
CMSC427
Transformations II:
Frustrum

Credit: some slides from Dr. Zwicker

Viewing transformations: the virtual camera

Need to know

• Where is the camera?
• CAMERA TRANSFORM

• What lens does it have?
• PROJECTIVE TRANSFORM

2

World coordinates

Object

coordinates

Camera

coordinates

Today

• Rendering pipeline

• Projections

• View volumes, clipping

• Viewport transformation

3

Virtual camera routines in Processing

4

World coordinates

Object

coordinates

Camera

coordinates

• Camera (where)
• beginCamera()
• camera()
• endCamera()

• Projective (length of lens)
• frustum()
• ortho()
• perspective()

• Tracing

• printCamera()

• printProjection()

https://processing.org/reference/beginCamera_.html
https://processing.org/reference/camera_.html
https://processing.org/reference/endCamera_.html
https://processing.org/reference/frustum_.html
https://processing.org/reference/ortho_.html
https://processing.org/reference/perspective_.html
https://processing.org/reference/printCamera_.html
https://processing.org/reference/printProjection_.html

Camera routine in Processing

void setup() {
size(640, 360, P3D);
}

void draw() {
background(0);

camera(width/2, height/2, (height/2) / tan(PI/6),
width/2, height/2, 0, 0, 1, 0);

translate(width/2, height/2, -100);
stroke(255);
noFill();
box(200);

}

View volumes

• View volume is 3D volume seen by camera

World coordinates

Camera coordinates

World coordinates

Camera coordinates

Perspective view volume Orthographic view volume

6

Perspective view volume

General view volume

• Defined by 6 parameters, in camera coordinates
• Left, right, top, bottom boundaries
• Near, far clipping planes

• Clipping planes to avoid numerical problems
• Divide by zero
• Low precision for distant objects

• Often symmetric, i.e., left=-right, top=-bottom

Camera

coordinates

7

Perspective view volume

Symmetric view volume

• Only 4 parameters
• Vertical field of view (FOV)

• Image aspect ratio (width/height)

• Near, far clipping planes

-z

FOV

y

z=-near

z=-far

y=top

aspect ratio=
right − left

top − bottom
=
right

top

tan(FOV / 2) =
top

near

8

Orthographic view volume

• Parametrized by 6 parameters
• Right, left, top, bottom, near, far

• If symmetric
• Width, height, near, far

Camera

coordinates

9

Clipping

• Need to identify objects outside view volume
• Avoid division by zero

• Efficiency, don’t draw
objects outside view
volume

• Performed by OpenGL
rendering pipeline

• Clipping always to
canonic view volume
• Cube [-1..1]x[-1..1]x[-1..1] centered at origin

• Need to transform desired view frustum to canonic
view frustum

10

Canonic view volume

• Projection matrix is set such that
• User defined view volume is transformed into canonic

view volume, i.e., unit cube [-1,1]x[-1,1]x[-1,1]

“Multiplying vertices of view volume by projection
matrix and performing homogeneous divide yields
canonic view volume, i.e., cube [-1,1]x[-1,1]x[-1,1]“

• Perspective and orthographic projection are
treated exactly the same way

12

Projection matrix

Camera coordinates

Projection matrix

Canonic view volume

Viewport transformation

(later)
13

Perspective projection matrix

• General view frustum

Camera

coordinates

14

Perspective projection matrix

• Compare to simple projection matrix from before

Simple projection General view frustum

15

Perspective projection matrix

• Symmetric view frustum with field of view, aspect
ratio, near and far clip planes

Ppersp (FOV ,aspect,near, far) =

1

aspect  tan(FOV / 2)
0 0 0

0
1

tan(FOV / 2)
0 0

0 0
near + far

near − far

2 near  far

near − far

0 0 −1 0





























-z

FOV

y

z=-near

z=-far

y=top

Camera

coordinates

16

Orthographic projection matrix

Portho(right,left,top,bottom,near, far) =

2

right − left
0 0 −

right + left

right − left

0
2

top − bottom
0 −

top + bottom

top − bottom

0 0
2

far − near

far + near

far − near

0 0 0 1





























Portho(width,height,near, far) =

2

width
0 0 0

0
2

height
0 0

0 0
2

far − near

far + near

far − near

0 0 0 1



























Camera

coordinates

w = 1 after mult.
with orthographic
projection matrix

17

