CMSC427 Computer Graphics

Matthias Zwicker Fall 2019

Today

Curves

• NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Piecewise Bézier curves

- Each segment contains four control points, four Bernstein polynomials
- Disadvantage: continuity only if control points are placed accordingly

B-splines

- Same idea, but generalized polynomial blending functions
- Uniform B-splines have only one type of blending function: B-spline (basis) function b_i
- B-spline function of degree *n* is C^{*n*-1} continuous
- Local support, at each point *u* exactly *n*+1 functions are non-zero

Uniform B-spline (basis) functions of degree 3

B-splines

- Widely used for curve and surface modeling
- Advantages over Bézier curves
 - Built-in continuity
 - Local support: curve only affected by nearby control points

B-splines

• Weighted average of control points p, using Bspline functions $b_i(u)$

$$\mathbf{x}(u) = \sum b_i(u)\mathbf{p}_i$$

- Positive, partition of unity => convex hull property
- Matrix form (note different basis matrix;
 a -6 3 0
 -3 3 0 0
 -3 3 0 0
 -3 0 0 transposed)

$$\mathbf{x}(u) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_i \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \\ \mathbf{p}_{i+3} \end{bmatrix}$$
 where $t = u - i$ and $i = \lfloor u \rfloor$
$$\mathbf{T} \qquad \mathbf{B}_{B-spline} \qquad \mathbf{G}_{B-spline}$$

BROT

Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

- Non-Uniform Rational B-splines
- Interactive explanation

http://www.ibiblio.org/e-notes/Splines/nurbs.html

• NOTE: notation now uses *t* instead of *u* for curve parameter

Non-uniform B-splines

Knot vector

- Defines B-spline bases functions
- Uniform B-spline bases and Bernstein polynomials are special cases for specific knot vectors

Advantage

• Can make corners if desired (not possible with uniform b-splines)

Knot vector

- Knot vector is vector of locations $\{t_j\}$ on the t axis
 - B-spline function of degree n uses n+2 knots
- (Uniform) B-splines use a uniform knot vector $t_i = j$

Knot vector

Nonuniform B-splines use an arbitrary knot vector

Nonuniform B-spline bases

Construction using knot vector

- Recursive
- Generate higher order bases step by step from lower order bases
- Can prove
 - Partition of unity (implies convex hull property, i.e., curve is always in convex hull of control points, https://en.wikipedia.org/wiki/Convex_hull)
 - Built-in continuity

Recursive construction

Recursive construction

Recipe

- Input: two neighboring basis functions of degree *n*
 - Multiply basis functions with linear weighting functions (one increasing, one decreasing)
 - Add
- Output: one basis function of degree n+1

For your reference...

- Recursive definition of non-uniform B-spline basis functions $b_{j,n}$
 - Function $b_{j,n}$ has degree n
 - Knot vector $\{t_j\}$

$$b_{j,0}(t) := \begin{cases} 1 & \text{if } t_j \leq t < t_{j+1} \\ 0 & \text{otherwise} \end{cases} \begin{array}{l} \text{Basis functions} \\ \text{of degree 0} \end{cases}$$
$$b_{j,n}(t) := \frac{t - t_j}{t_{j+n} - t_j} b_{j,n-1}(t) + \frac{t_{j+n+1} - t}{t_{j+n+1} - t_{j+1}} b_{j+1,n-1}(t).$$

Recursive definition of higher order functions

Special cases

- Uniform B-splines have knot vector $t_j = j$
- Cubic Bézier curves $\{t_i\} = [0,0,0,0,1,1,1,1]$
 - Can make corners (C¹ discontinuity)
 - Non-uniform knot vectors allow mixing interpolating (e.g. at endpoints) and approximating

Bézier curve as B-spline with nonuniform knot vector

http://www.ibiblio.org/e-notes/Splines/basis.html

Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

- Non-Uniform Rational B-splines
- Interactive explanation

http://www.ibiblio.org/e-notes/Splines/nurbs.html

• NOTE: notation now uses *t* instead of *u* for curve parameter

Rational curves

- Big drawback of all polynomial curves
 - Can't make circles, ellipses, nor arcs, nor conic sections
- Rational B-spline
 - A type of rational function <u>http://en.wikipedia.org/wiki/Rational_function</u>
 - Add a weight to each control point *i*
 - Control points with homogeneous coordinates w_i

$$\mathbf{x}(u) = \sum_{i} b_i(u) \mathbf{p}_i$$

Polynomial curve (b-spline, Bézier)

$$\mathbf{x}(u) = \frac{\sum_{i} b_i(u) w_i \mathbf{p}_i}{\sum_{i} b_i(u) w_i}$$

Rational curve Not polynomial any more!

