CMSC427 L08P6: Shading Strategies

Credit: slides from Dr. Zwicker

Today

Shading

- Introduction
- Radiometry \& BRDFs
- Local shading models
- Light sources
- Shading strategies

Per-triangle, -vertex, -pixel shading

- May compute shading

Scene data operations vertex
 Modeling and viewing transformation

- Once per pixel

$30 \rightarrow 210$
- Once per triangle
- Once pervertex

Per-triangle shading

- Known as flat shading
- Evaluate shading once
 per triangle using pertriangle normal
- Advantages
- Fast
- Disadvantages
- Faceted appearance

Per-vertex shading

- Known as Gouraud shading (Henri Gouraud 1971)
- Per-vertex norma ts
- Interpolate vertex colors across triangles
- Advantages

Fast

- Smoother than flat shading
- Disadvantages
- Problems with small highlights
mus
spec.
righlusht

Per-pixel shading
phong interpulatio

- Compte interp. normel @ each pixel
- Compute shading equation al cach

Per-pixel shading

- Also known as Phong interpolation (not to be confused with Phong illumination model)
- Rasterizer interpolates normals across triangles
- Illumination model evaluated at each pixel
- Implemented using programmable shaders (next week)
- Advantages
- Higher quality than Gouraud shading
- Disadvantages
- Much slower, but no problem for oday's GPUS

Gouraud vs. per-pixel shading

- Gouraud has problems with highlights
- Could use more triangles...

Gouraud

Per-pixel, same triangles

What about shadows?

- Standard shading assumes light sources are visible everywhere
- Does not determine if light is blocked
- No shadows!
- Shadows require additional work
- Later in the course

What about textures?

- How to combine „colors" stored in textures and lighting computations?
- Interpret textures as shading coefficients
- Usually, texture used as ambient and diffuse reflectance coefficient k_{d}, k_{a}
- Textures provide spatially varying BRDFs
- Each point on surface has different BRDF parameters, different appearance

Summary

- Local illumination (single bounce) is computed using BRDF
- BRDF captures appearance of a material
- Amount of reflected light for each pair of light/viewing directions
- Simplified model for BRDF consists of diffuse + Phong/Blinn + ambient
- Lambert‘s law for diffuse surfaces
- Microfacet model for specular part
- Ambient to approximate multiple bounces
- Light source modets
- Direttional
- Point, spot,inverse square fall-off
- Different shading strategies
- Per triangle, Gouraud, per pixel

