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Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves



Modeling
e Creating 3D objects

e How to construct complicated
surfaces?

e Goal

- Specify objects with few control
points

- Resulting object should be
visually pleasing (smooth)

o Start with curves, then
generalize to surfaces




Usefulness of curves

e Surface of revolution

—
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Usefulness of curves

e Extruded/swept surfaces




Usefulness of curves

e Animation

- Provide a “track” for objects
- Use as camera path
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Usefulness of curves

e Generalize to surface patches using “grids
of curves”, next class




How to represent curves

e Specify every point along curve?

- Hard to get precise, smooth results
- Too much data, too hard to work with

e |dea: specify curves using small numbers of control
points

« Mathematics: use polynomials to represent curves

Resulting
curve

: / Con.trol
point



Mathematical definition
e A vector valued function of one variable x(¢)

- Given ¢, compute a 3D point x=(x,y,z)
- May interpret as three functions x(¢), y(¢), z(¢)
- “Moving a point along the curve”
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Tangent vector

e Derivative x/'(t) = CZ = (2'(t), 4 (t), /()

e A vector that points in the direction of
movement

e Length of x’(¢) corresponds to speed
x(?)

y \ x ’(0.0) x ’(0.5) x '(1.0)




Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves



Polynomial functions
e Linear: f(t)=at+1b /
(15t order)

e Quadratic: f(t) = at> 4+ bt + ¢ \/

(2" order)

: U
o Cubic: f(t)=at’ +bt* +ct+d
(3rd order)
7 > 1
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Polynomial curves

e Linear x(t) =at+ b
X = (x,y, z),a — (a:maya CLZ),b — (b:m bya bz)

o Evaluated as z(t) = a,t + b,
y(t) = a,t + b,
z(t) = a,t + b,




Polynomial curves

e Quadratic: x(t) = at” + bt + ¢ yz)
(2"d order) JL
L
e Cubic: x(t) =at’ +bt* +ct+d yZ)O
(34 order) JL
L

e We usually define the curve for 0 <¢<1



Control points

e Polynomial coefficients a, b, ¢, d etc. can
be interpreted as 3D control points

- Remember a, b, ¢, d have x,y,z components
each

o Unfortunately, polynomial coefficients
don’t intuitively describe shape of curve

e Main objective of curve representation is
to come up with intuitive control points

- Position of control points predicts shape of
curve



Control points

« How many control points?

- Two points define a line (15t order)

- Three points define a quadratic curve (2"
order)

- Four points define a cubic curve (3 order)
— k+1 points define a k-order curve

e Let’s start with a line...



First order curve

 Interpolate between points p, and p, with parameter ¢

- Defines a “curve” that is straight (first-order curve)

— t=0 corresponds to p,
— t=1 corresponds to p,
— t=0.5 corresponds to midpoint

P1

=1

=0



First order curve

e Three different ways to write it

- Equivalent, but different properties become
apparent

- Advantages for different operations, see later

1. Weighted sum of control points (linear
interpolation, LERP)

x(t) = P(1 — t) + Pit

2. Polynomial in ¢
x(t) = (p1 — Po)t|+ Pol’

3. Matrix form

-t w1 3][



Weighted sum of control points

x(1)=(A=1)p, + ()p,
= B,(t) p, + B,(t)p,, where B,(t)=1—-¢ and B,(¢) =t

« Weights B(7), B,(¢) are functions of ¢

- Sum is always 1, for any value of ¢
- Also known as basis or blending functions

0.5 \\BO (1) B (f )/-
0.4 /( “\\
- | //
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Linear polynomial

xX(#)=(p,—Py) I+ P

H_J H/._J
vector point

a b
e Curve is based at point p,

e Add the vector, scaled by ¢

P1-Po




Matrix form

x(t) = | Po pl}[ll éHH—GBT

» Geometry matrix G =[py pi |

e Geometric basis -1 1
B =
10
e Polynomial basis ¢ }
T =
1
e In components Por P |y
X(1) = | poy Py { 1 O]{
_pOz P1z |




