CMSC427
Transformations Il:
Projection

Credit: some slides from Dr. Zwicker

Viewing transformations: the virtual camera

Need to know

 Where is the camera? %‘
« CAMERA TRANSFORM Camera t M~ »¥
coordinates ObJ.eCt
 What lens does it have? coordinates

@OJEC'H E TRANSFOR World coordinates

Virtual camera routines in Processing

®/

 Camera (where)
e beginCameral)

..

o Camera V1
camera() coordinates * Object
e endCamera() coordinates
— World coordinates
* Projective (length of lens) 20 =2 20

e frustum() &

e ortho() .—

e perspective() —
\

* Tracing

e printCamera()

e printProjection()

https://processing.org/reference/beginCamera_.html
https://processing.org/reference/camera_.html
https://processing.org/reference/endCamera_.html
https://processing.org/reference/frustum_.html
https://processing.org/reference/ortho_.html
https://processing.org/reference/perspective_.html
https://processing.org/reference/printCamera_.html
https://processing.org/reference/printProjection_.html

Objects in camera coordinates

* We have things lined up the way we like them on
screen

e X to the right
*yup
e -7 going into the screen

* Objects to look at are in
front of us, i.e. have
negative z values

* But objects are still in 3D

) * . . -
Today: how to project them into 2D Camera

coordinates

Projections

e Given 3D points (vertices) in camera coordinates,
determine corresponding 2D image coordinates

Orthographic projection
e Simply ignore z-coordinate

* Use camera space Xy coordinates as image
coordinates

* What we want, or not?

Orthographic projection

* Project points to X-y plane along parallel lines

* Graphi

)

Perspective projection

* Most common for computer graphics

* Simplified-model| of human eye, or camera lens
(pinhole camera)

* Things
away seem smaller

 Discovery/description
attributed to
Filippo Brunelleschi,
early 1400's

/(%‘\{ - moc))@ed’ p/r\/u(g-

http://en.wikipedia.org/wiki/Pinhole camera

Projection plane behind center of

arase{
:lg projection, flipped image
(P

http://en.wikipedia.org/wiki/Pinhole_camera

Perspective projection

* Project along rays that converge in center of

projection ,

Lz | \,/\7
R AT s
o pmwk

. "
“, ..
- e,
.
L
[

Pml’\bli

= " Center of
\ projection
3D scene 2D image plane

(in front of center of projection,
as typical in 3D graphics)

Perspective projection

Parallel lines
no longer parallel,
converge at one point

Earliest example
La Trinita (1427) by Masaccio

http://en.wikipedia.org/wiki/Holy Trinity (Masaccio) #

http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)

Perspective projection

The math: simplified case

~C 2]
e R (Y2
/ W - 5 (% MY W L
Z — d (. [»;.‘ - :
Center of K:::::::::::::f s
projection

Image plane

10 N

Perspective projection

The math: simplified case

ol [end TN
y/ yl@ %

<1
7 =d
Center of k:::::::f:::‘r'z'

» Can express this using homogeneous coordinates,

4x4 matrices wide orsle => srellbr d

= shruallor 4

(ors long = /M;—eYJ
= (orpe '

Perspective projection

The math: simplified case

(X2,y2, z2)

y R @ V‘ 1,Y1, Z1
¥

Homogeneous coord. != 1!
Homogeneous division .. « -

Projection matrix

Perspective projection

10 0 0]z e] Jfad/z
01 0 O||y| | v yd /2
00 1 O 2| | oz ‘Q/
00 1/do]|1 z/d| | 1

Projection matrix Homogeneous division

——

* Using projection matrix and homogeneous division
seems more complicated than just multiplying all
coordinates by d/z, so why do it?

* Will allow us to
* handle different types of projections in a unified way
e define arbitrary view volumes

13

Intuitive example

 All points that lie on one projection line (i.e., a
"line-of-sight"”, intersecting with center of
projection of camera) are projected onto
same image point

* All 3D points on one projection line are equivalent

* Projection lines form 2D projective space, or
2D projective plane

30721

14

3D Projective space

* Projective space PS represented using R* and
homogeneous coordinates

e Each point along 4D ray is equivalent to same 3D point
at w=1

oo dd=
N w %07%2

> equivalent”

1D vector subspace, Equivalent element,

arbitrary scalar value A forany A .

3D Projective space

* Projective mapping (transformation):
any non-singular linear mapping on homogeneous
coordinates, for example,

10 0 O0f[x T
01 0 O vyl |y
00 1 O 2| z
0 0 1/d 0 1 z/d

* Generalization of affine mappings L2 (]
* 4th row of matrix is arbitrary (not restricted to [0 0 (}4})

* Projective mappings are collineations oé[{aw\
http://en.wikipedia.org/wiki/Projective linear transformatio Mﬂlg
http://en.wikipedia.org/wiki/Collineation

* Preserve straight lines, but not parallel lines

* Much more theory
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective space 16

http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space

Projective space

Projective space
http://en.wikipedia.org/wiki/Projective space

. w] homogeneaus coordinates

e includes points at infinity (w=0)

* projective mappings (perspective projection)
\ m—

Vector space

xyz] coorditates

Affine space
[xyz1], [xyzQ

P

* represents vectors homogeneous coords.
* [inear mappings * distinguishes points
(rotation around origin, and vectors
scaling, shear) e affine mappings

(translation)

17

http://en.wikipedia.org/wiki/Projective_space

In practice

Use 4x4 homogeneous matrices like other 4x4 matrices

Modeling & viewing transformations are affine mappings
* points keep w=1

* no need to divide by w when doing modeling operations or
transforming into camera space

3D-to-2D projection is a projective transform
* Resulting W coordinate not always 1

Divide by W (perspective division, homogeneous division)
after multiplying with projection matrix

* OpenGL rendering pipeline (graphics hardware)
does this automatically

Scene data

! Vertex processing, !
1 | modeling and viewing|

transformation
—P
G t4p/ I
U Projection
M X
Rastexi S
i| fpe®ment processing,
visibility

Today

* Rendering pipeline
* Projections

(* View volumes, clipping
@ort transformation

19

