CMSC427
Computer Graphics

Matthias Zwicker
Fall 2019

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves

Modeling
e Creating 3D objects

e How to construct complicated
surfaces?

e Goal

- Specify objects with few control
points

- Resulting object should be
visually pleasing (smooth)

o Start with curves, then
generalize to surfaces

Usefulness of curves

e Surface of revolution

—
. .

Usefulness of curves

e Extruded/swept surfaces

Usefulness of curves

e Animation

- Provide a “track” for objects
- Use as camera path

F__. -.- a_ _ :- —mi__ - . s .
- e o] i = e -

- - -.l _ - — -
= e _ - N _

Usefulness of curves

e Generalize to surface patches using “grids
of curves”, next class

How to represent curves

e Specify every point along curve?

- Hard to get precise, smooth results
- Too much data, too hard to work with

e |dea: specify curves using small numbers of control
points

« Mathematics: use polynomials to represent curves

Resulting
curve

: / Con.trol
point

Mathematical definition
e A vector valued function of one variable x(¢)

- Given ¢, compute a 3D point x=(x,y,z)
- May interpret as three functions x(¢), y(¢), z(¢)
- “Moving a point along the curve”

v X(1)

Z A
/ y’X x(0.0) x(0.5) x(1.0)

Tangent vector

e Derivative x/'(t) = CZ = (2'(t), 4 (t), /()

e A vector that points in the direction of
movement

e Length of x’(¢) corresponds to speed
x(?)

y \ x ’(0.0) x ’(0.5) x '(1.0)

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves

Polynomial functions
e Linear: f(t)=at+1b /
(15t order)

e Quadratic: f(t) = at> 4+ bt + ¢ \/

(2" order)

: U
o Cubic: f(t)=at’ +bt* +ct+d
(3rd order)
7 > 1

12

Polynomial curves

e Linear x(t) =at+ b
X = (x,y, z),a — (a:maya CLZ),b — (b:m bya bz)

o Evaluated as z(t) = a,t + b,
y(t) = a,t + b,
z(t) = a,t + b,

Polynomial curves

e Quadratic: x(t) = at” + bt + ¢ yz)
(2"d order) JL
L
e Cubic: x(t) =at’ +bt* +ct+d yZ)O
(34 order) JL
L

e We usually define the curve for 0 <¢<1

Control points

e Polynomial coefficients a, b, ¢, d etc. can
be interpreted as 3D control points

- Remember a, b, ¢, d have x,y,z components
each

o Unfortunately, polynomial coefficients
don’t intuitively describe shape of curve

e Main objective of curve representation is
to come up with intuitive control points

- Position of control points predicts shape of
curve

Control points

« How many control points?

- Two points define a line (15t order)

- Three points define a quadratic curve (2"
order)

- Four points define a cubic curve (3 order)
— k+1 points define a k-order curve

e Let’s start with a line...

First order curve

 Interpolate between points p, and p, with parameter ¢

- Defines a “curve” that is straight (first-order curve)

— t=0 corresponds to p,
— t=1 corresponds to p,
— t=0.5 corresponds to midpoint

P1

=1

=0

First order curve

e Three different ways to write it

- Equivalent, but different properties become
apparent

- Advantages for different operations, see later

1. Weighted sum of control points (linear
interpolation, LERP)

x(t) = P(1 — t) + Pit

2. Polynomial in ¢
x(t) = (p1 — Po)t|+ Pol’

3. Matrix form

-t w1 3][

Weighted sum of control points

x(1)=(A=1)p, + ()p,
= B,(t) p, + B,(t)p,, where B,(t)=1—-¢ and B,(¢) =t

« Weights B(7), B,(¢) are functions of ¢

- Sum is always 1, for any value of ¢
- Also known as basis or blending functions

0.5 \\BO (1) B (f)/-
0.4 /(“\\
- | //

19

Linear polynomial

xX(#)=(p,—Py) I+ P

H_J H/._J
vector point

a b
e Curve is based at point p,

e Add the vector, scaled by ¢

P1-Po

Matrix form

x(t) = | Po pl}[ll éHH—GBT

» Geometry matrix G =[py pi |

e Geometric basis -1 1
B =
10
e Polynomial basis ¢ }
T =
1
e In components Por P |y
X(1) = | poy Py { 1 O]{
_pOz P1z |

Tangent

e For a straight line, the tangent is constant
X'(t) = P1 — Po
 Weighted average
x(t) = po(l —t) + p1t — X'(t) = (—1)po + (+1)p1
e Polynomial
x(t) = (p1 — Po)t + Po — X'(t) = 0t + (p1 — Po)

e Matrix form

X/(t) = [po Pl]“ éH(ﬂ

Side note: Lissajous curves

http://en.wikipedia.org/wiki/Lissajous_curve

What type of mathematical function is used here?