Rational curves

- Weight causes point to "pull" more (or less)
- With proper points & weights, can do circles

Rational curves

 Can generate curves for conic sections (circles, ellipses, etc.) with appropriate weights

- Need extra user interface to adjust the weights
- Often, hand-drawn curves are unweighted

Summary: NURBS

- Math is more complicated
 - (Non-uniform) knot vectors
 - Rational functions
- Very widely used for curve and surface modeling
 - Supported by virtually all 3D modeling tools
 - Open source modeling tool: <u>http://www.blender.org</u>
- Techniques for cutting, inserting, merging, revolving, etc...
- Applets
 - <u>http://ibiblio.org/e-notes/Splines/Intro.htm</u>

Today

Curves

• NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Curved surfaces

- Described by a 1D series of control points
- A function $\mathbf{x}(t)$
- Segments joined together to form a longer curve

Surfaces

- Described by a 2D mesh of control points
- Parameters have two dimensions (two dimensional parameter domain)
- A function $\mathbf{x}(u, v)$
- Patches joined together to form a bigger surface

Parametric surface patch

- $\mathbf{x}(u,v): \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ is a point in 3D space for any (u,v) pair
 - u, v each range from 0 to 1 (by convention)

Parametric surface patch

- $\mathbf{x}(u,v): \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ is a point in 3D space for any (u,v) pair
 - u, v each range from 0 to 1 (by convention)

- Parametric curves
 - For fixed u_0 , have a v curve $\mathbf{x}(u_0, v)$
 - For fixed v_0 , have a *u* curve $\mathbf{x}(u, v_0)$
 - For any point on the surface, there is one pair of parametric curves that go through point

Tangents

- The tangent to a parametric curve is also tangent to the surface
- For any point on the surface, there are a pair of (parametric) tangent vectors given by the partial derivatives with respect to *u* and *v*
- Note: not necessarily perpendicular to each other

Tangents Notation

Tangent along u direction

$$\frac{\partial \mathbf{x}}{\partial u}(u,v)$$
 or $\frac{\partial}{\partial u}\mathbf{x}(u,v)$ or $\mathbf{x}_u(u,v)$

• Tangent along v direction

$$\frac{\partial \mathbf{x}}{\partial v}(u,v)$$
 or $\frac{\partial}{\partial v}\mathbf{x}(u,v)$ or $\mathbf{x}_v(u,v)$

• Tangents are vector valued functions, i.e., vectors!

Surface normal

- Cross product of the two tangent vectors $\mathbf{x}_u(u,v) \times \mathbf{x}_v(u,v)$
- Order matters (determines normal orientation)
- Usually, want unit normal
 - Need to normalize by dividing through length

Today

Curves

• NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

- Control mesh with four points p_0 , p_1 , p_2 , p_3
- Compute **x**(*u*,*v*) using a two-step construction

Bilinear patch (step 1)

- For a given value of *u*, evaluate the linear curves on the two *u*-direction edges
- Use the same value *u* for both:

Bilinear patch (step 2)

- Consider that q_0 , q_1 define a line segment
- Evaluate it using v to get x

 $\mathbf{x} = Lerp(v, \mathbf{q}_0, \mathbf{q}_1)$

• Combining the steps, we get the full formula

 $\mathbf{x}(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3))$

- Try the other order
- Evaluate first in the v direction

$$\mathbf{r}_0 = Lerp(v, \mathbf{p}_0, \mathbf{p}_2)$$
 $\mathbf{r}_1 = Lerp(v, \mathbf{p}_1, \mathbf{p}_3)$

