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Lecture 1: Ray Tracing and Picking

Ray Tracing: Ray tracing is among the conceptually simplest methods for synthesizing highly
realistic images. Unlike the simple polygon rendering methods used by OpenGL, ray tracing
can easily produce shadows, and it can model reflective and transparent objects. (Fig. ??
shows an image generated by Andre Kirschner.)

Fig. 1: A ray traced image.

Because it is relatively slow, ray tracing is typically used for generating highly realistic images
offline (as opposed to interactively). For example, it is used when interactivity is not needed,
as in producing high quality animated films. It is also useful for generating realistic texture
maps and environment maps that could later be used in interactive rendering. Ray tracing
also forms the basis of many approaches to more producing highly realistic complex types of
shading and lighting.

Ray tracing can also be used in the context of interactive computer graphics for a process
called picking. In picking, we imagine that we have rendered a 3-dimensional scene, and the
user has placed the cursor over one of the objects that has been drawn, and we want to know
which object the user is referring to. OpenGL provides a number of methods to perform
picking. Raytracing can be used for picking. If you imagine a ray shot from the viewer’s eye
through the screen pixel associated with the mouse coordinates, the first object this ray hits
in the scene is the visible object that the user is referring to.

In spite of its conceptual simplicity, ray tracing can be computationally quite intensive (par-
ticularly when applied to the generation of complex high resolution images). We will discuss
the basic elements of ray tracing, revisit the Phong lighting model in this context, and discuss
some of the details of generating rays and handling ray intersections.

Ray Tracing for Image Synthesis: Imagine that the viewing window is replaced with a fine
mesh of horizontal and vertical grid lines, so that each grid square corresponds to a pixel in
the final image. We shoot rays out from the eye through the center of each grid square in
an attempt to trace the path of light backwards toward the light sources. Consider the first
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object that such a ray hits. (In order to avoid problems with jagged lines, called aliasing,
it is more common to shoot a number of rays per pixel and average their results.) We want
to know the intensity of reflected light at this surface point. This depends on a number of
things, principally the reflective and color properties of the surface, and the amount of light
reaching this point from the various light sources. The amount of light reaching this surface
point is the hard to compute accurately. This is because light from the various light sources
might be blocked by other objects in the environment and it may be reflected off of others.

A purely local approach to this question would be to use the model we discussed in the Phong
model, namely that a point is illuminated if the angle between the normal vector and light
vector is acute. In ray tracing it is common to use a somewhat more global approximation.
We will assume that the light sources are points. For each light source Li, we shoot a ray RLi

from the surface point to each of the light sources (see Fig. ??(a)). For each of these rays
that succeeds in reaching a light source before being blocked another object, we infer that
this point is illuminated by this source (as for L1 in Fig. ??(a)), and otherwise we assume
that it is not illuminated, and hence we are in the shadow of the blocking object (as for L2 in
Fig. ??(a)). (Can you imagine a situation in which this model will fail to correctly determine
whether a point is illuminated?)
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Fig. 2: Ray Tracing.

Given the direction to the light source and the direction to the viewer, and the surface
normal (which we can compute because we know the object that the ray struck), we have all
the information that we need to compute the reflected intensity of the light at this point, say,
by using the Phong model and information about the ambient, diffuse, and specular reflection
properties of the object. We use this model to assign a color to the pixel. We simply repeat
this operation on all the pixels in the grid, and we have our final image.

Even this simple ray tracing model is already better than what OpenGL supports, because, for
example, OpenGL’s local lighting model does not compute shadows. The ray tracing model
can easily be extended to deal with reflective objects (such as mirrors and shiny spheres) and
transparent objects (glass balls and rain drops). For example, when the ray hits a reflective
object, we compute the reflection ray and shoot it into the environment. We invoke the ray
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tracing algorithm recursively (see Fig ??(b)). When we get the associated color, we blend it
with the local surface color and return the result. The generic algorithm is outlined below.

rayTrace() : Given the camera setup and the image size, generate a ray Rij from the eye
passing through the center of each pixel (i, j) of your image window (See Fig. ??.) Call
trace(R) and assign the color returned to this pixel.

trace(R) : Shoot R into the scene and let X be the first object hit and p be the point of
contact with this object.

(a) If X is reflective, then compute the reflection ray Rr of R at p. Let Cr ← trace(Rr).

(b) If X is transparent, then compute the transmission (refraction) ray Rt of R at p.
Let Ct ← trace(Rt).

(c) For each light source L,

(i) Shoot a ray RL from p to L.

(ii) If RL does not hit any object until reaching L, then apply the lighting model to
determine the shading at this point.

(d) Combine the colors Cr and Ct due to reflection and transmission (if any) along with
the combined shading from (c) to determine the final color C. Return C.

Ray Tracing for Picking: Another application of ray tracing is for the process of identifying the
object associated with a particular pixel of the image. Suppose that the user places the cursor
over the window at row i and column j. In order to determine the object of the scene that
lies under this pixel, we shoot a ray through this pixel, and determine the first object that is
hit by the ray.

Ray Representation: Let us consider how rays are represented, generated, and how intersections
are determined. First off, how is a ray represented? An obvious method is to represent it by
its origin point p and a directional vector ~u. Points on the ray can be described parametrically
using a scalar t:

R = {p+ t~u | t > 0}.

Notice that our ray is open, in the sense that it does not include its endpoint. This is done
because in many instances (e.g., reflection) we are shooting a ray from the surface of some
object. We do not want to consider the surface itself as an intersection. (As a practical
matter, it is good to require that t is larger than some very small value, e.g. t ≥ 10−3. This
is done because of floating point errors.)