Tangent

e For a straight line, the tangent is constant
X'(t) = P1 — Po
 Weighted average
x(t) = po(l —t) + p1t — X'(t) = (—1)po + (+1)p1
e Polynomial
x(t) = (p1 — Po)t + Po — X'(t) = 0t + (p1 — Po)

e Matrix form

X/(t) = [ po Pl]“ éH(ﬂ



Side note: Lissajous curves

http://en.wikipedia.org/wiki/Lissajous_curve

What type of mathematical function is used here?
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http://en.wikipedia.org/wiki/Lissajous_curve

Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves



Bézier curves

http://en.wikipedia.org/wiki/B%C3%A9zier_curve

e Intuitive way to define control points for
polynomial curves

e Developed for CAD (computer aided
design) and manufacturing

- Before games, movies, CAD was the big
application for 3D graphics

e Pierre Bézier (1962), design of auto bodies
fO I PeU geOt 9 http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

e Paul de Casteljau (1959), for Citroen



http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier

Béezier curves

e Arbitrary number of control points p,, p;, ...,
Pn

,\Pl

Py

Po

Linear Quadratic Cubic



de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's_algorithm

e Construction of Bézier curves via recursive
series of linear interpolations

- Works for any order, not only cubic
e Not most way efficient to evaluate curve

e Why study it?

- Intuition about the geometry
- Useful for subdivision (later today)
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http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

de Casteljau Algorithm (cubic curve)

e Given the control
points
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de Casteljau Algorithm (cubic curve)

q, ()= Lerp(t,po,pl)
q,(t)= Lerp(t,p,,p, )
q,(t)= Lerp(t,p,,p; )

P3
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de Casteljau Algorithm (cubic curve)

/l:// ,\,tr&ql
ng: —————— LT \\t:\:‘\\
r,(t) = Lerp(t,q,(1).q,(?)) R
r,(1)= Lerp(1,4,(t), q, (1)) *a,
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de Casteljau Algorithm (cubic curve)

o
. 7 x S r,
X(t)= Lerp (ta r,(¢),r, (t)) o

31



de Casteljau algorithm (cubic curve)

e More details, pseudo code /pg

— http://ibiblio.org/e-notes/Splines/bezier.html
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http://ibiblio.org/e-notes/Splines/bezier.html

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's_algorithm

'Pn 0F’1
t=0 oP, *Fg t=0 0P,
Linear Quadratic
2y aP, . oF,
n::-F’4
F",:I =0 DPS F",:, =0 DP3
Cubic Quartic
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http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

Bézier curves properties

e Intuitive control over curve given control
points

e
! \

- Endpoints are interpolated,
intermediate points are
approximated

e Many demo applets online

— http://ibiblio.org/e-notes/Splines/Intro.htm
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http://ibiblio.org/e-notes/Splines/Intro.htm

Cubic Bézier curve

e Cubic polynomials, most common case
e Defined by 4 control points

e Two interpolated endpoints

o Two midpoints control the tangent at the
endpoints
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Bézier Curve: math formulation

e Three alternative formulations, analogous
to linear case

1. Weighted average of control points

2. Cubic polynomial function of ¢

3. Matrix form



Recursive linear interpolation

P,

P,

P;

Py

Po
P
P
P;
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Recursive linear interpolation

q, = Lerp(t,py» P, )
q, = Lerp(t,p,.p, )

P

p
qQ, = Lerp(t,p,»p;) "

P,
dy
P,
q,

NVAWA

P;
qd,

Py

P;
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Recursive linear interpolation

= Lerp(t,p,,
l’O :Lerp(taqmql)qo erp( pO pl

I, :Lerp(f,‘h»(h) q _Lerp(f P,.P
, = »M2oM3

q, = Lerp(t,p,.p, )

