CMSC427
Rendering pipeline

Credit: some slides from Dr. Zwicker

The complete transform

* Mapping a 3D point in object coordinates to pixel

coordinates L
r{Lé c Iﬁ

* Object-to-world matrix M, camera matrix C,
projection matrix C, viewport matrix D

1o
@@1@ Mt;s&\
p =DPC Mgy~ T
Object space
World space
Camera space -7

Canonic view volume¥

Image space hjwé,w/ud

2

The complete transform

* Mapping a 3D point in object coordinates to pixel
coordinates

* Object-to-world matrix M, camera matrix C,
projection matrix C, viewport matrix D

p’ = DPC 'Mp

ZU,
/ / /
/ Y : : £z /W
p = , Pixel coordinates ,/ ,
z w
v/
w/

OpenGL details

* Object-to-world matrix M, camera matrix C, projection
matrix P, viewport matrix D
Model-view matrix

p = D|PC_11\/Ip

Projection matrix
* OpenGL rendering pipeliné orms these matrix
multiplications\in vertex shader program

* User just specifies the@nd

matrices

e See Java code@ GLRenderContext dra
vertex shader in file©

and default

OpenGL details

e Object-to-world matrix M, camera matrix C, projection
matrix P, viewport matrix D

Model-view matrix

p' = DPC ‘Mp
|
Projection matrix

* Exception: viewport matrix, D
* Specified implicitly via glViewport()
* No direct access, not used in shader program

Rendering pipeline

http://en.wikipedia.org/wiki/Graphics pipeline

Scene data

s 2

Rendering
pipeline

Image

e Hardware & software that
draws 3D scenes on the screen

* Most operations performed by
specialized hardware (graphics
processing unit, GPU,

http://en.wikipedia.org/wiki/Graphics processing unit)

* Access to hardware through
low-level 3D API (DirectX,
OpenGL)

- a Java binding to OpenGL,
1sedl in our projects

http://jogamp.org/jogl/www/

* All scene data flows through
the pipeline at least once for
each frame (i.e., image)

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://jogamp.org/jogl/www/
http://en.wikipedia.org/wiki/Graphics_pipeline

Rendering pipeline

* Rendering pipeline implements object order

algorithm -
* Loop over all objects (LT‘A QJ

e Draw triangles one by one (rasterization)

e Alternatives? E’>//j'7)ﬁj
[

* Advantages, disadvantages?

C~be core 5,0“"C

Rendering engine

| Rendering engine (jrtr)

Scene data

s 2

Rendering
pipeline

Image

» Additional software layer
(“middle-ware”)
encapsulating low-level
APl (OpenGL, DirectX, ...)

e Additional functionality
(file 1/0O, scene
management, ...)

* Layered software
architecture common in
industry

* Game engines
http://en.wikipedia.org/wiki

/Game engine

http://en.wikipedia.org/wiki/Game_engine

Rendering pipeline stages (simplified)

Scene data

| Vertex processing, |
| modeling and viewing |
' transformation

. i

Projection

. 1

: Rasterization,
| fragment processing,
' visibility

* Geometry — Wres h

* Vertices and how they are
connected

* Triangles, lines, point sprites,
triangle strips

e Attributes such as color
AL

» Specified in object coordinates

* Processed by the rendering
pipeline one-by-one

Rendering pipeline stages (simplified)

Scene data
e — y on GPV
| Vertex processing, | ==
| modeling and viewing |
| transformation |

. Transfprm object to camera
coordinates

| —1
l Pcamera — C Mpobject
i MODELVIEW
Projection matrix
l § * Additional processing on per-
; vertex basis
Rasterization Shading, i.e., computing per-
;) i vertex colors
| fragment processing, » Deformation, animation
’ visibility * Etc.
_____________________ l

Rendering pipeline stages (simplified)

Scene data

| Vertex processing, |
| modeling and viewing |
' transformation

. i

Projection mm) ° Project 3D vertices to 2D
i Image positions
. 3 |
° Tbis IthHFe

, Rasterization, :
| fragment processing, |
' visibility

Rendering pipeline stages (simplified)

Scene data

Draw primitives pixel by pixel
on 2D image (triangles, lines,
point sprites, etc.)

| Vertex processing, |
| modeling and viewing |

transformation Compute per fragment (i.e.,
l ; pixel) color
Projection * Determine what is visible
| Rasterlzatlon.. — eyl (re
54iﬁgmer))processing, | -
visibility ; PagRnt
_____________________ j:___________----------: ///\)/ \\\
4:7/ ::"S/"‘ '
Image GHEEEE

asterization)

Rendering pipeline stages (simplified)

i Vertgx processing, e e Chader
| modeling and viewing | L

transformation

. i

Projection

. 1

g Rasterization,]Kya pre—
| fragment processing, ‘(’/ : J S hodov”
’ visibility |

- Grid (2D array) of RGB pixel colors

13

