CMSC427
 Computer Graphics

Matthias Zwicker
Fall 2019

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

Modeling

- Creating 3D objects
- How to construct complicated surfaces?
- Goal
- Specify objects with few control points
- Resulting object should be visually pleasing (smooth)
- Start with curves, then generalize to surfaces

Usefulness of curves

- Surface of revolution

Usefulness of curves

- Extruded/swept surfaces

Usefulness of curves

- Animation
- Provide a "track" for objects
- Use as camera path

Usefulness of curves

- Generalize to surface patches using "grids of curves", next class

How to represent curves

- Specify every point along curve?
- Hard to get precise, smooth results
- Too much data, too hard to work with
- Idea: specify curves using small numbers of control points
- Mathematics: use polynomials to represent curves

Mathematical definition

- A vector valued function of one variable $\mathbf{x}(t)$
- Given t, compute a 3D point $\mathbf{x}=(x, y, z)$
- May interpret as three functions $x(t), y(t), \mathrm{z}(t)$
- "Moving a point along the curve"

Tangent vector

- Derivative $\mathbf{x}^{\prime}(t)=\frac{d \mathbf{x}}{d t}=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$
- A vector that points in the direction of movement
- Length of $\mathbf{x}^{\prime}(t)$ corresponds to speed

$$
\xrightarrow[x]{ }(t)
$$

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

Polynomial functions

- Linear: $f(t)=a t+b$
(1 ${ }^{\text {st }}$ order)

- Quadratic: $f(t)=a t^{2}+b t+c$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $f(t)=a t^{3}+b t^{2}+c t+d$ (3 ${ }^{\text {rd }}$ order)

Polynomial curves

- Linear $\quad \mathbf{x}(t)=\mathbf{a} t+\mathbf{b}$

$$
\mathbf{x}=(x, y, z), \mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right)
$$

- Evaluated as $\quad x(t)=a_{x} t+b_{x}$

$$
\begin{aligned}
& y(t)=a_{y} t+b_{y} \\
& z(t)=a_{z} t+b_{z}
\end{aligned}
$$

Polynomial curves

- Quadratic: $\mathbf{x}(t)=\mathbf{a} t^{2}+\mathbf{b} t+\mathbf{c}$ (2 ${ }^{\text {nd }}$ order)

- Cubic: $\mathbf{x}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}$ (3rd order)

- We usually define the curve for $0 \leq t \leq 1$

Control points

- Polynomial coefficients a, b, c, d etc. can be interpreted as 3D control points
- Remember a, b, c, d have x, y, z components each
- Unfortunately, polynomial coefficients don't intuitively describe shape of curve
- Main objective of curve representation is to come up with intuitive control points
- Position of control points predicts shape of curve

Control points

-How many control points?

- Two points define a line ($1^{\text {st }}$ order)
- Three points define a quadratic curve ($2^{\text {nd }}$ order)
- Four points define a cubic curve (3 ${ }^{\text {rd }}$ order)
- $k+l$ points define a k-order curve
- Let's start with a line...

First order curve

- Interpolate between points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ with parameter t
- Defines a "curve" that is straight (first-order curve)
- $t=0$ corresponds to $\mathbf{p}_{\mathbf{0}}$
- $t=1$ corresponds to \mathbf{p}_{1}
- $t=0.5$ corresponds to midpoint

First order curve

- Three different ways to write it
- Equivalent, but different properties become apparent
- Advantages for different operations, see later

1. Weighted sum of control points (linear interpolation, LERP)

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t
$$

2. Polynomial in t

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0} t^{0}
$$

3. Matrix form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Weighted sum of control points

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t) \mathbf{p}_{0}+\quad(t) \mathbf{p}_{1} \\
& =B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}, \text { where } B_{0}(t)=1-t \text { and } B_{1}(t)=t
\end{aligned}
$$

- Weights $\mathrm{B}_{0}(t), \mathrm{B}_{1}(t)$ are functions of t
- Sum is always 1 , for any value of t
- Also known as basis or blending functions