Py
) P,
)Pz

P;
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Recursive linear interpolation

p
q, = Lerp(t,py.p,)
q, = Lerp(1,p,.p, )
q, = Lerp(t,p,.p,)

l’O = Lerp(taqmql)
I = Lerp(taqn(h)

P,
P,

P;

X = Lerp (t,ro,l‘1

40



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

41



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢) = Lerp(t, q, (), ql(t))
r,(t) = Lerp(t,q,(1),q,(t))

42



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Le’”p(taqo(t)a(h(t)): (1 — f)((l - t)po + tp1)+ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Le’”p(taqo(t)a(h(t)): (1 — f)((l - t)po + tp1)+ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)

x(¢) = Lerp(t,x,(),1,(t))



Expand the LERPs

q, ()= Lerp(t,po,p1)= (1 - t)po +1p,
q,(t) = Lerp(t,pl,p2)= (1 ~ t)pl +1p,
q, ()= Lerp(t,pz,p3)= (1 - t)pz +1p,

r,(¢)= Lerp(taqo(t)a(h(t)): (1 — f)((l - t)po + tpl)-l_ t((l - t)p1 + tpz)
r,(t)=Lerp(t,q,(t),q,(t))= (-t )(1 - )p, +tp, )+t ((1-¢)p, +p;)

x(¢) = Lerp(t,x,(),1,(t))
= (1- t)((l — ) -1)p, +tp, )+t ((1-¢)p, + tpz))
+t((1 —t)(1=t)p, +1p, )+ t((1-1)p, + tp3))



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)

x(t)=(1-1) p, +3(1—t) tp, + 3(1-1)e*p, + £p,



Weighted average of control points
e Regroup

x(t) = (1- t)((l —t)(1-t)p, +1p, )+t ((1—t)p, +1p, ))
+((1- ) (- 1)p, +m, )+ t((1-1)p, + ;)

x(t)=(1-1) p, +3(1—t) tp, + 3(1-1)e*p, + £p,
By (1) B (1)

X(t) = (—t3 + 37 =3¢+ 1>p0 + (3t3 — 61" + 3t)p1

+(—3t3 + 3t2)p2 + (t3)p3
\ AR

B, (1) By (1)

Bernstein polynomials

48



Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein polynomial

x(t)=B,(t)p, + B, (¢)p, + B, (¢t)p, + B, (t)p;

The cubic Bernstein polynomials :
B,(t)=-t"+3t" -3t +1
B,(t)=3t -6t + 3t
B,(t)=-3t"+3¢
B,(¢t)="¢
> B(t)=1

Bernstein Cubic Polynomials

N Bo() B(1) By,(t) Bi(1) /
N,
\\\\v i
BT Tl
N el -
s \\“-\ _,_-"" - -
=y
e iy .
ra - .
"'r.l - E"ﬂﬁ_
1') - " 77’_;,,7 — _\-\_--\_\- -
- - —
._'_'-FFFF. — : ;
0.2 0.4 t 0.5 0.s

e Partition of unity, at each ¢ always add to 1

e Endpoint interpolation, B, and B; go to 1
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http://en.wikipedia.org/wiki/Bernstein_polynomial

General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

50



General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

Bi(¢t)=1"-2t+1
Bl (¢)=-2¢*+2t

2 2
B (t)=t
% N
- 2 0.8 e
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General Bernstein polynomials

B,(t)=-t+1
Bl (t)=t

Bi(¢t)=1"-2t+1
Bl (¢)=-2¢*+2t
Bi(¢)="¢

By (t)=—£+3>-3t+1
Bl (t)=3t" - 61" + 3t
B;(t)=-3t"+3¢
Bi(1)=r

52



General Bernstein polynomials

By(t)=—t+1  Bi(t)=t"-2t+1  Bi(t)=—t'+3t" -3t +1
Bl (t)=t Bl (¢)=-2¢*+2t Bl (t)=3t" - 61" + 3t
Bi(¢)="¢ B;(t)=-3t + 3¢
Bi(t)="r
(n\ 0 () nl
n 1_ —
Order n: B'(1)= U( t)Y () ) 1)

