \left[egin{array}{c} p_x + t_x \ p_y + t_y \ p_z + t_z \ 1 \end{array}
ight]$$

$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\mathbf{T}(\mathbf{t})$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t})\mathbf{p}$$

Matrix formulation

Inverse translation

$$\mathbf{T}(\mathbf{t})^{-1} = \mathbf{T}(-\mathbf{t})$$

$$\mathbf{T}(\mathbf{t}) = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T}(-\mathbf{t}) = \begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Verify that

$$\mathbf{T}(-\mathbf{t})\mathbf{T}(\mathbf{t}) = \mathbf{T}(\mathbf{t})\mathbf{T}(-\mathbf{t}) = \mathbf{I}$$

Note

What happens when you translate a vector?

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = ?$$

Scaling

Origin does not change

$$\mathbf{S}(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

• Inverse scaling?

$$\mathbf{S}(s_x, s_y, s_z)^{-1} =$$

Scaling

• Inverse scaling?

$$\mathbf{S}(s_x, s_y, s_z)^{-1} = \mathbf{S}(1/s_x, 1/s_y, 1/s_z)$$

Shear

$$\mathbf{p}' = \left[\begin{array}{cc} 1 & z \\ 0 & 1 \end{array} \right] \mathbf{p}$$

- Pure shear if only one parameter is non-zero
- Cartoon-like effects

$$\mathbf{Z}(z_1 \dots z_6) = \left[egin{array}{cccc} 1 & z_1 & z_2 & 0 \ z_3 & 1 & z_4 & 0 \ z_5 & z_6 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

CMSC427 Transformations: Affine rotations

Credit: slides 9+ from Prof. Zwicker

First: rotating a vector in 2D

- Convention: positive angle rotates counterclockwise
- Express using rotation matrix

$$\mathbf{R}(\theta)$$

Rotating a vector in 2D

Rotating a vector in 2D

$$\mathbf{R}(\theta) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
$$\mathbf{R}(\theta) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

Rotating a vector in 2D

$$\mathbf{R}(\theta) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$\mathbf{R}(\theta) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

$$\mathbf{R}(\theta) \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotation in 3D

Rotation around z-axis

z-coordinate does not change

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$v^0 = R_z(\mu)v$$

What is the matrix for

$$\theta = 0, \theta = 90, \theta = 180$$

What is the matrix for
$$\theta = 0, \theta = 90, \theta = 180$$

$$\mathbf{R}_z(\theta)\mathbf{v} = \begin{bmatrix} \cos(\theta)v_x - \sin(\theta)v_y \\ \sin(\theta)v_x + \cos(\theta)v_y \\ v_z \\ 1 \end{bmatrix}$$

Other coordinate axes

- Same matrix to rotate points and vectors
- Points are rotated around origin

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation in 3D

• Concatenate rotations around x,y,z axes to obtain rotation around arbitrary axes through origin

$$\mathbf{R}_{x,y,z}(\theta_x,\theta_y,\theta_z) = \mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z)$$

- $\theta_x, \theta_y, \theta_z$ are called Euler angles http://en.wikipedia.org/wiki/Euler_angles
- Disadvantage: result depends on order!

$$\mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z) \neq \mathbf{R}_z(\theta_z)\mathbf{R}_y(\theta_y)\mathbf{R}_x(\theta_x)$$

Rotation around arbitrary axis

- Still: origin does not change
- Counterclockwise rotation
- Angle θ , unit axis ${f a}$

•

$$c_{\theta} = \cos \theta, s_{\theta} = \sin \theta$$

$$\mathbf{R}(\mathbf{a},\theta) = \begin{bmatrix} a_x^2 + c_\theta(1 - a_x^2) & a_x a_y(1 - c_\theta) - a_z s_\theta & a_x a_z(1 - c_\theta) + a_y s_\theta & 0 \\ a_x a_y(1 - c_\theta) + a_z s_\theta & a_y^2 + c_\theta(1 - a_y^2) & a_y a_z(1 - c_\theta) - a_x s_\theta & 0 \\ a_x a_z(1 - c_\theta) - a_y s_\theta & a_y a_z(1 - c_\theta) + a_x s_\theta & a_z^2 + c_\theta(1 - a_z^2) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Summary

