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Viewing transformations: the virtual camera

Need to know

 Where is the camera? %‘
« CAMERA TRANSFORM Camera  t M~ »¥
coordinates ObJ.eCt
 What lens does it have? coordinates

@OJEC'H E TRANSFOR World coordinates




Virtual camera routines in Processing

®/

 Camera (where)
e beginCameral)

..

o Camera V1
camera() coordinates *  Object
e endCamera() coordinates
— World coordinates
* Projective (length of lens) 20 =2 20

e frustum() &

e ortho() .—

e perspective() —
\

* Tracing

e printCamera()

e printProjection()



https://processing.org/reference/beginCamera_.html
https://processing.org/reference/camera_.html
https://processing.org/reference/endCamera_.html
https://processing.org/reference/frustum_.html
https://processing.org/reference/ortho_.html
https://processing.org/reference/perspective_.html
https://processing.org/reference/printCamera_.html
https://processing.org/reference/printProjection_.html

Objects in camera coordinates

* We have things lined up the way we like them on
screen

e X to the right
*yup
e -7 going into the screen

* Objects to look at are in
front of us, i.e. have
negative z values

* But objects are still in 3D

) * . . -
Today: how to project them into 2D Camera

coordinates




Projections

e Given 3D points (vertices) in camera coordinates,
determine corresponding 2D image coordinates

Orthographic projection
e Simply ignore z-coordinate

* Use camera space Xy coordinates as image
coordinates

* What we want, or not?



Orthographic projection

* Project points to X-y plane along parallel lines

* Graphi

)




Perspective projection

* Most common for computer graphics

* Simplified-model| of human eye, or camera lens
(pinhole camera)

* Things
away seem smaller

 Discovery/description
attributed to
Filippo Brunelleschi,
early 1400's
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http://en.wikipedia.org/wiki/Pinhole camera

Projection plane behind center of

arase{
:lg projection, flipped image
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http://en.wikipedia.org/wiki/Pinhole_camera

Perspective projection

* Project along rays that converge in center of

projection ,
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(in front of center of projection,
as typical in 3D graphics)




Perspective projection

Parallel lines
no longer parallel,
converge at one point

Earliest example
La Trinita (1427) by Masaccio

http://en.wikipedia.org/wiki/Holy Trinity (Masaccio) #



http://en.wikipedia.org/wiki/Holy_Trinity_(Masaccio)

Perspective projection

The math: simplified case
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Perspective projection

The math: simplified case
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» Can express this using homogeneous coordinates,
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Perspective projection

The math: simplified case

(X2,y2, z2)

y R @ V‘ 1,Y1, Z1
¥

Homogeneous coord. != 1!
Homogeneous division .. « -

Projection matrix



Perspective projection

10 0 0]z e ] Jfad/z
01 0 O||y| | v yd /2
00 1 O 2| | oz ‘Q/
00 1/do]|1 z/d| | 1

Projection matrix Homogeneous division

——

* Using projection matrix and homogeneous division
seems more complicated than just multiplying all
coordinates by d/z, so why do it?

* Will allow us to
* handle different types of projections in a unified way
e define arbitrary view volumes
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Intuitive example

 All points that lie on one projection line (i.e., a
"line-of-sight"”, intersecting with center of
projection of camera) are projected onto
same image point

* All 3D points on one projection line are equivalent

* Projection lines form 2D projective space, or
2D projective plane

30721
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3D Projective space

* Projective space PS represented using R* and
homogeneous coordinates

e Each point along 4D ray is equivalent to same 3D point
at w=1

oo dd=
N w %07%2

> equivalent”

1D vector subspace, Equivalent element,

arbitrary scalar value A forany A .



3D Projective space

* Projective mapping (transformation):
any non-singular linear mapping on homogeneous
coordinates, for example,

10 0 O0f[x T
01 0 O vyl |y
00 1 O 2| z
0 0 1/d 0 1 z/d

* Generalization of affine mappings L2 (]
* 4th row of matrix is arbitrary (not restricted to [0 0 (}4})

* Projective mappings are collineations oé[{aw\
http://en.wikipedia.org/wiki/Projective linear transformatio Mﬂlg
http://en.wikipedia.org/wiki/Collineation

* Preserve straight lines, but not parallel lines

* Much more theory
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective space 16



http://en.wikipedia.org/wiki/Projective_linear_transformation
http://en.wikipedia.org/wiki/Collineation
http://www.math.toronto.edu/mathnet/questionCorner/projective.html
http://en.wikipedia.org/wiki/Projective_space

Projective space

Projective space
http://en.wikipedia.org/wiki/Projective space

. w] homogeneaus coordinates

e includes points at infinity (w=0)

* projective mappings (perspective projection)
\ m—

Vector space

xyz] coorditates

Affine space
[xyz1], [xyzQ

P

* represents vectors homogeneous coords.
* [inear mappings * distinguishes points
(rotation around origin, and vectors
scaling, shear) e affine mappings

(translation)
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http://en.wikipedia.org/wiki/Projective_space

In practice

Use 4x4 homogeneous matrices like other 4x4 matrices

Modeling & viewing transformations are affine mappings
* points keep w=1

* no need to divide by w when doing modeling operations or
transforming into camera space

3D-to-2D projection is a projective transform
* Resulting W coordinate not always 1

Divide by W (perspective division, homogeneous division)
after multiplying with projection matrix

* OpenGL rendering pipeline (graphics hardware)
does this automatically

Scene data

! Vertex processing, !
1 | modeling and viewing|

transformation
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U Projection
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i|  fpe®ment processing,
visibility




Today

* Rendering pipeline
* Projections

(* View volumes, clipping
@ort transformation
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