23

http://en.wikipedia.org/wiki/Lissajous_curve

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves

Bézier curves

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

e Intuitive way to define control points for
polynomial curves

e Developed for CAD (computer aided
design) and manufacturing

- Before games, movies, CAD was the big
application for 3D graphics

e Pierre Bézier (1962), design of auto bodies
fO I PeU geOt 9 http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

e Paul de Casteljau (1959), for Citroen

http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

Béezier curves

e Arbitrary number of control points p,, p;, ...,
Pn

,\Pl

Py

Po

Linear Quadratic Cubic

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's_algorithm

e Construction of Bézier curves via recursive
series of linear interpolations

- Works for any order, not only cubic
e Not most way efficient to evaluate curve

e Why study it?

- Intuition about the geometry
- Useful for subdivision (later today)

27

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

de Casteljau Algorithm (cubic curve)

e Given the control
points

P
L
’

~
~
.
~
~
~.
~
~
~
~
~
~
~
o
~

e A value of ¢ 7

S
~
~
~
- R
¢¢¢¢¢
- ~
0 ~
~
S
<

e Here =0.25 ST T

~
N,
~
~
~
~
~

P3

28

de Casteljau Algorithm (cubic curve)

q, ()= Lerp(t,po,pl)
q,(t)= Lerp(t,p,,p,)
q,(t)= Lerp(t,p,,p;)

P3

29

de Casteljau Algorithm (cubic curve)

/l:// ,\,tr&ql
ng: —————— LT \\t:\:‘\\
r,(t) = Lerp(t,q,(1).q,(?)) R
r,(1)= Lerp(1,4,(t), q, (1)) *a,

30

de Casteljau Algorithm (cubic curve)

o
. 7 x S r,
X(t)= Lerp (ta r,(¢),r, (t)) o

31

de Casteljau algorithm (cubic curve)

e More details, pseudo code /pg

— http://ibiblio.org/e-notes/Splines/bezier.html

32

http://ibiblio.org/e-notes/Splines/bezier.html

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's_algorithm

'Pn 0F’1
t=0 oP, *Fg t=0 0P,
Linear Quadratic
2y aP, . oF,
n::-F’4
F",:I =0 DPS F",:, =0 DP3
Cubic Quartic

