CMSC427 L08P6: Shading Strategies

Credit: slides from Dr. Zwicker

Today

Shading

- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Per-triangle, -vertex, -pixel shading

Per-triangle shading

- Known as flat shading
- Evaluate shading once per triangle using pertriangle normal
- Advantages
 - Fast
- Disadvantages
 - Faceted appearance

Per-vertex shading

- Known as Gouraud shading (Henri Gouraud 1971)
- Per-vertex normals
- Interpolate vertex colors across triangles
- Advantages
 - Fast
 - Smoother than flat shading
- Disadvantages
 - Problems with small highlights

Per-pixel shading phong interpolation

Interp. Color of Grand

Tain 171117 Phong Compite interp. pormel & cach pixel - compute shading equation at each

Per-pixel shading

- Also known as **Phong interpolation** (not to be confused with Phong illumination model)
 - Rasterizer interpolates normals across triangles
 - Illumination model evaluated at each pixel
 - Implemented using programmable shaders (next week)
- Advantages
 - Higher quality than Gouraud shading
- Disadvantages
 - Much slower, but no problem for today's GPUs

(_____

Gouraud vs. per-pixel shading

- Gouraud has problems with highlights
- Could use more triangles...

What about shadows?

• Standard shading assumes light sources are visible everywhere

local shading each tri. gets shading on its on on

- Does not determine if light is blocked
- No shadows!
- Shadows require additional work
- Later in the course

What about textures?

- How to combine "colors" stored in textures and lighting computations?
- Interpret textures as shading coefficients
- Usually, texture used as ambient and diffuse reflectance coefficient k_d , k_a
- Textures provide spatially varying BRDFs
 - Each point on surface has different BRDF parameters, different appearance

Summary

- Local illumination (single bounce) is computed using BRDF
- BRDF captures appearance of a material
 - Amount of reflected light for each pair of light/viewing directions
- Simplified model for BRDF consists of diffuse + Phong/Blinn + ambient
 - Lambert's law for diffuse surfaces
 - Microfacet model for specular part
 - Ambient to approximate multiple bounces
- Light source models
 - Directional
 - Point, spot, inverse square fall-off
- Different shading strategies
 - Per triangle, Gouraud, per pixel