In implementing a ray tracer, it is also common to store some additional information as part
of a ray object. For example, you might want to store the value t0 at which the ray hits its
first object (initially, t0 =∞) and perhaps a pointer to the object that it hits.

Ray Generation: Let us consider the question of how to generate rays. Let us assume that we
are given essentially the same information that we use in gluLookAt and gluPerspective. In
particular, let eye denote the eye point, at denote the center point at which the camera is
looking, and let −→up denote the “up vector” for gluLookAt. Let θy = π · fovy/180 denote the
y-field of view in radians. Let nrows and ncols denote the number of rows and columns in the
final image, and let α = ncols/nrows denote the window’s aspect ratio.
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In gluPerspective we also specified the distance to the near and far clipping planes. This was
necessary for setting up the depth buffer. Since there is no depth buffer in ray tracing, these
values are not needed, so to make our life simple, let us assume that the window is exactly
one unit in front of the eye. (The distance is not important, since the aspect ratio and the
field-of-view really determine everything up to a scale factor.)

The height and width of view window relative to its center point are

h = 2 tan
θy
2

w = h · α.

So, the window extends from −h/2 to +h/2 in height and −w/2 to +w/2 in width (see
Fig. ??.)
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Fig. 3: Ray generation.

Next, we proceed to compute the viewing coordinate frame, very much as we did in our earlier
lecture on 3-dimensional viewing. The origin of the camera frame is eye, the location of the
eye. The view vector is directed from the eye to the point we are looking at, that is,

−−→
view = normalize(at− eye)

Recall from the earlier lecture that the unit vectors for the camera frame are:

V.~vz = −−−→view, V.~vx = normalize(
−−→
view×−→up), V.~vy = (V.~vz × V.~vx).

Next, we need to determine the point on the image plane corresponding to row r and column
c. Since we are interested in using this for picking, we will follow the standard convention
(used, e.g., by GLUT) that rows are indexed from top to bottom, and columns are indexed
from left to right. Every point on the view window has V.~vz coordinate of −1. Now, suppose
that we want to shoot a ray for row r and column c, where 0 ≤ r < nrows and 0 ≤ c < ncols .
Observe that r/nrows is in the range from 0 to 1. Multiplying by −h maps us linearly to the
(inverted) interval [0,−h] and then adding h/2 yields the final desired interval [h/2,−h/2].
This means that the vertical offset of row r is:

ay = − h r

nrows
+
h

2
= − h

(
r

nrows
− 1

2

)
.

By an analogous reasoning, the horizontal offset of column c is

ax = w

(
c
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2

)
.
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Therefore, the location of the point corresponding to row r and column c on the image plane
is

p[r, c] = eye + ax · V.~vx + ay · V.~vy − V.~vz.

(Since eye is a point and the other three components involve the product of a scalar and a
vector, it follows that p[r, c] is a valid affine equation for a point in space.) The direction
vector for the ray emanates from the eye and passes through this point, thus, it is

~u[r, c] = normalize(p[r, c]− eye).

Thus, the desired ray R[r, c] (see Fig. ??) has the origin eye and the directional vector ~u[r, c].
In conclusion, the desired ray is:

R[r, c] = eye + t · ~u[r, c], (for t > 0).

Now that we have the desired ray, we next consider how to determine what it hits and where
it hits it.

Rays and Intersections: Given an object in the scene, a ray intersection procedure determines
whether the ray intersects and object, and if so, returns the value t′ > 0 at which the inter-
section occurs. (This is a natural use of object-oriented programming, since the intersection
procedure can be made a member function of the object.) Otherwise, if t′ is smaller than the
current t0 value, then t0 is set to t′. Otherwise the trimmed ray does not intersect the object.
(For practical purposes, it is useful for the intersection procedure to determine two other
quantities. First, it should return the normal vector at the point of intersection and second,
it should indicate whether the intersection occurs on the inside or outside of the object. The
latter information is useful if refraction is involved.)

Ray-Plane Intersection: Any plane in 3-dimensional space can be expressed as the set of points
p = (x, y, z) that satisfy a linear equation, that is

H : ax+ by + cz + d = 0,

for some real-valued coefficients a, b, c, and d. For example, the plane containing the x, y-axes
is the plane z = 0, which corresponds to the vector (a, b, c, d) = (0, 0, 1, 0).

The question we wish to consider is, given a plane H, and given a ray R : p + t~u, does the
ray hit the plane, and if so, where?

To determine the value of t where the ray intersect the plane, we could plug the ray’s para-
metric representation into this equation and simply solve for t. If the ray is represented by
p+ t~u, then we have the equation

a(px + tux) + b(py + tuy) + c(pz + tuz) + d = 0.

Soving for t we obtain

t0 = − apx + bpy + cpz
aux + buy + cuz

.

Note that the denominator is zero if the ray is parallel to the plane. We may simply assume
that the ray does not intersect the polygon in this case (ignoring the highly unlikely case
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where the ray hits the polygon along its edge). Once the intersection value t0 is known, the
actual point of intersection is just computed as p + t0~u. If the value of t0 is negative at the
intersection point, then the intersection lies behind the viewer’s eye, and it may be ignored.
Otherwise, we report that p+ t0~u is the intersection point.

Normal Vector: For the sake of computing lighting, it is necessary to have a surface normal
vector. In the case of a plane, this is very easy to compute. In particular, if the plane’s
equation is ax + by + cz + d = 0, then the vector (a, b, c) is orthogonal to the plane. (For
example, in the case of the plane z = 0, the equation is given by the coefficient vector
(a, b, c, d) = (0, 0, 1, 0), and hence the vector (0, 0, 1) is normal to the plane’s surface, as
expected.
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