33

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

Bézier curves properties

e Intuitive control over curve given control
points

e
! \

- Endpoints are interpolated,
intermediate points are
approximated

e Many demo applets online

— http://ibiblio.org/e-notes/Splines/Intro.htm

34

http://ibiblio.org/e-notes/Splines/Intro.htm

Cubic Bézier curve

e Cubic polynomials, most common case
e Defined by 4 control points

e Two interpolated endpoints

o Two midpoints control the tangent at the
endpoints

L@
L
-

g _~ Control

~

~~~~~~~~~~ polyline

S
\\
~

~

~

\~.

4
4
4
4
4
4
4
4
4
’

4

P;



Bézier Curve: math formulation

e Three alternative formulations, analogous
to linear case

1. Weighted average of control points

2. Cubic polynomial function of ¢

3. Matrix form



Recursive linear interpolation

P,

P,

P;

Py

Po
P
P
P;

37



Recursive linear interpolation

q, = Lerp(t,py» P, )
q, = Lerp(t,p,.p, )

P

p
qQ, = Lerp(t,p,»p;) "

P,
dy
P,
q,

NVAWA

P;
qd,

Py

P;

38



Recursive linear interpolation

= Lerp(t,p,,
l’O :Lerp(taqmql)qo erp( pO pl

I, :Lerp(f,‘h»(h) q _Lerp(f P,.P
, = »M2oM3

q, = Lerp(t,p,.p, )

Py
) P,
)Pz

P;

39



Recursive linear interpolation

p
q, = Lerp(t,py.p,)
q, = Lerp(1,p,.p, )
q, = Lerp(t,p,.p,)

l’O = Lerp(taqmql)
I = Lerp(taqn(h)

P,
P,

P;

X = Lerp (t,ro,l‘1

40



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

41



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢) = Lerp(t, q, (), ql(t))
r,(t) = Lerp(t,q,(1),q,(t))

42



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Le’”p(taqo(t)a(h(t)): (1 — f)((l - t)po + tp1)+ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Le’”p(taqo(t)a(h(t)): (1 — f)((l - t)po + tp1)+ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)

x(¢) = Lerp(t,x,(),1,(t))



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Lerp(taqo(t)a(h(t)): (1 — f)((l - t)po + tpl)-l_ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)

x(¢) = Lerp(t,x,(),1,(t))
= (1- t)((l — ) -1)p, +tp, )+t ((1-¢)p, + tpz))
+t((1 —t)(1=t)p, +1p, )+ t((1-1)p, + tp3))



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)

x(t)=(1-1) p, +3(1—t) tp, + 3(1-1)e*p, + £p,



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)

x(t)=(1-1) p, +3(1—t) tp, + 3(1-1)e*p, + £p,
By (1) B (1)

X(t) = (—t3 + 37 =3¢+ 1>p0 + (3t3 — 61" + 3t)p1

+(—3t3 + 3t2)p2 + (t3)p3
\ AR

B, (1) By (1)

Bernstein polynomials

48



Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein polynomial

x(t)=B,(t)p, + B, (¢)p, + B, (¢t)p, + B, (t)p;

The cubic Bernstein polynomials :
B,(t)=-t"+3t" -3t +1
B,(t)=3t -6t + 3t
B,(t)=-3t"+3¢
B,(¢t)="¢
> B(t)=1

Bernstein Cubic Polynomials

N Bo() B(1) By,(t) Bi(1) /
N,
\\\\v i
BT Tl
N el -
s \\“-\ _,_-"" - -
=y
e iy .
ra - .
"'r.l - E"ﬂﬁ_
1') - " 77’_;,,7 — _\-\_--\_\- -
- - —
._'_'-FFFF. — : ;
0.2 0.4 t 0.5 0.s

e Partition of unity, at each ¢ always add to 1

e Endpoint interpolation, B, and B; go to 1

49


http://en.wikipedia.org/wiki/Bernstein_polynomial

General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

50



General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

Bi(¢t)=1"-2t+1
Bl (¢)=-2¢*+2t

2 2
B (t)=t
% N
- 2 0.8 e

51



General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

Bi(¢t)=1"-2t+1
Bl (¢)=-2¢*+2t
Bi(¢)="¢

By (t)=—£+3>-3t+1
Bl (t)=3t" - 61" + 3t
B;(t)=-3t"+3¢
Bi(1)=r

52



General Bernstein polynomials

By(t)=—t+1  Bi(t)=t"-2t+1  Bi(t)=—t'+3t" -3t +1
Bl (t)=t Bl (¢)=-2¢*+2t Bl (t)=3t" - 61" + 3t
Bi(¢)="¢ B;(t)=-3t + 3¢
Bi(t)="r
(n\ 0 () nl
n 1_ —
Order n: B'(1)= U( t)Y () ) 1)

>.B'(1)=1

Partition of unity, endpoint interpolation

53



General Bézier curves

« nth-order Bernstein polynomials form nth-order
Bézier curves

o Beézier curves are weighted sum of control points
using nth-order Bernstein polynomials

Bernstein polynomials

of order n: B! (t)= [’3 (1-2)"(¢)

Bézier curve of order n: X(t)= ZB,-" (t)p,-
i=0



Affine invariance

« Two ways to transform Bézier curves

1. Transform the control points, then compute
