
Project 3

Shading



GLSL Basics

vertex
shader

fragment
shader

data image

1x per vertex 1x per pixel inside 
of a triangle

Rasterization, interpolation Depth test (z-buffering)



GLSL Basics

vertex
shader

fragment
shader

uniforms, textures

image

in attributes
out (> 0)out (≥0)

+ gl_Position
You give meaning to any in attributes and out variables (except gl_Position and the final 
color going to the screen) as well as uniforms and ‘textures’.

Vertex in Attribute examples: normals, colors, vertex-positions, uv etc. [read-only]

out vs -> ps examples: normals, colors, vertexpositions, uv, etc. [interpolated perspective-
correctly, write-only]

uniform : properties of lightsources, transformation-matrices etc. [aka. constants]



GLSL

vertex shader fragment shader



GLSL

vertex shader fragment shader



GLSL

vertex shader fragment shader



GLSL Datatypes

int, float, bool as in C/C++

vec2, vec3, vec4: 

vectors of float elements

Addition is vector addition (no .add() call needed!), multiplication with matrices
with just *.



GLSL Datatypes

vec2, vec3, vec4: 

support swizzling: Direct access to x,y,z,w-components possible in any order 
by using point-operator „.“

Example:
vec4 myVec = vec4(1,2,3,4);
myVec.x -> 1
myVec.xy -> (1,2)
myVec.yx -> (2,1)
myVec.zzz -> (3,3,3)
myVec.wwxy -> (4,4,1,2)

This can do more than attribute-access in most programming languages!



GLSL Datatypes

mat3, mat4:

Float-matrices of size 3x3 or 4x4 

Access on specific element possible with  double brackets „[ ][ ]“
Access on specific row possible with single bracket „[ ]“



GLSL Datatypes

mat3, mat4:

Float-matrices of size 3x3 or 4x4 

Access on specific element possible with  double brackets „[ ][ ]“
Access on specific row possible with single bracket „[ ]“

Example:
mat3 myMat= (1, 2, 3,

4, 5, 6,
7, 8, 9);

myMat[2][2] -> 9
myMat[2] -> (7,8,9) 



GLSL Datatypes

sampler2D:

Identifier for 2D-texture

Used to fetch data from texture via texture()

…more on this later…



Example

vertex shader fragment shader

diffuse shading with texture for one directional light



Example

vertex shader fragment shader

diffuse shading with texture for directional light



Example

vertex shader fragment shader

diffuse shading with texture for directional light



Example

vertex shader fragment shader

diffuse shading with texture for directional light

Important:
L and n have to be in the same coordinate system!



Example

vertex shader fragment shader

diffuse shading with texture for directional light

pass texture coordinate on to fragment shader



Example

vertex shader fragment shader

diffuse shading with texture for directional light

predefined output variable gl_Position
The vertexshader must always assign a value to this!



Example

vertex shader fragment shader

diffuse shading with texture for directional light



Example

vertex shader fragment shader

diffuse shading with texture for directional light



Example

vertex shader fragment shader

diffuse shading with texture for directional light

texture(sampler2D, vec2) 
=  predefined function for  texture-fetches.

argument 1: texture identifier
argument 2:           (u,v) - texture coordinates

(normalized to range [0,1])

Return value is  of type vec4



Functions

• You can write functions as you would in C or in Java with public static
• They can have out and inout arguments, which behave like references (to objects)
• This allows for multiple return values.

int newFunction(in bvec4 aBvec4,   // read-only 
out vec3 aVec3,    // write-only
inout int aInt)   // read-write

{
// do something interesting, must assign to aVec3…
return 0;
}



Passing Variables from Host to GLSL 

• How do we set up the uniform variables?

• How about the in per vertex attributes for the vertex shader?
• This is being done for you in jrtr, check out what happens with the SEMANTICS 

that you pass when creating VertexData objects.
• Not covered here.



