CMSC427
Transformations Il:
Frustrum

Credit: some slides from Dr. Zwicker

Viewing transformations: the virtual camera

Need to know

 Where is the camera? %‘

« CAMERA TRANSFORM Camera Nl
coordinates ObJ.ect
 What lens does it have? coordinates

* PROJECTIVE TRANSFORM World coordinates

Today

* Rendering pipeline

* Projections

* View volumes, clipping

* Viewport transformation

Virtual camera routines in Processing

®/

 Camera (where)
e beginCamera()

o 5.

Camera \
* cadamera \)
' coordinates * Object
e endCamera() coordinates

World coordinates

* Projective (length of lens)
e frustum()

e orthol()

e perspective()

* Tracing

e printCamera()

e printProjection()

https://processing.org/reference/beginCamera_.html
https://processing.org/reference/camera_.html
https://processing.org/reference/endCamera_.html
https://processing.org/reference/frustum_.html
https://processing.org/reference/ortho_.html
https://processing.org/reference/perspective_.html
https://processing.org/reference/printCamera_.html
https://processing.org/reference/printProjection_.html

Camera routine in Processing

void setup() {
size(640, 360, P3D);
}

void draw() {
background(0);

camera(width/2, height/2, (height/2) / tan(P1/6),
width/2, height/2,0, O, 1, 0);

translate(width/2, height/2, -100);
stroke(255);

noFill();

box(200);

View volumes

* View volume is 3D volume seen by camera

Perspective view volume Orthographic view volume

Camera coordinates Camera coordinates

X X

World coordinates World coordinates

Perspective view volume

General view volume

Camera
coordinates ,

* Defined by 6 parameters, in camera coordinates
* Left, right, top, bottom boundaries
* Near, far clipping planes

* Clipping planes to avoid numerical problems
 Divide by zero
* Low precision for distant objects

e Often symmetric, i.e., left=-right, top=-bottom

Perspective view volume

Symmetric view volume

y=top
T FOV ‘

Z=-near

v

z=-far

* Only 4 parameters
* Vertical field of view (FOV)
* Image aspect ratio (width/height) right —left right

- aspect ratio= =
* Near, far clipping planes top — bottom top

top
near

tan(FOV /2) =

Orthographic view volume

]

L

"u"CS\
B

Camera /'
. y=hottom
coordinates

* Parametrized by 6 parameters
* Right, left, top, bottom, near, far

z=-far

* If symmetric
* Width, height, near, far

Clipping

* Need to identify objects outside view volume
* Avoid division by zero

e Efficiency, don’t draw
objects outside view
volume

e Performed by OpenGL
rendering pipeline

* Clipping always to M
canonic view volume \X

Nl
* Cube [-1..1]X[-1..1]X[-1..1] cent

* Need to transform desired view frustum to canonic
view frustum

10

Canonic view volume

* Projection matrix is set such that

e User defined view volume is transformed into canonic
view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

“Multiplying vertices of view volume by projection
matrix and performing homogeneous divide yields
canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]“

* Perspective and orthographic projection are
treated exactly the same way

Projection matrix

(right.iop, maar)
et betion, rear) / {right toq far)
Camera coordinates .
I Perspective View Voluma Crthagraghie View Valume
Projection matrix Frorion rpenon

Viewport transformation
(later)

13

Perspective projection matrix

* General view frustum

Camera
coordinates ,

Poersplleft, right, top, bottom, near, far) =

[2near 0
right—left
0 2near
top—bottom
0 0
0 0

right+lefi 0
right—left
top+bottom 0
top—bottom
—(far+near) —2far-near
far—near far—near
~1 0

Perspective projection matrix

* Compare to simple projection matrix from before

Simple projection General view frustum
I | 2near jght+left
10 0 0 Tiglﬁf?}left) 0 E;ghg—ggﬁ 0
near op+ooltom
0 1 0 0 0 top—bottom toﬁ—bottom 0
0 0 1 0 0 0 —(far+near) —2far-near
far=ncar far—near
0 0@/Do 0 0 C-D 0o

Perspective projection matrix

* Symmetric view frustum with field of view, aspect
ratio, near and far clip planes

y=top

Camera FOV ‘

coordinates

/

Z=-near

z=-far
i 1
0 0
aspect -tan(FOV / 2)
1
0 0 0
P .., (FOV,aspect,near, far) = tan(FOV /2)
0 0 near + far 2 -near- far
near — far near — far

0 0 -1 0

Orthographic projection matrix

Z=-Tar

0 _ right + left]
right — left
0 _ top + bottom
top — bottom
2 far + near
far — near far =gear
o @
0
0 w = 1 after mult.
fr-+ mear with orthographic

x=laf
y
Camera Z,T
coordinates \x
y=hottam /"
£=-hear
i 2
right — left
0 2
P . (right,left,top,bottom,near, far) = top — bottom
0 0
] 0 0
2
0
width
2
P . (width,height,near, far) = height
2
0 0
far — near
0 0 0

projection matrix

faréﬁear

