CMSC427
 Computer Graphics

Matthias Zwicker
Fall 2019

Today

Curves

- NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Piecewise Bézier curves

- Each segment contains four control points, four Bernstein polynomials
- Disadvantage: continuity only if control points are placed accordingly

B-splines

- Same idea, but generalized polynomial blending functions
- Uniform B-splines have only one type of blending function: B-spline (basis) function b_{i}
- B-spline function of degree n is C^{n-1} continuous
- Local support, at each point u exactly $n+1$ functions are non-zero

Uniform B-spline (basis) functions of degree 3

B-splines

- Widely used for curve and surface modeling
- Advantages over Bézier curves
- Built-in continuity
- Local support: curve only affected by nearby control points

Bernstein polynomials, deg. 3

B-spline basis functions, deg. 3

B-splines

- Weighted average of control points \mathbf{p}_{i} using Bspline functions $b_{i}(u)$

$$
\mathbf{x}(u)=\sum b_{i}(u) \mathbf{p}_{i}
$$

- Positive, partition of unity => convex hull property
- Matrix form (note different basis matrix;
caution: last lecture, matrices were
transposed) $\frac{\left.\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & \mathbf{B}_{s e} & 0\end{array}\right]}{}$

$$
\begin{aligned}
& \mathbf{x}(u)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \frac{1}{6}\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2} \\
\mathbf{p}_{i+3}
\end{array}\right] \text { where } t=u-i \text { and } i=\lfloor u\rfloor \\
& \mathbf{T} \underset{\mathbf{B}_{B-\text { spline }}}{ } \quad \mathbf{G}_{B-\text { spline }}
\end{aligned}
$$

Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

- Non-Uniform Rational B-splines
- Interactive explanation
http://www.ibiblio.org/e-notes/Splines/nurbs.html
- NOTE: notation now uses t instead of u for curve parameter

Non-uniform B-splines

Knot vector

- Defines B-spline bases functions
- Uniform B-spline bases and Bernstein polynomials are special cases for specific knot vectors

Advantage

- Can make corners if desired (not possible with uniform b-splines)

Knot vector

- Knot vector is vector of locations $\left\{t_{j}\right\}$ on the t axis
- B-spline function of degree n uses $n+2$ knots
- (Uniform) B-splines use a uniform knot vector $t_{j}=j$

Uniform knot vector

Knot vector

- Nonuniform B-splines use an arbitrary knot vector

Uniform knot vector

Nonuniform knot vector

Nonuniform B-spline bases

Construction using knot vector

- Recursive
- Generate higher order bases step by step from lower order bases
- Can prove
- Partition of unity (implies convex hull property, i.e., curve is always in convex hull

- Built-in continuity

Recursive construction

Nonuniform
knot vector
Nonuniform, linear B-spline bases

Linear weighting function

Multiply \& add
Quadratic B-spline basis

Recursive construction

Recipe

- Input: two neighboring basis functions of degree n
- Multiply basis functions with linear weighting functions (one increasing, one decreasing)
- Add
- Output: one basis function of degree $n+1$

For your reference...

- Recursive definition of non-uniform B-spline basis functions $b_{j, n}$
- Function $b_{j, n}$ has degree n
- Knot vector $\left\{t_{j}\right\}$

$$
\begin{aligned}
b_{j, 0}(t) & :=\left\{\begin{array}{lll}
1 & \text { if } & t_{j} \leq t<t_{j+1} \\
0 & \text { otherwise } & \begin{array}{c}
\text { Basis functions } \\
\text { of degree 0 }
\end{array}
\end{array}\right. \\
b_{j, n}(t) & :=\frac{t-t_{j}}{t_{j+n}-t_{j}} b_{j, n-1}(t)+\frac{t_{j+n+1}-t}{t_{j+n+1}-t_{j+1}} b_{j+1, n-1}(t) .
\end{aligned}
$$

