CMSC427
 Transformations II:
 Viewing (second video)

Credit: some slides from Dr. Zwicker

Camera matrix

- z-axis $\quad \mathbf{z}_{c}=\frac{\mathbf{e}-\mathbf{d}}{\|\mathbf{e}-\mathbf{d}\|}$
- x-axis $\quad \mathbf{x}_{c}=\frac{\mathbf{u p} \times \mathbf{z}_{c}}{\left\|\mathbf{u p} \times \mathbf{z}_{c}\right\|}$

Matrix for The ratatin?

- y-axis $\quad \mathbf{y}_{c}=\mathbf{z}_{\mathbf{c}} \times \mathbf{x}_{c}$

(u)

Rotation matrices

$$
\begin{aligned}
& {\left[\begin{array}{llll}
U^{\top} & \checkmark & W^{7}
\end{array}\right]\left[\begin{array}{l}
\Phi \\
\frac{1}{0}
\end{array}\right]=\left[\begin{array}{l}
r_{12} \\
r_{22} \\
r_{32}
\end{array}\right]} \\
& \begin{array}{l}
x \rightarrow v \\
y \rightarrow v
\end{array} \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
r_{13} \\
r_{23} \\
r_{33}
\end{array}\right] \\
& w \rightarrow z
\end{aligned}
$$

Rotation matrices

$$
p=a i+b j+c k \quad j=
$$

Rotation matrices

$$
\begin{aligned}
& q=a \frac{\bar{x}}{x}+b_{\bar{y}}+\frac{\hat{z}}{z} z \\
& R q=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} \\
r_{31} & r_{32} \\
r_{33} & r_{33}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[u^{\top} v^{\top} v^{\top}\right]\left[\begin{array}{l}
\hat{a} \\
c
\end{array}\right] \\
& =R\left(a \vec{x}+b_{4}+\vec{z} \vec{z}\right) \\
& =a R \vec{x}+b R \vec{y}+c R \vec{z} \\
& =a\left(u T, \vec{x}^{\top}\right)+b\left(v^{\top}, \overrightarrow{4}^{\top}\right)+c\left(w^{\top}, \vec{z}^{\top}\right)
\end{aligned}
$$

Camera matrix

- Camera to world transformation

$$
p_{c}=m_{c} 1
$$

Camera matrix

- Camera to world transformation

$$
f_{w}^{\text {atrongin }}
$$

$$
\begin{aligned}
& P_{c}=C P_{w} \\
& c=m_{T} \times m_{R} \\
& m_{R}=\left[\begin{array}{lll}
x_{c}^{\top} y_{c}^{\top} z_{c}^{\top}
\end{array}\right] \\
& m_{T}=T \\
& c=\left[\begin{array}{ccc}
x_{c}^{\top} & y_{c}^{\top} & z_{c}^{\top}-m_{R} \\
0 & 0 & 0 \\
l
\end{array}\right]
\end{aligned}
$$

Object, world, camera coords.

$$
P_{v}=M P_{0}
$$

$$
P_{c}=C P_{w} \quad P_{c}=c \mathrm{~m} P_{0}
$$

Objects in camera coordinates

- We have things lined up the way we like them on screen
- x to the right
- y up
- -z going into the screen
- Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next: how to project them into 2D