- Consider that r_0 , r_1 define a line segment
- Evaluate it using *u* to get **x**

$$\mathbf{x} = Lerp(u, \mathbf{r}_0, \mathbf{r}_1)$$

• The full formula for the *v* direction first:

$$\mathbf{x}(u,v) = Lerp(u, Lerp(v, \mathbf{p}_0, \mathbf{p}_2), Lerp(v, \mathbf{p}_1, \mathbf{p}_3))$$

• It works out the same either way!

$$\mathbf{x}(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3))$$
$$\mathbf{x}(u,v) = Lerp(u, Lerp(v, \mathbf{p}_0, \mathbf{p}_2), Lerp(v, \mathbf{p}_1, \mathbf{p}_3))$$

Bilinear patch

• Visualization

Bilinear patches

• Weighted sum of control points

 $\mathbf{x}(u,v) = (1-u)(1-v)\mathbf{p}_0 + u(1-v)\mathbf{p}_1 + (1-u)v\mathbf{p}_2 + uv\mathbf{p}_3$

• Bilinear polynomial

 $\mathbf{x}(u,v) = (\mathbf{p}_0 - \mathbf{p}_1 - \mathbf{p}_2 + \mathbf{p}_3)uv + (\mathbf{p}_1 - \mathbf{p}_0)u + (\mathbf{p}_2 - \mathbf{p}_0)v + \mathbf{p}_0$

• Matrix form exists, too

Properties

- Interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not coplanar, get a curved surface
 - saddle shape, AKA hyperbolic paraboloid
- The parametric curves are all straight line segments!
 - a (doubly) *ruled surface*: has (two) straight lines through every point

• Not terribly useful as a modeling primitive

Today

Curves

• NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Bicubic Bézier patch

- Grid of 4x4 control points, \mathbf{p}_0 through \mathbf{p}_{15}
- Four rows of control points define Bézier curves along u
 p₀,p₁,p₂,p₃, p₄,p₅,p₆,p₇; p₈,p₉,p₁₀,p₁₁; p₁₂,p₁₃,p₁₄,p₁₅
- Four columns define Bézier curves along v
 p₀, p₄, p₈, p₁₂; p₁, p₆, p₉, p₁₃; p₂, p₆, p₁₀, p₁₄; p₃, p₇, p₁₁, p₁₅

Bicubic Bézier patch (step 1)

- Evaluate four *u*-direction Bézier curves at *u*
- Get intermediate points $\mathbf{q}_{0...}\mathbf{q}_{3}$

Bicubic Bézier patch (step 2)

- Points $\mathbf{q}_0 \dots \mathbf{q}_3$ define a Bézier curve
- Evaluate it at v

 $\mathbf{x}(u,v) = Bez(v,\mathbf{q}_0,\mathbf{q}_1,\mathbf{q}_2,\mathbf{q}_3)$

Bicubic Bézier patch

• Same result in either order (evaluate *u* before *v* or vice versa)

$$\mathbf{q}_{0} = Bez(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})$$

$$\mathbf{r}_{0} = Bez(v, \mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12})$$

$$\mathbf{q}_{1} = Bez(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7})$$

$$\mathbf{r}_{1} = Bez(v, \mathbf{p}_{1}, \mathbf{p}_{5}, \mathbf{p}_{9}, \mathbf{p}_{13})$$

$$\mathbf{q}_{2} = Bez(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11})$$

$$\mathbf{q}_{3} = Bez(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15})$$

$$\mathbf{r}_{2} = Bez(v, \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14})$$

$$\mathbf{r}_{3} = Bez(v, \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15})$$

$$\mathbf{x}(u, v) = Bez(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3})$$

$$\mathbf{x}(u, v) = Bez(u, \mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3})$$

Tensor product formulation

- Corresponds to weighted average formulation
- Construct two-dimensional weighting function as product of two one-dimensional functions
 - Bernstein polynomials B_i , B_j as for curves

$$\mathbf{x}(u,v) = \sum_{i} \sum_{j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$

 Same tensor product construction applies to higher order Bézier and NURBS surfaces

Bicubic Bézier patch: properties

- Convex hull: any point on the surface will fall within the convex hull of the control points
- Interpolates 4 corner points
- Approximates other 12 points, which act as "handles"
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
- The parametric curves are all Bézier curves

