
Rotating the Camera with the Mouse

Implementing a Virtual Trackball with the Windows Presentation
Foundation (formerly codenamed Avalon)

Daniel Lehenbauer
http://blogs.msdn.com/danlehen

Abstract
Usually the first thing people want to do after they display a 3D model is to click on it and rotate it with the mouse. The
most common technique for rotating 3D objects via the mouse is known as a “virtual trackball”. This article will describe
what a trackball does and walk through the mechanics of implementing one. At the end are links to sample code you can
use to rotate the camera with the mouse in your own WPF applications.

Figure 1a
Tiger model in its original configuration

Figure 1b
Tiger model after the mouse has been
dragged to the left and slightly down.

1. Introduction
A trackball translates 2D mouse movements into 3D rotations. This is done by projecting the position of the mouse on to an
imaginary sphere behind the Viewport3D as shown in Figure 2. As the mouse is moved the camera (or scene) is rotated to
keep the same point on the sphere underneath the mouse pointer.

Figure 2a
The Viewport3D with the cube and inscribed
trackball from the user’s perspective

Figure 2b
Side view illustrating the point on the sphere
which maps to the mouse position

When the mouse is moved horizontally a rotation about the Y axis is required to keep the same point under the mouse

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

1 of 6 10/04/2012 01:41 PM

pointer.

Figure 3
Moving the mouse vertically rotates the scene about the Y axis

Similarly, vertically changes in the mouse position result in rotation about the X axis.

Figure 4
Moving the mouse vertically rotates the scene about the X axis

This interface provides a fairly intuitive method by which a model may be manipulated into any orientation by applying a
combination of rotations about the X and Y axes.

2. Computing the Rotation
On each mouse move event we need to calculate a rotation to keep the same point under the mouse pointer. There are two
steps to doing this. The first is figuring out what point on the sphere is under the mouse pointer. The second is computing
the rotation required to transform the old point onto the new point.

2.1 Finding the Point on the Sphere
In order to find the point on the sphere under the mouse pointer we need to project the 2D point in the UIElement’s
coordinate system on to the sphere inscribed in the Viewport3D. Figure 5 illustrates the two coordinate systems.

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

2 of 6 10/04/2012 01:41 PM

Figure 5a
The mouse reports its position in the
coordinate space of the UIElement which has
(0,0) in the upper left.

Figure 5b
We project this 2D point on to the sphere
inscribed in the Viewport3D. Note that this
results in a 3D coordinate.

Since we are only interested in calculating the rotation we can choose whichever coordinate system for the sphere that is
most convenient for us. It is simplest to use a sphere of radius = 1 centered at the origin (0,0,0). This makes finding the X
and Y components an exercise in converting between the two 2D coordinate systems shown in Figure 6.

Figure 6a
Coordinate system of the UIElement

Figure 6b
Coordinate system of our trackball

To do this we construct a scale which will map the bounds of the Viewport3D to the range [0,0] - [2,2]. We then apply a
translation to move the origin from the upper left corner to the center. This puts our point in the range [-1,1] - [1,-1].
Finally we account for the Y axis pointing down instead of up in the 2D coordinate system.

// Scale bounds to [0,0] - [2,2]
double x = p.x / (width/2);
double y = p.y / (height/2);

// Translate 0,0 to the center
x = x - 1;

// Flip so +Y is up instead of down
y = 1 - y;

Now that we’ve found our x and y position on the sphere we can find z. Since our sphere is of radius = 1 we know that

. Solving for z we get:

double z2 = 1 - x * x - y * y;
double z = z2 > 0 ? Math.Sqrt(z2) : 0;

Vector3D p = new Vector3D(x, y, z);
p.Normalize();

We now have the (x,y,z) coordinates of the point on the sphere beneath the mouse pointer.