Linear polynomial

$$
\mathbf{x}(t)=\underbrace{\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)}_{\text {vector }} t+\underbrace{\mathbf{p}_{0}}_{\substack{\text { point } \\ \mathbf{a}}}
$$

- Curve is based at point \mathbf{p}_{0}
- Add the vector, scaled by t

Matrix form

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\mathbf{G B T}
$$

- Geometry matrix $\quad \mathrm{G}=\left[\begin{array}{ll}\mathrm{p}_{0} & \mathrm{p}_{1}\end{array}\right]$
- Geometric basis

$$
\mathbf{B}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

- Polynomial basis

$$
T=\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

- In components

$$
\mathbf{x}(t)=\left[\begin{array}{ll}
p_{0 x} & p_{1 x} \\
p_{0 y} & p_{1 y} \\
p_{0 z} & p_{1 z}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]
$$

Tangent

- For a straight line, the tangent is constant

$$
\mathbf{x}^{\prime}(t)=\mathbf{p}_{1}-\mathbf{p}_{0}
$$

- Weighted average

$$
\mathbf{x}(t)=\mathbf{p}_{0}(1-t)+\mathbf{p}_{1} t \rightarrow \mathbf{x}^{\prime}(t)=(-1) \mathbf{p}_{0}+(+1) \mathbf{p}_{1}
$$

- Polynomial

$$
\mathbf{x}(t)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0} \rightarrow \mathbf{x}^{\prime}(t)=0 t+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)
$$

- Matrix form

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
\mathbf{p}_{0} & \mathbf{p}_{1}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Side note: Lissajous curves

http://en.wikipedia.org/wiki/Lissajous curve
What type of mathematical function is used here?

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

Bézier curves

http://en.wikipedia.org/wiki/B\�\�zier_curve

- Intuitive way to define control points for polynomial curves
- Developed for CAD (computer aided design) and manufacturing
- Before games, movies, CAD was the big application for 3D graphics
- Pierre Bézier (1962), design of auto bodies

- Paul de Casteljau (1959), for Citroen

Bézier curves

- Arbitrary number of control points $\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots$, p_{n}

Linear
Quadratic
Cubic

de Casteljau Algorithm

http://en.wikipedia.org/wiki/De Casteljau's algorithm

- Construction of Bézier curves via recursive series of linear interpolations
- Works for any order, not only cubic
- Not most way efficient to evaluate curve
- Why study it?
- Intuition about the geometry
- Useful for subdivision (later today)

de Casteljau Algorithm (cubic curre)

- Given the control points
- A value of t
- Here $t \approx 0.25$

de Casteljau Algorithm (cubic curve)

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right) \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)
\end{aligned}
$$

de Casteljau Algorithm (cubic curre)

$\mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)$
$\mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)$

de Casteljau Algorithm (cubic curre)

de Casteljau algorithm (cubic curre)

- More details, pseudo code
- http://ibiblio.org/e-notes/Splines/bezier.html

de Casteljau Algorithm

Quadratic

Quartic

Bézier curves properties

- Intuitive control over curve given control points
- Endpoints are interpolated, intermediate points are approximated
- Many demo applets online
- http://ibiblio.org/e-notes/Splines/Intro.htm

Cubic Bézier curve

- Cubic polynomials, most common case
- Defined by 4 control points
- Two interpolated endpoints
- Two midpoints control the tangent at the endpoints

Bézier Curve: math formulation

- Three alternative formulations, analogous to linear case

1. Weighted average of control points
2. Cubic polynomial function of t
3. Matrix form

Recursive linear interpolation

$$
\begin{aligned}
& \mathbf{p}_{0} \\
& \mathbf{p}_{1} \\
& \mathbf{p}_{2} \\
& \mathbf{p}_{3}
\end{aligned}
$$