Tangents of Bézier patch

- Remember parametric curves $\mathbf{x}(u, v_0)$, $\mathbf{x}(u_0, v)$ where v_0, u_0 is fixed
- Tangents to surface = tangents to parametric curves
- Tangents are partial derivatives of $\mathbf{x}(u, v)$
- Normal is cross product of the tangents

Tangents of Bézier patch

$$\mathbf{q}_{0} = Bez(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})$$

$$\mathbf{r}_{0} = Bez(v, \mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12})$$

$$\mathbf{q}_{1} = Bez(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7})$$

$$\mathbf{q}_{2} = Bez(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11})$$

$$\mathbf{q}_{3} = Bez(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15})$$

$$\mathbf{r}_{2} = Bez(v, \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14})$$

$$\mathbf{r}_{3} = Bez(v, \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15})$$

$$\frac{\partial \mathbf{x}}{\partial v}(u, v) = Bez'(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3})$$

$$\frac{\partial \mathbf{x}}{\partial u}(u, v) = Bez'(u, \mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3})$$

Tessellating a Bézier patch

- Uniform tessellation is most straightforward
 - Evaluate points on uniform grid of *u*, *v* coordinates
 - Compute tangents at each point, take cross product to get pervertex normal
 - Draw triangle strips (several choices of direction)

- Adaptive tessellation/recursive subdivision
 - Potential for "cracks" if patches on opposite sides of an edge divide differently
 - Tricky to get right, but can be done

Piecewise Bézier surface

- Lay out grid of adjacent meshes of control points
- For C⁰ continuity, must share points on the edge
 - Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
 - So if adjacent meshes share edge points, the patches will line up exactly
- But we have a crease...

Grid of control points

Piecewise Bézier surface

C¹ continuity

- Want parametric curves that cross each edge to have C¹ continuity
 - Handles must be equal-and-opposite across edge

C¹ continuous

[http://www.spiritone.com/~english/cyclopedia/patches.html]

Modeling with Bézier patches

 Original Utah teapot specified as Bézier Patches

http://en.wikipedia.org/wiki/Utah_teapot

B-spline/NURBS surfaces

- B-spline/NURBS patches instead of Bézier
- For the same reason as using B-spline/NURBS curves
 - More flexible (can model spheres)
 - Better mathematical properties, continuity

Today

Curves

• NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Modeling headaches

Original Teapot is not "watertight"

http://en.wikipedia.org/wiki/Utah teapot

- Spout & handle intersect with body
- No bottom
- Hole in spout
- Gap between lid and body

Quadrilateral topology

- Surfaces made up of quadrilateral patches
 - 4 corners
 - 4 (curved) boundaries

Makes it hard to

- join or abut curved pieces
- build surfaces with awkward topology or structure

Trim curves

- Cut away part of surface
- Define "holes" with trim curves in u/v domain
- Tessellation uses trim curve to define surface
- Still hard to fit different parts together

Subdivision surfaces

- Goal
 - Create smooth surfaces from small number of control points, like splines
 - More flexibility for the topology of the control points (not restricted to quadrilateral grid)
- Idea
 - Start with initial coarse polygon mesh
 - Create smooth surface recursively by
 - 1. Splitting (subdividing) mesh into finer polygons
 - 2. Smoothing the vertices of the polygons
 - 3. Repeat from 1.

Subdivision surfaces

http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface

Input mesh

Subdivision & smoothing

Subdivision Subdivision & smoothing & smoothing

Limit surface

Subdivision schemes

Various schemes available to subdivide and smooth

• All provide certain guarantees for smoothness of limit surface

Loop subdivision

- Subdivision
 - Split each triangle into four

- Smoothing
 - New vertex positions as weighted average of neighbors
 - Different cases

http://graphics.stanford.edu/~mdfisher/subdivision.html

Subdivision surfaces

- Arbitrary mesh of control points
- Arbitrary topology or connectivity
 - Not restricted to quadrilateral topology
 - No global *u*,*v* parameters
- Work by recursively subdividing mesh faces
- Used in particular for character animation
 - One surface rather than collection of patches
 - Can deform geometry without creating cracks

Subdivision surfaces

Next time

• Implementing subdivision surfaces