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

3 of 6 10/04/2012 01:41 PM

2.2 Rotating Between the Points
On each mouse move we want to construct a rotation that will keep the same point on the sphere underneath the mouse
pointer. We do this by remembering the previous point on the sphere from the last mouse move event and constructing a
rotation that will transform it to the point currently under the mouse pointer.

To compute this rotation we need two things:

The axis of rotation1.
The angle of rotation θ2.

Figure 7
We need to find the axis of rotation and angle θ that will transform v1 onto v2.

Because our sphere is centered at the origin we may interpret our points as vectors. Doing so it is trivial to find the axis and
angle of rotation using the cross product and dot product respectively:

Vector3D axis = Vector3D.CrossProduct(v1, v2);
double theta = Vector3D.AngleBetween(v1, v2);

Once we have the axis and angle all that remains is to apply the new rotation to the current orientation:

// We negate the angle because we are rotating the camera.
// Do not do this if you are rotating the scene instead.
Quaternion delta = new Quaternion(axis, -angle);

// Get the current orientantion from the RotateTransform3D
RotateTransform3D rt = (RotateTransform3D) camera.Transform;
AxisAngleRotation3D r = (AxisAngleRotation3D) rt.Rotation;
Quaternion q = new Quaternion(r.Axis, r.Angle);

// Compose the delta with the previous orientation
q *= delta;

// Write the new orientation back to the Rotation3D
r.Axis = q.Axis;
r.Angle = q.Angle;

3. Other Details
There are a few details we glossed over in Section 2. The first is that the calculations to project the mouse pointer onto the
sphere assume that the Viewport3D is square. If the Viewport3D is oblong the inscribed trackball will actually be an
ellipsoid:

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

4 of 6 10/04/2012 01:41 PM

Figure 8
If the Viewport3D is oblong the inscribed trackball will actually be an ellipsoid

This effect isn’t usually noticeable, but if the aspect ratio is extreme this will cause the rate of rotation to be significantly
faster when moving along the shorter axes. To correct for this you can apply a uniform scale when mapping the 2D point to
the sphere instead of (width, height). For example, min(width, height) would work. Whatever you choose, remember to
account for this when translating to the origin.

Another issue is how to handle the case when the mouse pointer does not map to position on the trackball:

Figure 9
The shaded region does not map to a point on the trackball

One possible solution is to clamp z to zero in this case as is shown at then end of Section 2.1:

double z = z2 > 0 ? Math.Sqrt(z2) : 0;

Technically we should also normalize x and y to find the nearest point on the trackball in the Z = 0 plane, otherwise the point
we return is not on the sphere:

However, in Section 2.2 we use Vector3D.AngleBetween(v1, v2) which accounts for the non-normalized vectors. This
is yields equivalent results to normalizing x and y as shown above.

We also did not discuss the initial placement of the model and camera. This implementation assumes that the model is
centered at the origin and that the camera is looking at the origin and positioned at a distance such that the model is visible.

Finally, this article does not discuss how zoom is implemented, although the sample code includes a reasonable
implementation.

4. Sample Code
The sample code has contains three reusable pieces:

Trackball.cs A utility class which observes mouse events on a FrameworkElement

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

5 of 6 10/04/2012 01:41 PM

to update a Transform3D with the resultant rotation and scale.

Trackport.proj A UserControl which loads and displays a Model3D from loose .xaml
and allows the view to be manipulated via the mouse (an example of
using Trackball.cs)

ModelViewer.proj The Model Viewer application pictured in Figure 1 (an example of
using Trackport.proj).

These are included in the “3D Tools for the Windows Presentation Foundation” workspace at this URL:
http://workspaces.gotdotnet.com/3DTools

You need not join the workspace to download the releases which include both the binaries and source (here).

Acknowledgements
I would like to thank my wife, Bonnie, for her contributions to the model viewer sample.

Rotating the Camera with the Mouse http://web.archive.org/web/20101115083334/http://view...

6 of 6 10/04/2012 01:41 PM