Passing Variables from Host to GLSL 

glUniform* binds uniform data to names in shader

Each datatype has his own glUniform*-function:

glUniform(1|2|3|4)(f|i):

(1|2|3|4):     dimension of type
(f|i): type (float or int)

Uniforms:



Example:

Passing Variables from Host to GLSL 

“gl.” is not part of the name of this function (in official OpenGL 
documentations), but this is what you get for wrapping a procedural interface 
in an OO language…



Example:

Returns identifier for a specific uniform variable  in a specific shader

Passing Variables from Host to GLSL 



Example:

Passing Variables from Host to GLSL 

Identifier is required to let glUniform know to 
which variable a value should be bound



Example:

Passing Variables from Host to GLSL 

Type of univorm variable in shader
Here its vec4



Example:

Passing Variables from Host to GLSL 

Data that should be passed. List of arguments depends on type. 
Here, for vec4, we need 4 values



Arrays are passed with glUniform*v (more on this later...)

Matrices are passed with glUniformMatrix*v

For more detail refer to:
https://www.opengl.org/sdk/docs/man/html/glUniform.xhtml

Passing Variables from Host to GLSL 

https://www.opengl.org/sdk/docs/man/html/glUniform.xhtml


Assignments

Write some interesting per-vertex and per-pixel programs aka. 
Shaders in GLSL.

Together with the Java-side code needed to pass data to them.



Assignments

Preparation:

• Study how jrtr manages «materials» and «light sources» 
(refer to assignment description):

• SceneManager stores lightsources in a list

• Shapes have a reference to a material

• Materials have a reference to the shaders they use

• glRenderContext sets up a material for rendering by activating its 
shader and passing on uniform variables

Note that OpenGL knows nothing about ‘materials’ and 
‘light sources’ (this used to be different).



Assignments

1. Create a diffuse shader for multiple point lights:

• Point lights have a radiance cl and a position p. 

• Objects have a diffuse reflection coefficient kd 

• Diffuse shading of an object with several point lights is:

Uniforms!

å ×
i

idl Lnkc
i

)(



Assignments

1. Create a diffuse shader for multiple point lights:

• Uniforms of the point lights can be passed as array

• But:  Size of arrays must be known to GLSL at compile time!

• Therefore its okay if the maximum number of point sizes is fixed
(as long as its >1 J )



Assignments

1. Create a diffuse shader for multiple point lights:

• To pass arrays we need to use glUniform*v

Then the uniform-array in the shader has the values 

{ vec2(1,2), vec2(3,4), vec2(5,5) }

Example:



Assignments

2. Per-pixel Phong shading for several point lights:

• Objects have an additional specular reflection coefficient ks

and a Phong-exponent p.

=> more Uniforms!

• We need to calculate:

• R can be computed using the predefined function reflect
• For computing e its useful to pass the camera position as uniform variable, 

because

( )å ×+×
i

p
sidl eRkLnkc

i
)()(

pospos surfacecamerae -=



Assignments

3. Texturing:

• Copy & modify shader from exercise 2 to support textures! 

• Meaning kd becomes the color that is fetched from the texture

• Further, copy & extend the shader to support a gloss map:



Assignments

3. Texturing:

• Gloss map:

An additional texture whose brightness (sum of R,B and G) is used to 
control the specular coefficient k_s.

You can also use the alpha channel of an existing texture or so...



Assigmnent

4. Experiment with shaders:

Create your own shader, that can do whatever you want J



Assigmnent

4. Experiment with shaders:

You can use code from the internet if you want!

(but you probably need to modify it to work with jrtr...)

...but feel free to do your own stuff!



Shader Ideas

Toonshader



Shader Ideas

Procedural Brick Shader



Shader Ideas

Procedural Stripe Shader



Shader Ideas

Procedural Noise Shader 
(if you dare...)



Shader Ideas



Shader Ideas

• Many more on ShaderToy (this is an art form!)

https://www.shadertoy.com/


Remarks

Get some tools for GLSL authoring (at least syntax highlighting).

There is probably some plug in for your IDE.

Some GLSL features might be version-, platform-, graphics card- & driver- etc. – specific, 
watch out.