\mathbf{p}_{1}
\mathbf{p}_{2}
\mathbf{p}_{3}
\mathbf{p}_{4}

Recursive linear interpolation

$$
\begin{array}{ll}
\mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right) & \mathbf{p}_{0} \\
\mathbf{p}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) & \mathbf{p}_{1} \\
\mathbf{p}_{2}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right) & \mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}
$$

Recursive linear interpolation

$$
\begin{aligned}
& \mathbf{r}_{0}=\operatorname{Lerp}\left(t, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \\
& \mathbf{r}_{1}=\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right)
\end{aligned} \begin{aligned}
& \mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)
\end{aligned} \begin{aligned}
& \mathbf{p}_{0} \\
& \mathbf{q}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)
\end{aligned} \mathbf{p}_{1}
$$

Recursive linear interpolation

$$
\begin{aligned}
& \mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right) \\
& \mathbf{q}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) \\
& \left.\mathbf{p}_{0}\right) \\
& \mathbf{p}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \\
& \left.\mathbf{q}_{2}\right) \\
& \mathbf{p}_{3}
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3} \\
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3} \\
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3} \\
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right) \\
& \mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
\end{aligned}
$$

Expand the LERPs

$$
\begin{aligned}
& \mathbf{q}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1} \\
& \mathbf{q}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2} \\
& \mathbf{q}_{2}(t)=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=(1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r}_{0}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{0}(t), \mathbf{q}_{1}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right) \\
& \mathbf{r}_{1}(t)=\operatorname{Lerp}\left(t, \mathbf{q}_{1}(t), \mathbf{q}_{2}(t)\right)=(1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)
\end{aligned}
$$

$$
\mathbf{x}(t)=\operatorname{Lerp}\left(t, \mathbf{r}_{0}(t), \mathbf{r}_{1}(t)\right)
$$

$$
=(1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right)
$$

$$
+t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right)
$$

Weighted average of control points

- Regroup

$$
\begin{aligned}
\mathbf{x}(t)= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right)
\end{aligned}
$$

Weighted average of control points

- Regroup

$$
\begin{aligned}
\mathbf{x}(t)= & (1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right) \\
\mathbf{x}(t)= & (1-t)^{3} \mathbf{p}_{0}+3(1-t)^{2} t \mathbf{p}_{1}+3(1-t) t^{2} \mathbf{p}_{2}+t^{3} \mathbf{p}_{3}
\end{aligned}
$$

Weighted average of control points

- Regroup

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t)\left((1-t)\left((1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}\right)+t\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)\right) \\
& +t\left((1-t)\left((1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}\right)+t\left((1-t) \mathbf{p}_{2}+t \mathbf{p}_{3}\right)\right) \\
\mathbf{x}(t) & =(1-t)^{3} \mathbf{p}_{0}+3(1-t)^{2} t \mathbf{p}_{1}+3(1-t) t^{2} \mathbf{p}_{2}+t^{3} \mathbf{p}_{3} \\
\mathbf{x}(t) & =\overbrace{\left(-t^{3}+3 t^{2}-3 t+1\right)}^{B_{0}(t)} \mathbf{p}_{0}+\overbrace{\left(3 t^{3}-6 t^{2}+3 t\right)}^{B_{1}(t)} \mathbf{p}_{1} \\
& +\underbrace{\left(-3 t^{3}+3 t^{2}\right)}_{B_{2}(t)} \mathbf{p}_{2}+\underbrace{\left(t^{3}\right)}_{B_{3}(t)} \mathbf{p}_{3} \quad \text { Bernstein polynomials }
\end{aligned}
$$

Cubic Bernstein polynomials

http://en.wikipedia.org/wiki/Bernstein_polynomial

$$
\mathbf{x}(t)=B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3}
$$

Bernstein Cubic Polynomials
The cubic Bernstein polynomials :

$$
\begin{aligned}
& B_{0}(t)=-t^{3}+3 t^{2}-3 t+1 \\
& B_{1}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}(t)=-3 t^{3}+3 t^{2} \\
& B_{3}(t)=t^{3} \\
& \sum B_{i}(t)=1
\end{aligned}
$$

