
Programming Assignment 2: User Interaction and Shaders

CMSC427: Computer Graphics, Fall 2020

Submission deadline: Friday October 16stnd, 11:59pm

In this assignment you implement functionality for user interaction with your scene via a
virtual trackball. Continue to build on the Java code that you got to know in the previous
assignments. The deadline to submit your solution via ELMS/Canvas is Friday October
16stnd, 11:59pm. Please submit only the Java files that you modified. Grading will take
place in a meeting with the teaching assistant, for which you need to register via the list on
ELMS/Canvas.

1 Virtual Trackball (4 Points)

Implement a virtual trackball that you can use to rotate an object with the mouse. Your
solution should transform mouse movements with clicked mouse button (dragging) into a
rotation matrix, which can then be applied to rotate the scene accordingly. Rotations around
all three coordinate axes should be possible.

You can obtain information about mouse positions during dragging by implementing the
MouseMotionListener interface, see also the documentation here. Follow the example of
SimpleMouseListener in simple.java when implementing this interface.

The figure below shows how to derive a rotation axis and a rotation angle from a mouse
movement. The symbols m0 and m1 denote two consecutive 2D mouse positions. First, you
obtain two 3D points v and w by projecting these positions along the z-axis onto a “virtual
sphere” that fills the rendering window. Use the cross product a = v ×w as a rotation axis
and the angle between v and w as a rotation angle. Note that the Matrix4f class in the
javax.vecmath package provides functionality to obtain a rotation matrix from an axis-angle
representation. In this way, horizontal movements in the center of the window should lead
to a rotation around the y-axis. Vertical movements in the center of the window should lead
to a rotation around the x-axis. Movements at the boundary of the window (horizontal and
vertical) should lead to a rotation around the z-axis.

Do not forget to handle the following special cases:

• The mouse position lies outside the virtual trackball (in a corner of, or outside the
rendering window).

• The rendering window is non-square.

1

https://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseMotionListener.html


Figure 1: Visualization of the virtual trackball. While the mouse is dragged, two consecutive
mouse positions m0 and m1 (left) are projected onto a virtual sphere (right) along the z-axis,
resulting in vectors v and w that end on the sphere. These vectors define the rotation axis
and angle.

Note that we also provide a more detailed description of a virtual trackball implemen-
tation from an external source with this assignment on ELMS/Canvas, which you may find
helpful.

1.1 Test (1 Point)

You can run your virtual trackball with the objects and scenes from Project 1, but for this
assignment please also test your implementation with triangle meshes that are read from
files. You can use the class ObjReader that is included in the jrtr project. The object reader
reads the .obj file format, a simple text-based file format to store polygon meshes. These
.obj files basically stored a list of vertices (rows starting with v, one vertex per row) and a
list of indices of the vertices of all polygons (rows starting with f , one polygon per row).
Additionally, normals (rows starting with vn) and texture coordinates (rows starting with
vt) can be stored. You can find more details concerning the .obj format on Wikipedia and
in the obj format specification. The subfolder obj of the provided basecode contains some
test files. It is recommended to test the trackball with the file Teapot.obj.

2

http://en.wikipedia.org/wiki/Wavefront_.obj_file
http://paulbourke.net/dataformats/obj/

	Virtual Trackball (4 Points)
	Test (1 Point)


