CMSC427 Transformations II: Projection

Credit: some slides from Dr. Zwicker

Viewing transformations: the virtual camera

Need to know

- Where is the camera?
- CAMERA TRANSFORM
- What lens does it have?

World coordinates

Virtual camera routines in Processing

- Camera (where)
- beginCamera()
- camera()
- endCamera()

- Projective (length of lens)
- frustum()
- ortho() -
perspective()
- Tracing
- printCamera()
- printProjection()

Objects in camera coordinates

- We have things lined up the way we like them on screen
- x to the right
- y up
- -z going into the screen
- Objects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Today: how to project them into 2D

Projections

- Given 3D points (vertices) in camera coordinates, determine corresponding 2D image coordinates
Orthographic projection
- Simply ignore z-coordinate
- Use camera space xy coordinates as image coordinates
- What we want, or not?

Orthographic projection

- Project points to $x-y$ plane along parallel lines
- Graphi

Perspective projection

- Most common for computer graphics
- Simplified model of human eye, or camera lens (pinhole camera)
- Things farther away seem smaller
- Discovery/description attributed to
Filippo Brunelleschi, early 1400's

$$
\begin{aligned}
& \text { lens - modred pinhole } \\
& \text { motel }
\end{aligned}
$$

Perspective projection

- Project along rays that converge in center of projection

Perspective projection

Perspective projection
The math: simplified case

$$
\frac{y^{\prime}}{d}=\frac{u_{1}}{z_{1}}=\frac{y_{2}}{z_{2}}
$$

Perspective projection

The math: simplified case

- Can express this using homogeneous coordinates, 4×4 matrices

$$
\begin{aligned}
\text { wite angle } \Rightarrow & \text { smaller d } \\
& \Rightarrow \text { smaller } y^{\prime} \\
\text { long bans } \Rightarrow & \text { larger } \\
& \Rightarrow \text { large } 4^{\prime}
\end{aligned}
$$

Perspective projection

The math: simplified case

Projection matrix
Homogeneous coord. != 1! Homogeneous division

Perspective projection

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]}
\end{aligned} \underset{\text { Homogeneous division }}{\left[\begin{array}{c}
x d / z \\
y d / z \\
d \\
\text { Projection matrix }
\end{array}\right]}
$$

- Using projection matrix and homogeneous division seems more complicated than just multiplying all coordinates by d / z, so why do it?
- Will allow us to
- handle different types of projections in a unified way
- define arbitrary view volumes

Intuitive example

- All points that lie on one projection line (i.e., a "line-of-sight", intersecting with center of projection of camera) are projected onto same image point
- All 3D points on one projection line are equivalent
- Projection lines form 2D projective space, or 2D projective plane

3D Projective space

- Projective space \mathbf{P}^{3} represented using \mathbf{R}^{4} and homogeneous coordinates
- Each point along 4D ray is equivalent to same 3D point at $w=1$

1D vector subspace, arbitrary scalar value λ

Equivalent element, for any λ

3D Projective space

- Projective mapping (transformation): any non-singular linear mapping on homogeneous coordinates, for example,

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right] \underbrace{\left.\qquad \frac{1}{x d / z} \begin{array}{c}
y d / z \\
\frac{2 k}{1}
\end{array}\right]}_{\text {LEe it }}
$$

- Generalization of affine mappings
- 4th row of matrix is arbitrary (not restricted to [00 0 A hd
- Projective mappings are collineations http://en. wikipedia.org/wiki/Projective linear transformation mapping
- Preserve straight lines, but not parallel lines
- Much more theory http://www.math.toronto.edu/mathnet/questionCorner/projective.html http://en.wikipedia.org/wiki/Projective space

Projective space

Projective space

http://en.wikipedia.org/wiki/Projective_space

- $(x y z w]$ homogeneous coordinates
- includes points at infinity ($w=0$)
- projective mappings (perspective projection)

In practice

- Use 4×4 homogeneous matrices like other 4×4 matrices
- Modeling \& viewing transformations are affine mappings
- points keep $w=1$
- no need to divide by w when doing modeling operations or transforming into camera space
- 3D-to-2D projection is a projective transform
- Resulting w coordinate not always 1
- Divide by w (perspective division, homogeneous division) after multiplying with projection matrix
- OpenGL rendering pipeline (graphics hardware) does this automatically

Today

- Rendering pipeline
- Projections
- View volumes, clipping
- Viewport transformation