- Partition of unity, at each t always add to 1
- Endpoint interpolation, B_{0} and B_{3} go to 1

General Bernstein polynomials

$$
\begin{aligned}
& B_{0}^{1}(t)=-t+1 \\
& B_{1}^{1}(t)=t
\end{aligned}
$$

General Bernstein polynomials

$$
\begin{array}{ll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t \\
& B_{2}^{2}(t)=t^{2}
\end{array}
$$

General Bernstein polynomials

$$
\begin{array}{lll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 & B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t & B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}^{2}(t)=t^{2} & B_{2}^{3}(t)=-3 t^{3}+3 t^{2} \\
& & B_{3}^{3}(t)=t^{3}
\end{array}
$$

General Bernstein polynomials

$$
\begin{array}{lll}
B_{0}^{1}(t)=-t+1 & B_{0}^{2}(t)=t^{2}-2 t+1 & B_{0}^{3}(t)=-t^{3}+3 t^{2}-3 t+1 \\
B_{1}^{1}(t)=t & B_{1}^{2}(t)=-2 t^{2}+2 t & B_{1}^{3}(t)=3 t^{3}-6 t^{2}+3 t \\
& B_{2}^{2}(t)=t^{2} & B_{2}^{3}(t)=-3 t^{3}+3 t^{2} \\
& & B_{3}^{3}(t)=t^{3}
\end{array}
$$

Order $n: \quad B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \quad\binom{n}{i}=\frac{n!}{i!(n-i)!}$

$$
\sum B_{i}^{n}(t)=1
$$

Partition of unity, endpoint interpolation

General Bézier curves

- n th-order Bernstein polynomials form n th-order Bézier curves
- Bézier curves are weighted sum of control points using n th-order Bernstein polynomials

Bernstein polynomials of order n :

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i}(t)^{i} \\
& \mathbf{x}(t)=\sum_{i=0}^{n} B_{i}^{n}(t) \mathbf{p}_{i}
\end{aligned}
$$

Affine invariance

- Two ways to transform Bézier curves

1. Transform the control points, then compute resulting point on curve
2. Compute point on curve, then transform it

- Either way, get the same transform point!
- Curve is defined via affine combination of points (convex combination is special case of an affine combination)
- Invariant under affine transformations
- Convex hull property always remains

For your reference

- Starting from weighted sum of control points using Bernstein polynomials, polynomial and matrix form can be derive easily

Cubic polynomial form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Cubic polynomial form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Regroup into coefficients of t :

$$
\mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t^{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t^{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1
$$

Cubic polynomial form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Regroup into coefficients of t :

$$
\mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t^{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t^{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1
$$

$$
\begin{aligned}
& \mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
& \mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
& \mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
& \mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{aligned}
$$

Cubic polynomial form

Start with Bernstein form:

$$
\mathbf{x}(t)=\left(-t^{3}+3 t^{2}-3 t+1\right) \mathbf{p}_{0}+\left(3 t^{3}-6 t^{2}+3 t\right) \mathbf{p}_{1}+\left(-3 t^{3}+3 t^{2}\right) \mathbf{p}_{2}+\left(t^{3}\right) \mathbf{p}_{3}
$$

Regroup into coefficients of t :

$$
\mathbf{x}(t)=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) t^{3}+\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) t^{2}+\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) t+\left(\mathbf{p}_{0}\right) 1
$$

$$
\begin{aligned}
& \mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
& \mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
& \mathbf{c}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
& \mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{aligned}
$$

- Good for fast evaluation, precompute constant coefficients (a,b,c,d)
- Not much geometric intuition

