CMSC427 L08P3: Shading BRDF

Credit: slides from Dr. Zwicker

Today

Shading

- Introduction
- Radiometry & BRDFs
- Local shading models
- Light sources
- Shading strategies

Material appearance

- What is giving a material its color and appearance?
- How is light reflected by a
 - Mirror
 - White sheet of paper
 - Blue sheet of paper
 - Glossy metal

- Physical units to measure light energy
- Based on the geometrical optics model
- Light modeled as rays
 - Rays are idealized narrow beams of light http://en.wikipedia.org/wiki/Ray_%28optics%29
 - Rays carry a spectrum of electromagnetic energy
- No wave effects, like interference or diffraction

Diffraction pattern from square aperture

Solid angle

- Area of a surface patch on the unit sphere
 - In our context: area spanned by a set of directions $\int \frac{1}{2} \int \frac{1}{2} \frac{$
- Unit: steradian sr
- Directions usually denoted by ω

Angle and solid angle

- Angle $\theta = l/r$
- Unit circle has 2π radians
- Solid angle $\Omega = A R^2$
- Unit sphere has 4π steradians

Radiance

http://en.wikipedia.org/wiki/Radiance

- "Energy carried along a narrow beam (ray) of light"
- Energy passing through a small area in a small bundle of directions, divided by area and by solid angle spanned by bundle of directions, in the limit as area and solid angle tend to zero
- Units: energy per area per solid angle $\left[W\cdot sr^{-1}\cdot m^{-2}
 ight]$

Radiance

- Think of light consisting of photon particles, each traveling along a ray
- Radiance is photon "ray density"
 - Number of photons per area per solid angle
 - "Number of photons passing through small cylinder, as cylinder becomes infinitely thin"

Pinhole camera

• Records radiance on projection screen

http://en.wikipedia.org/wiki/Pinhole_camera

Radiance

- Spectral radiance: energy at each wavelength/frequency (count only photons of given wavelength)
- Usually, work with radiance for three discrete wavelengths
 - Corresponding to R,G,B primaries

Irradiance

- Energy per area: "energy going through a small area, divided by size of area"
- "Radiance summed up over all directions"
- Units

Local shading

- Goal: model reflection of light at surfaces
- Bidirectional reflectance distribution function (BRDF)

"For each pair of light/view direction, BRDF gives fraction of reflected light"

Local shading

- Goal: model reflection of light at surfaces
- Bidirectional reflectance distribution function (BRDF)

http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

- "Given light direction, viewing direction, obtain fraction of light reflected towards the viewer"
- For any pair of light/viewing directions!
- For different wavelenghts (or R, G, B) separately

"For each pair of light/view direction, BRDF gives fraction of reflected light"

BRDFs

- BRDF describes appearance of material
 - Color
 Diffuse
 Glossy
 Mirror

Intensity
Intensity
Intensity
Scale
Spectrum
Idor

- Etc.
- BRDF can be different at each point on surface
 - Spatially varying BRDF (SVBRDF)
 - Textures

Technical definition

- Given incident and outgoing directions
- BRDF is fraction of "radiance reflected in outgoing direction" over "incident irradiance arriving from narrow beam of directions"

Irradiance from a narrow beam

- Narrow beam of parallel rays shining on a surface
 - Area covered by beam varies with the angle between the beam and the normal n
 - The larger the area, the less incident light per area
- Irradiance (incident light per unit area) is proportional to the cosine of the angle between the surface normal ${\bf n}$ and the light rays
- Equivalently, irradiance contributed by beam is radiance of beam times cosine of angle between normal ${\bf n}$ and beam direction

Shading with BRDFs

- Given radiance arriving from each direction, outgoing direction
- For all incoming directions over the hemisphere
 - 1. Compute irradiance from incoming beam
 - 2. Evaluate BRDF with incoming beam direction, outgoing direction
 - 3. Multiply irradiance and BRDF value
 - 4. Accumulate
 - Mathematically, a hemispherical integral ("shading integral")

Incident irradiance from small beam of directions

Hemisphere

Reflected radiance

Shading with BRDFs

- If only discrete number of small light sources taken into account, need minor modification of algorithm
- For each light source
 - 1. Compute irradiance arriving from light source
 - 2. Evaluate BRDF with direction to light source, outgoing direction
 - 3. Multiply irradiance and BRDF value
 - 4. Accumulate

Incident irradiance for each light source

Sim contribution

Reflected radiance

Limitations of BRDF model

Cannot model

Fluorescence

- Subsurface and volume scattering
- Polarization
- Interference/diffraction

Visualizing BRDFs

- Given viewing or light direction, plot BRDF value over sphere of directions
- Illustration in "flatland" (1D slices of 2D BRDFs)

Visualizing BRDFs

 Can add up several BRDFs to obtain more complicated ones

BRDF representation

- How to define and store BRDFs that represent physical materials?
- Physical measurements

Material sample

- Gonioreflectometer: robot with light source and camera
- Measures reflection for each light/camera Light source direction
- Store measurements in RUI table
- Too much data for interactive application
 - 4 degrees of freedom!

Cornell University Gonioreflectometer

Camera

BRDF representation

- Analytical models
 - Try to describe phyiscal properties of materials using mathematical expressions
- Many models proposed in graphics

http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function http://en.wikipedia.org/wiki/Cook-Torrance http://en.wikipedia.org/wiki/Oren-Nayar_diffuse_model

 Will restrict ourselves to simple models here