>.B'(1)=1

Partition of unity, endpoint interpolation

53



General Bézier curves

« nth-order Bernstein polynomials form nth-order
Bézier curves

o Beézier curves are weighted sum of control points
using nth-order Bernstein polynomials

Bernstein polynomials

of order n: B! (t)= [’3 (1-2)"(¢)

Bézier curve of order n: X(t)= ZB,-" (t)p,-
i=0



Affine invariance

« Two ways to transform Bézier curves

1. Transform the control points, then compute
resulting point on curve

2. Compute point on curve, then transform it
e Either way, get the same transform point!

- Curve is defined via affine combination of
points (convex combination is special case of
an affine combination)

- Invariant under affine transformations
- Convex hull property always remains



For your reference

e Starting from weighted sum of control
points using Bernstein polynomials,
polynomial and matrix form can be derive
easily



Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,
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Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1
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Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1

a=(-p,+3p,—3p,+p;)
b= (3130 —0p, + 3p2)
c= (—3pO + 3p1)

d:(po)

x(t)=at’+bt’ +ct+d




Cubic polynomial form

Start with Bernstein form:

x(t) = (=2 + 3 = 30+ 1)p, + (3> = 66> + 3¢ Jp, + (=3¢ + 3 Jp, + (©* I,

Regroup into coefficients of ¢ :

x()=(=p, +3p, = 3p, + P, )’ +(3p, — 6p, +3p, )’ +(=3p, + 3p, )t + (p, 1

a=(-p,+3p,—3p,+p;)
b= (3130 —6p, + 3p2)
c= (—3pO + 3p1)

d:(po)

e Good for fast evaluation, precompute constant
coefficients (a,b,c,d)

e Not much geometric intuition

x(t)=at’+bt’ +ct+d




Cubic matrix form

(437 a=(-p,+3p,—3p,+p;)
2 b=(3p, - 6p, +3
x(t):[ﬁ b ¢ d]t . (po o pz)
t ¢ =(-3p, +3p,)
1 d:(Po)
—1 3 =3 1]¢]
3 -6 3 0}¢
X(t)z[po P, P p3] -3 3 0 0] ¢
|1 0 0 Of1]
GBeZ — BBez H’_IJ‘

e Can construct other cubic curves by just using
different basis matrix B

e Hermite, Catmull-Rom, B-Spline, ...



Cubic matrix form
e 3 parallel equations, in x, y and z:

—1 3 =3 1]#
3 =6 3 0
)=

x_ (1) [p()x Pix Pax p3x] -3 3 0 O0f ¢
10 0 0J 1
—1 3 =3 17]¢]

3 =6 3 0}

Xy(t): |:p0y ply pzy p3y:| -3 3 0 Of ¢
10 0 0j 1.
-1 3 =3 17]¢]

3 =6 3 0f¢

Xz(t): I:p()Z plz p2Z p3z:| _3 3 O O t
10 0 01




Matrix form

e Bundle into a single matrix
-1 3 =3 1]
Pox  Pix P Pix 3 _§6
XO=| Py Py Py Pyl 5 4
Po: Pz Pz P3| 1 0

X(t) = GBezBBeZT
x(1)=CT

e Efficient evaluation

- Precompute C

- Take advantage of existing 4x4 matrix
hardware support



Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bezier curves

e Piecewise curves



Drawing Bezier curves

e Generally no low-level support for drawing
smooth curves
- l.e., GPU draws only straight line segments

e Need to break curves into line segments or
individual pixels

o Approximating curves as series of line
segments called tessellation

e Tessellation algorithms
- Uniform sampling
- Adaptive sampling
- Recursive subdivision



Uniform sampling
e Approximate curve with N straight segments

— N chosen in advance |
- Evaluate x, = x(ti) where ¢, :LN fori =0,1,..., N

.3 ) .
l l l

X,=a—+b—+c—+d
N N N

- Connect the points with lines
e Too few points?