Cubic matrix form

$$
\begin{aligned}
& \mathbf{x}(t)=\left[\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{d}
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \quad \begin{array}{l}
\mathbf{a}=\left(-\mathbf{p}_{0}+3 \mathbf{p}_{1}-3 \mathbf{p}_{2}+\mathbf{p}_{3}\right) \\
\mathbf{b}=\left(3 \mathbf{p}_{0}-6 \mathbf{p}_{1}+3 \mathbf{p}_{2}\right) \\
\overline{\mathbf{c}}=\left(-3 \mathbf{p}_{0}+3 \mathbf{p}_{1}\right) \\
\mathbf{d}=\left(\mathbf{p}_{0}\right)
\end{array} \\
& \mathbf{x}(t)=\left[\begin{array}{llll}
\mathbf{p}_{0} & \mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}
\end{array}\right]\left[\begin{array}{cccc}
{\left[\begin{array}{ccc}
-1 & 3 & -3
\end{array}\right.} & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]}_{\mathbf{T}} \underset{\mathbf{G}_{B e z}}{\left[\begin{array}{l}
\mathbf{B}_{B e z}
\end{array}\right.}
\end{aligned}
$$

- Can construct other cubic curves by just using different basis matrix B
- Hermite, Catmull-Rom, B-Spline, ...

Cubic matrix form

- 3 parallel equations, in x, y and z :

$$
\begin{aligned}
& \mathbf{x}_{x}(t)=\left[\begin{array}{llll}
p_{0 x} & p_{1 x} & p_{2 x} & p_{3 x}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \\
& \mathbf{x}_{y}(t)=\left[\begin{array}{llll}
p_{0 y} & p_{1 y} & p_{2 y} & p_{3 y}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \\
& \mathbf{x}_{z}(t)=\left[\begin{array}{llll}
p_{0 z} & p_{1 z} & p_{2 z} & p_{3 z}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right]
\end{aligned}
$$

Matrix form

- Bundle into a single matrix

$$
\begin{aligned}
& \mathbf{x}(t)=\left[\begin{array}{llll}
p_{0 x} & p_{1 x} & p_{2 x} & p_{3 x} \\
p_{0 y} & p_{1 y} & p_{2 y} & p_{3 y} \\
p_{0 z} & p_{1 z} & p_{2 z} & p_{3 z}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
t^{3} \\
t^{2} \\
t \\
1
\end{array}\right] \\
& \begin{array}{l}
\mathbf{x}(t)=\mathbf{G}_{B e z} \mathbf{B}_{B e z} \mathbf{T} \\
\mathbf{x}(t)=\mathbf{C} \mathbf{T}
\end{array}
\end{aligned}
$$

- Efficient evaluation
- Precompute C
- Take advantage of existing 4×4 matrix hardware support

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

Drawing Bézier curves

- Generally no low-level support for drawing smooth curves
- I.e., GPU draws only straight line segments
- Need to break curves into line segments or individual pixels
- Approximating curves as series of line segments called tessellation
- Tessellation algorithms
- Uniform sampling
- Adaptive sampling
- Recursive subdivision

Uniform sampling

- Approximate curve with N straight segments
- N chosen in advance
- Evaluate $\mathbf{x}_{i}=\mathbf{x}\left(t_{i}\right)$ where $t_{i}=\frac{i}{N}$ for $i=0,1, \ldots, N$

$$
\mathbf{x}_{i}=\mathbf{a} \frac{i^{3}}{N^{3}}+\mathbf{b} \frac{i^{2}}{N^{2}}+\mathbf{c} \frac{i}{N}+\mathbf{d}
$$

- Connect the points with lines
- Too few points?
- Bad approximation
- "Curve" is faceted
- Too many points?
- Slow to draw too many line segments
- Segments may draw on top of each other

Adaptive Sampling

- Use only as many line segments as you need
- Fewer segments where curve is mostly flat
- More segments where curve bends
- Segments never smaller than a pixel
- Various schemes for sampling, checking results, deciding whether to sample more

Recursive Subdivision

- Any cubic (or k-th order) curve segment can be expressed as a cubic (or k-th order) Bézier curve
"Any piece of a cubic (or k-th order) curve is itself a cubic (or k-th order) curve"
- Therefore, any Bézier curve can be subdivided into smaller Bézier curves

de Casteljau subdivision

- de Casteljau construction points are the control points of two Bézier sub-segments $\left(\mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{r}_{0}, \mathbf{x}\right)$ and $\left(\mathbf{x}, \mathbf{r}_{1}, \mathbf{q}_{2}, \mathbf{p}_{3}\right)$