resulting point on curve

2. Compute point on curve, then transform it
e Either way, get the same transform point!

- Curve is defined via affine combination of
points (convex combination is special case of
an affine combination)

- Invariant under affine transformations
- Convex hull property always remains



For your reference

e Starting from weighted sum of control
points using Bernstein polynomials,
polynomial and matrix form can be derive
easily



Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

57



Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1

58



Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1

a=(-p,+3p,—3p,+p;)
b= (3130 —0p, + 3p2)
c= (—3pO + 3p1)

d:(po)

x(t)=at’+bt’ +ct+d




Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1

a=(-p,+3p,—3p,+p;)
b= (3130 —6p, + 3p2)
c= (—3pO + 3p1)

d:(po)

e Good for fast evaluation, precompute constant
coefficients (a,b,c,d)

e Not much geometric intuition

x(t)=at’+bt’ +ct+d




Cubic matrix form

(437 a=(-p,+3p,—3p,+p;)
2 b=(3p, - 6p, +3
x(t):[ﬁ b ¢ d]t . (po o pz)
t ¢ =(-3p, +3p,)
1 d:(Po)
—1 3 =3 1]¢]
3 -6 3 0}¢
X(t)z[po P, P p3] -3 3 0 0] ¢
|1 0 0 Of1]
GBeZ — BBez H’_IJ‘

e Can construct other cubic curves by just using
different basis matrix B

e Hermite, Catmull-Rom, B-Spline, ...



Cubic matrix form
e 3 parallel equations, in x, y and z:

—1 3 =3 1]#
3 =6 3 0
)=

x_ (1) [p()x Pix Pax p3x] -3 3 0 O0f ¢
10 0 0J 1
—1 3 =3 17]¢]

3 =6 3 0}

Xy(t): |:p0y ply pzy p3y:| -3 3 0 Of ¢
10 0 0j 1.
-1 3 =3 17]¢]

3 =6 3 0f¢

Xz(t): I:p()Z plz p2Z p3z:| _3 3 O O t
10 0 01




Matrix form

e Bundle into a single matrix
-1 3 =3 1]
Pox  Pix P Pix 3 _§6
XO=| Py Py Py Pyl 5 4
Po: Pz Pz P3| 1 0

X(t) = GBezBBeZT
x(1)=CT

e Efficient evaluation

- Precompute C

- Take advantage of existing 4x4 matrix
hardware support



Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bezier curves

e Piecewise curves



Drawing Bezier curves

e Generally no low-level support for drawing
smooth curves
- l.e., GPU draws only straight line segments

e Need to break curves into line segments or
individual pixels

o Approximating curves as series of line
segments called tessellation

e Tessellation algorithms
- Uniform sampling
- Adaptive sampling
- Recursive subdivision



Uniform sampling
e Approximate curve with N straight segments

— N chosen in advance |
- Evaluate x, = x(ti) where ¢, :LN fori =0,1,..., N

.3 ) .
l l l

X,=a—+b—+c—+d
N N N

- Connect the points with lines
e Too few points?

- Bad approximation
- “Curve” is faceted

e TOO many points?

- Slow to draw too many line segments
- Segments may draw on top of each other



Adaptive Sampling
e Use only as many line segments as you need

- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel

e Various schemes for sampling,
checking results, deciding whether

to sample more
x(?)



Recursive Subdivision

e Any cubic (or k-th order) curve segment can be
expressed as a cubic (or k-th order) Bézier curve

“Any piece of a cubic (or £-th order) curve is
itself a cubic (or £-th order) curve”

e Therefore, any Bézier curve can be subdivided
into smaller Bézier curves



de Casteljau subdivision

P3

e de Casteljau construction points
are the control points of two Bézier
sub-segments (Pg,qp.Fo.X) and (x,r;,q,.p;)



Adaptive subdivision algorithm

1. Use de Casteljau construction to split
Bézier segment in middle (~=0.5)

2. For each half

- If “flat enough”: draw line segment
- Else: recurse from 1. for each half

e Test how far away midpoints are from
straight segment connecting start and end

- If less than a pixel, flat enough



Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves



More control points

e Cubic Bézier curve limited to 4 control points

- Cubic curve can only have one inflection
- Need more control points for more complex curves

* k-1 order Bézier curve with & control points

« Hard to control and hard to work with

- Intermediate points don’t have obvious effect on shape
