
CMSC427 
Transformations II: 
Projection

Credit: some slides from Dr. Zwicker



Viewing transformations: the virtual camera

Need to know

• Where is the camera?
• CAMERA TRANSFORM

• What lens does it have?
• PROJECTIVE TRANSFORM

2

World coordinates

Object

coordinates

Camera

coordinates



Virtual camera routines in Processing

3

World coordinates

Object

coordinates

Camera

coordinates

• Camera (where)
• beginCamera()
• camera()
• endCamera()

• Projective (length of lens)
• frustum()
• ortho()
• perspective()

• Tracing 

• printCamera()

• printProjection()

https://processing.org/reference/beginCamera_.html
https://processing.org/reference/camera_.html
https://processing.org/reference/endCamera_.html
https://processing.org/reference/frustum_.html
https://processing.org/reference/ortho_.html
https://processing.org/reference/perspective_.html
https://processing.org/reference/printCamera_.html
https://processing.org/reference/printProjection_.html


Objects in camera coordinates

• We have things lined up the way we like them on 
screen
• x to the right

• y up

• -z going into the screen

• Objects to look at are in 
front of us, i.e. have 
negative z values

• But objects are still in 3D

• Today: how to project them into 2D
Camera

coordinates

4



Projections

• Given 3D points (vertices) in camera coordinates, 
determine corresponding 2D image coordinates

Orthographic projection

• Simply ignore z-coordinate

• Use camera space xy coordinates as image 
coordinates

• What we want, or not?

5



Orthographic projection

• Project points to x-y plane along parallel lines

• Graphical illustrations, architecture

6



Perspective projection

• Most common for computer graphics

• Simplified model of human eye, or camera lens 
(pinhole camera)

• Things farther 
away seem smaller

• Discovery/description
attributed to
Filippo Brunelleschi,
early 1400’s

http://en.wikipedia.org/wiki/Pinhole_camera

7

Projection plane behind center of 
projection, flipped image

http://en.wikipedia.org/wiki/Pinhole_camera


Perspective projection

• Project along rays that converge in center of 
projection

2D image plane
(in front of center of projection,

as typical in 3D graphics)

Center of

projection

3D scene

8



Perspective projection

Parallel lines 

no longer parallel,

converge at one point

Earliest example

La Trinitá (1427) by Masaccio
http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)

9

http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)


Perspective projection

The math: simplified case

Image plane

Center of

projection

10



Perspective projection

The math: simplified case

• Can express this using homogeneous coordinates, 
4x4 matrices

Image plane

Center of

projection

11



The math: simplified case

Perspective projection

Homogeneous coord. != 1!

Homogeneous division
Projection matrix

12



Perspective projection

• Using projection matrix and homogeneous division
seems more complicated than just multiplying all 
coordinates by d/z, so why do it?

• Will allow us to 
• handle different types of projections in a unified way

• define arbitrary view volumes

Homogeneous divisionProjection matrix

13



Intuitive example

• All points that lie on one projection line (i.e., a 
"line-of-sight", intersecting with center of 
projection of camera) are projected onto
same image point

• All 3D points on one projection line are equivalent

• Projection lines form 2D projective space, or
2D projective plane

14



3D Projective space

• Projective space P3 represented using R4 and 
homogeneous coordinates
• Each point along 4D ray is equivalent to same 3D point 

at w=1

„equivalent“

1D vector subspace,
arbitrary scalar value l

Equivalent element, 
for any l

15



3D Projective space

• Projective mapping (transformation): 
any non-singular linear mapping on homogeneous 
coordinates, for example,

• Generalization of affine mappings
• 4th row of matrix is arbitrary (not restricted to [0 0 0 1])

• Projective mappings are collineations
http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation

• Preserve straight lines, but not parallel lines

• Much more theory
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space 16

http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space


Projective space

Projective space
http://en.wikipedia.org/wiki/Projective_space

• [xyzw] homogeneous coordinates
• includes points at infinity (w=0)
• projective mappings (perspective projection)

Vector space
• [xyz] coordinates
• represents vectors
• linear mappings
(rotation around origin,
scaling, shear)

Affine space
• [xyz1], [xyz0]
homogeneous coords.
• distinguishes points 
and vectors
• affine mappings
(translation)

17

http://en.wikipedia.org/wiki/Projective_space


In practice

• Use 4x4 homogeneous matrices like other 4x4 matrices

• Modeling & viewing transformations are affine mappings
• points keep w=1

• no need to divide by w when doing modeling operations or 
transforming into camera space

• 3D-to-2D projection is a projective transform
• Resulting w coordinate not always 1

• Divide by w (perspective division, homogeneous division) 
after multiplying with projection matrix
• OpenGL rendering pipeline (graphics hardware) 

does this automatically
Vertex processing,

modeling and viewing

transformation

Projection

Scene data

Rasterization,

fragment processing, 

visibility

Image

18



Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation

19