Adaptive subdivision algorithm

1. Use de Casteljau construction to split Bézier segment in middle ($t=0.5$)
2. For each half

- If "flat enough": draw line segment
- Else: recurse from 1. for each half
- Test how far away midpoints are from straight segment connecting start and end
- If less than a pixel, flat enough

Today

Curves

- Introduction
- Polynomial curves
- Bézier curves
- Drawing Bézier curves
- Piecewise curves

More control points

- Cubic Bézier curve limited to 4 control points
- Cubic curve can only have one inflection
- Need more control points for more complex curves
- k-1 order Bézier curve with k control points

- Hard to control and hard to work with
- Intermediate points don't have obvious effect on shape
- Changing any control point changes the whole curve
- Want local support
- Each control point only influences nearby portion of curve

Piecewise curves (splines)

- Sequence of simple (low-order) curves, end-to-end
- Piecewise polynomial curve, or splines
- Sequence of line segments
- Piecewise linear curve (linear or first-order spline)

- Sequence of cubic curve segments
- Piecewise cubic curve, here piecewise Bézier (cubic spline)

Piecewise cubic Bézier curve

- Given $3 N+1$ points $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{3 N}$
- Define N Bézier segments:

$$
\begin{aligned}
\mathbf{x}_{0}(t)= & B_{0}(t) \mathbf{p}_{0}+B_{1}(t) \mathbf{p}_{1}+B_{2}(t) \mathbf{p}_{2}+B_{3}(t) \mathbf{p}_{3} \\
\mathbf{x}_{1}(t) & =B_{0}(t) \mathbf{p}_{3}+B_{1}(t) \mathbf{p}_{4}+B_{2}(t) \mathbf{p}_{5}+B_{3}(t) \mathbf{p}_{6} \\
& \vdots \\
\mathbf{x}_{N-1}(t) & =B_{0}(t) \mathbf{p}_{3 N-3}+B_{1}(t) \mathbf{p}_{3 N-2}+B_{2}(t) \mathbf{p}_{3 N-1}+B_{3}(t) \mathbf{p}_{3 N}
\end{aligned}
$$

Continuity

- Want smooth curves
- C^{0} continuity
- No gaps
- Segments match at the endpoints
- C^{1} continuity: first derivative is well defined
- No corners
- Tangents/normals are C^{0} continuous (no jumps)
- C^{2} continuity: second derivative is well defined
- Tangents/normals are C^{1} continuous
- Important for high quality reflections on surfaces

Piecewise cubic Bézier curves

- C^{0} continuous if endpoints are shared
- C^{1} continuous at segment endpoints $\mathbf{p}_{3 \mathrm{i}}$ if $\mathbf{p}_{3 \mathrm{i}}-\mathbf{p}_{3 \mathrm{i}-1}=\mathbf{p}_{3 i+1}-\mathbf{p}_{3 \mathrm{i}}$
- C^{2} is harder to get

C^{0} continuous, shared endpoints

C^{1} continuous

Piecewise cubic Bézier curves

- Used often in 2D drawing programs
- Inconveniences
- Must have 4 or 7 or 10 or 13 or ... (1 plus a multiple of 3) control points
- Some points interpolate (endpoints), others approximate (handles)
- Need to impose constraints on control points to obtain C^{1} continuity
- C^{2} continuity more difficult
- Solutions
- User interface using "Bézier handles"
- Generalization to B-splines, next time

Bézier handles

- Segment end points (interpolating) presented as curve control points
- Midpoints (approximating points) presented as "handles"
- Can have option to enforce C^{1} continuity

[www.blender.org]

Adobe Illustrator

Next time

- B-splines and NURBS
- Extending curves to surfaces