Recursive definition of higher order functions

Special cases

- Uniform B-splines have knot vector $t_{j}=j$
- Cubic Bézier curves $\left\{t_{j}\right\}=[0,0,0,0,1,1,1,1]$
- Can make corners (C ${ }^{1}$ discontinuity)
- Non-uniform knot vectors allow mixing interpolating (e.g. at endpoints) and approximating

4 coinciding knots

Bézier curve as B-spline with nonuniform knot vector

Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

- Non-Uniform Rational B-splines
- Interactive explanation
http://www.ibiblio.org/e-notes/Splines/nurbs.html
- NOTE: notation now uses t instead of u for curve parameter

Rational curves

- Big drawback of all polynomial curves
- Can't make circles, ellipses, nor arcs, nor conic sections
- Rational B-spline

- Add a weight to each control point i
- Control points with homogeneous coordinates w_{i}

$$
\mathbf{x}(u)=\sum_{i} b_{i}(u) \mathbf{p}_{i} \quad \mathbf{x}(u)=\frac{\sum_{i} b_{i}(u) w_{i} \mathbf{p}_{i}}{\sum_{i} b_{i}(u) w_{i}}
$$

Polynomial curve
(b-spline, Bézier)
Rational curve Not polynomial any more!

Rational curves

- Weight causes point to "pull" more (or less)
- With proper points \& weights, can do circles

Polynomial curve

Rational curves

- Can generate curves for conic sections (circles, ellipses, etc.) with appropriate weights

- Need extra user interface to adjust the weights
- Often, hand-drawn curves are unweighted

Summary: NURBS

- Math is more complicated
- (Non-uniform) knot vectors
- Rational functions
- Very widely used for curve and surface modeling
- Supported by virtually all 3D modeling tools
- Open source modeling tool: http://www.blender.org
- Techniques for cutting, inserting, merging, revolving, etc...
- Applets
- http://ibiblio.org/e-notes/Splines/Intro.htm

Today

Curves

- NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Curved surfaces

Curves

- Described by a 1D series of control points
- A function $\mathbf{x}(t)$
- Segments joined together to form a longer curve Surfaces
- Described by a 2D mesh of control points
- Parameters have two dimensions (two dimensional parameter domain)
- A function $\mathbf{x}(u, v)$
- Patches joined together to form a bigger surface

Parametric surface patch

- $\mathbf{x}(u, v): \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3}$ is a point in 3D space for any (u, v) pair
- u,v each range from 0 to 1 (by convention)

2D parameter domain

Parametric surface patch

- $\mathbf{x}(u, v): \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3}$ is a point in 3D space for any (u, v) pair
- u,v each range from 0 to 1 (by convention)

2D parameter domain

- Parametric curves
- For fixed u_{0}, have a v curve $\mathbf{x}\left(u_{0}, v\right)$
- For fixed v_{0}, have a u curve $\mathbf{x}\left(u, v_{0}\right)$
- For any point on the surface, there is one pair of parametric curves that go through point

Tangents

- The tangent to a parametric curve is also tangent to the surface
- For any point on the surface, there are a pair of (parametric) tangent vectors given by the partial derivatives with respect to u and v
- Note: not necessarily perpendicular to each other

Tangents

Notation

- Tangent along u direction

$$
\frac{\partial \mathbf{x}}{\partial u}(u, v) \quad \text { or } \frac{\partial}{\partial u} \mathbf{x}(u, v) \quad \text { or } \mathbf{x}_{u}(u, v)
$$

- Tangent along v direction

$$
\frac{\partial \mathbf{x}}{\partial v}(u, v) \quad \text { or } \frac{\partial}{\partial v} \mathbf{x}(u, v) \quad \text { or } \mathbf{x}_{v}(u, v)
$$

- Tangents are vector valued functions, i.e., vectors!