- Different ways to describe rotations mathematically
 - Sequence of rotations around three axes (Euler angles)
 - Rotation around arbitrary angles (axis-angle representation)
 - Better internal representation (quaternions)
- Rotations preserve
 - Angles
 - Lengths
 - Handedness of coordinate system
- Rigid transforms
 - Rotations and translations

Rotation matrices

- Orthonormal
 - Rows, columns are unit length and orthogonal
- Inverse of rotation matrix?

Rotation matrices

- Orthonormal
 - Rows, columns are unit length and orthogonal
- Inverse of rotation matrix?
 - Its transpose

$$\mathbf{R}(\mathbf{a}, \theta)^{-1} = \mathbf{R}(\mathbf{a}, \theta)^T$$

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, heta)$
- $oldsymbol{\cdot}$ How do we obtain $\mathbf{R}(\mathbf{a},- heta)$?

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, heta)$
- How do we obtain $\mathbf{R}(\mathbf{a}, -\theta)$?

$$\mathbf{R}(\mathbf{a}, -\theta) = \mathbf{R}(\mathbf{a}, \theta)^{-1} = \mathbf{R}(\mathbf{a}, \theta)^{T}$$

- Given a rotation matrix $\mathbf{R}(\mathbf{a}, heta)$
- How do we obtain $\mathbf{R}(\mathbf{a},-\theta)$? $\mathbf{R}(\mathbf{a},-\theta)=\mathbf{R}(\mathbf{a},\theta)^{-1}=\mathbf{R}(\mathbf{a},\theta)^T$
- How do we obtain $\mathbf{R}(\mathbf{a}, 2\theta), \mathbf{R}(\mathbf{a}, 3\theta)$...?

- $oldsymbol{\cdot}$ Given a rotation matrix $\, {f R}({f a}, heta) \,$
- How do we obtain $\mathbf{R}(\mathbf{a}, -\theta)$?

$$\mathbf{R}(\mathbf{a}, -\theta) = \mathbf{R}(\mathbf{a}, \theta)^{-1} = \mathbf{R}(\mathbf{a}, \theta)^{T}$$

• How do we obtain $\mathbf{R}(\mathbf{a},2\theta),\mathbf{R}(\mathbf{a},3\theta)$...?

$$\mathbf{R}(\mathbf{a}, 2\theta) = \mathbf{R}(\mathbf{a}, \theta)^2 = \mathbf{R}(\mathbf{a}, \theta)\mathbf{R}(\mathbf{a}, \theta)$$

$$\mathbf{R}(\mathbf{a}, 3\theta) = \mathbf{R}(\mathbf{a}, \theta)^3 = \mathbf{R}(\mathbf{a}, \theta)\mathbf{R}(\mathbf{a}, \theta)\mathbf{R}(\mathbf{a}, \theta)$$

Summary affine transformations

 Linear transformations (rotation, scale, shear, reflection) + translation

Vector space,

http://en.wikipedia.org/wiki/Vector space

- vectors as [xyz] coordinates
- represents vectors
- linear transformations

Affine space

http://en.wikipedia.org/wiki/Affine space

- points and vectors as [xyz1], [xyz0] homogeneous coordinates
- distinguishes points and vectors
- linear tranforms and translation

Summary affine transformations

- Implemented using 4x4 matrices, homogeneous coordinates
 - Last row of 4x4 matrix is always [0 0 0 1]
- Any such matrix represents an affine transformation in 3D
- Factorization into scale, shear, rotation, etc. is always possible, but non-trivial
 - Polar decomposition

http://en.wikipedia.org/wiki/Polar decomposition