- Changing any control point changes the whole curve

e Want local support

- Each control point only influences nearby portion of curve



Piecewise curves (splines)

e Sequence of simple (low-order) curves, end-to-end
- Piecewise polynomial curve, or splines

http://en.wikipedia.org/wiki/Spline_(mathematics)

e Sequence of line segments
- Piecewise linear curve (linear or first-order spline)

ST

e Sequence of cubic curve segments
- Piecewise cubic curve, here piecewise Bézier (cubic spline)

73


http://en.wikipedia.org/wiki/Spline_(mathematics)

Piecewise cubic Bézier curve

e Given 3N +1 points p,,p;»---»Psy
e Define N Bezier segments:

X, ()= B,(¢)p, + B,(t)p, + B,(£)p, + B, (¢)p,

Xy 1(£) = By(t)Psy_3 + B(£)Psy_, + B, (O)Psy_, + By (H)Psy

74



Continuity

Want smooth curves
CY continuity

- No gaps
- Segments match at the endpoints
C! continuity: first derivative is well defined

- No corners
- Tangents/normals are C° continuous (no jumps)

C? continuity: second derivative is well defined

- Tangents/normals are C! continuous
- Important for high quality reflections on surfaces

Cy continuil/v-.\

=) - o,

Co & Cy continuity

Cy & Cy & C, continuity

‘.

75



Piecewise cubic Bézier curves
« CY continuous if endpoints are shared

N

» C! continuous at segment A T
endpoints p; if p3;- P3i = P31 - Pai
« C?is harder to get

P4
s\
s\
’ \
’ \

v,
‘s
p \/

Po

C? continuous, C! continuous
shared endpoints



Piecewise cubic Bézier curves
e Used often in 2D drawing programs

e |[nconveniences

- Must have 4 or 7or 10 or 13 or ... (1 plus a
multiple of 3) control points

- Some points interpolate (endpoints), others
approximate (handles)

- Need to impose constraints on control points
to obtain C! continuity

— C? continuity more difficult
 Solutions

- User interface using “Bézier handles”
- Generalization to B-splines, next time



Bézier handles

e Segment end points (interpolating) presented
as curve control points

e Midpoints (approximating points) presented as

“handles”

e Can have option to enforce C! continuity

‘Free

|
e !

T

i I

| Aligned

\_Iector

[www.blender.org]

Adobe Illustrator

78



Next time
e B-splines and NURBS

e Extending curves to surfaces



	CMSC427�Computer Graphics
	Today
	Modeling
	Usefulness of curves
	Usefulness of curves
	Usefulness of curves
	Usefulness of curves
	How to represent curves
	Mathematical definition
	Tangent vector
	Today
	Polynomial functions
	Polynomial curves
	Polynomial curves
	Control points
	Control points
	First order curve
	First order curve
	Weighted sum of control points
	Linear polynomial
	Matrix form
	Tangent
	Side note: Lissajous curves
	Today
	Bézier curves
	Bézier curves
	de Casteljau Algorithm
	de Casteljau Algorithm (cubic curve)
	de Casteljau Algorithm (cubic curve)
	de Casteljau Algorithm (cubic curve)
	de Casteljau Algorithm (cubic curve)
	de Casteljau algorithm (cubic curve)
	de Casteljau Algorithm
	Bézier curves properties
	Cubic Bézier curve
	Bézier Curve: math formulation
	Recursive linear interpolation
	Recursive linear interpolation
	Recursive linear interpolation
	Recursive linear interpolation
	Expand the LERPs
	Expand the LERPs
	Expand the LERPs
	Expand the LERPs
	Expand the LERPs
	Weighted average of control points
	Weighted average of control points
	Weighted average of control points
	Cubic Bernstein polynomials
	General Bernstein polynomials
	General Bernstein polynomials
	General Bernstein polynomials
	General Bernstein polynomials
	General Bézier curves
	Affine invariance
	For your reference
	Cubic polynomial form
	Cubic polynomial form
	Cubic polynomial form
	Cubic polynomial form
	Cubic matrix form
	Cubic matrix form
	Matrix form
	Today
	Drawing Bézier curves
	Uniform sampling
	Adaptive Sampling
	Recursive Subdivision
	de Casteljau subdivision
	Adaptive subdivision algorithm
	Today
	More control points
	Piecewise curves (splines)
	Piecewise cubic Bézier curve
	Continuity
	Piecewise cubic Bézier curves
	Piecewise cubic Bézier curves
	Bézier handles
	Next time