- Bad approximation
- “Curve” is faceted

e TOO many points?

- Slow to draw too many line segments
- Segments may draw on top of each other



Adaptive Sampling
e Use only as many line segments as you need

- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel

e Various schemes for sampling,
checking results, deciding whether

to sample more
x(?)



Recursive Subdivision

e Any cubic (or k-th order) curve segment can be
expressed as a cubic (or k-th order) Bézier curve

“Any piece of a cubic (or £-th order) curve is
itself a cubic (or £-th order) curve”

e Therefore, any Bézier curve can be subdivided
into smaller Bézier curves



de Casteljau subdivision

P3

e de Casteljau construction points
are the control points of two Bézier
sub-segments (Pg,qp.Fo.X) and (x,r;,q,.p;)



Adaptive subdivision algorithm

1. Use de Casteljau construction to split
Bézier segment in middle (~=0.5)

2. For each half

- If “flat enough”: draw line segment
- Else: recurse from 1. for each half

e Test how far away midpoints are from
straight segment connecting start and end

- If less than a pixel, flat enough



Today

Curves

e Introduction

e Polynomial curves

e Bézier curves

e Drawing Bézier curves

e Piecewise curves



More control points

e Cubic Bézier curve limited to 4 control points

- Cubic curve can only have one inflection
- Need more control points for more complex curves

* k-1 order Bézier curve with & control points

« Hard to control and hard to work with

- Intermediate points don’t have obvious effect on shape
- Changing any control point changes the whole curve

e Want local support

- Each control point only influences nearby portion of curve



Piecewise curves (splines)

e Sequence of simple (low-order) curves, end-to-end
- Piecewise polynomial curve, or splines

http://en.wikipedia.org/wiki/Spline_(mathematics)

e Sequence of line segments
- Piecewise linear curve (linear or first-order spline)

ST

e Sequence of cubic curve segments
- Piecewise cubic curve, here piecewise Bézier (cubic spline)
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http://en.wikipedia.org/wiki/Spline_(mathematics)

Piecewise cubic Bézier curve

e Given 3N +1 points p,,p;»---»Psy
e Define N Bezier segments:

X, ()= B,(¢)p, + B,(t)p, + B,(£)p, + B, (¢)p,

Xy 1(£) = By(t)Psy_3 + B(£)Psy_, + B, (O)Psy_, + By (H)Psy

74



Continuity

Want smooth curves
CY continuity

- No gaps
- Segments match at the endpoints
C! continuity: first derivative is well defined

- No corners
- Tangents/normals are C° continuous (no jumps)

C? continuity: second derivative is well defined

- Tangents/normals are C! continuous
- Important for high quality reflections on surfaces

Cy continuil/v-.\

=) - o,

Co & Cy continuity

Cy & Cy & C, continuity

‘.
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Piecewise cubic Bézier curves
« CY continuous if endpoints are shared

N

» C! continuous at segment A T
endpoints p; if p3;- P3i = P31 - Pai
« C?is harder to get

P4
s\
s\
’ \
’ \

v,
‘s
p \/

Po

C? continuous, C! continuous
shared endpoints



Piecewise cubic Bézier curves
e Used often in 2D drawing programs

e |[nconveniences

- Must have 4 or 7or 10 or 13 or ... (1 plus a
multiple of 3) control points

- Some points interpolate (endpoints), others
approximate (handles)

- Need to impose constraints on control points
to obtain C! continuity

— C? continuity more difficult
 Solutions

- User interface using “Bézier handles”
- Generalization to B-splines, next time



Bézier handles

e Segment end points (interpolating) presented
as curve control points

e Midpoints (approximating points) presented as

“handles”

e Can have option to enforce C! continuity

‘Free

|
e !

T

i I

| Aligned

\_Iector

[www.blender.org]

Adobe Illustrator
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Next time
e B-splines and NURBS

e Extending curves to surfaces
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