Surface normal

- Cross product of the two tangent vectors $\mathbf{x}_{u}(u, v) \times \mathbf{x}_{v}(u, v)$
- Order matters (determines normal orientation)
- Usually, want unit normal
- Need to normalize by dividing through length

Today

Curves

- NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Bilinear patch

- Control mesh with four points $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$
- Compute $\mathbf{x}(u, v)$ using a two-step construction

Bilinear patch (step 1)

- For a given value of u, evaluate the linear curves on the two u-direction edges
- Use the same value u for both:

Bilinear patch (step 2)

- Consider that $\mathbf{q}_{0}, \mathbf{q}_{1}$ define a line segment
- Evaluate it using v to get \mathbf{x}

$$
\mathbf{x}=\operatorname{Lerp}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}\right)
$$

Bilinear patch

- Combining the steps, we get the full formula

$$
\mathbf{x}(u, v)=\operatorname{Lerp}\left(v, \operatorname{Lerp}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}\right), \operatorname{Lerp}\left(u, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right)
$$

Bilinear patch

- Try the other order
- Evaluate first in the v direction

$$
\mathbf{r}_{0}=\operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right) \quad \mathbf{r}_{1}=\operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)
$$

Bilinear patch

- Consider that $\mathbf{r}_{\mathbf{0}}, \mathbf{r}_{\mathbf{1}}$ define a line segment
- Evaluate it using u to get \mathbf{x}

$$
\mathbf{x}=\operatorname{Lerp}\left(u, \mathbf{r}_{0}, \mathbf{r}_{1}\right)
$$

Bilinear patch

- The full formula for the v direction first:

$$
\mathbf{x}(u, v)=\operatorname{Lerp}\left(u, \operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right), \operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)\right)
$$

Bilinear patch

- It works out the same either way!

$$
\begin{aligned}
& \mathbf{x}(u, v)=\operatorname{Lerp}\left(v, \operatorname{Lerp}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}\right), \operatorname{Lerp}\left(u, \mathbf{p}_{2}, \mathbf{p}_{3}\right)\right) \\
& \mathbf{x}(u, v)=\operatorname{Lerp}\left(u, \operatorname{Lerp}\left(v, \mathbf{p}_{0}, \mathbf{p}_{2}\right), \operatorname{Lerp}\left(v, \mathbf{p}_{1}, \mathbf{p}_{3}\right)\right)
\end{aligned}
$$

Bilinear patch

- Visualization

Bilinear patches

- Weighted sum of control points

$$
\mathbf{x}(u, v)=(1-u)(1-v) \mathbf{p}_{0}+u(1-v) \mathbf{p}_{1}+(1-u) v \mathbf{p}_{2}+u v \mathbf{p}_{3}
$$

- Bilinear polynomial

$$
\mathbf{x}(u, v)=\left(\mathbf{p}_{0}-\mathbf{p}_{1}-\mathbf{p}_{2}+\mathbf{p}_{3}\right) u v+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u+\left(\mathbf{p}_{2}-\mathbf{p}_{0}\right) v+\mathbf{p}_{0}
$$

- Matrix form exists, too

Properties

- Interpolates the control points
- The boundaries are straight line segments
- If all 4 points of the control mesh are co-planar, the patch is flat
- If the points are not coplanar, get a curved surface
- saddle shape, AKA hyperbolic paraboloid
- The parametric curves are all straight line segments!
- a (doubly) ruled surface: has (two) straight lines through every point

- Not terribly useful as a modeling primitive

Today

Curves

- NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Bicubic Bézier patch

- Grid of 4×4 control points, \mathbf{p}_{0} through \mathbf{p}_{15}
- Four rows of control points define Bézier curves along u $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7} ; \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11} ; \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}$
- Four columns define Bézier curves along v
$\mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathrm{p}_{12} ; \mathbf{p}_{1}, \mathrm{p}_{6}, \mathrm{p}_{9}, \mathrm{p}_{13} ; \mathbf{p}_{2}, \mathrm{p}_{6}, \mathrm{p}_{10}, \mathrm{p}_{14} ; \mathrm{p}_{3}, \mathrm{p}_{7}, \mathrm{p}_{11}, \mathrm{p}_{15}$

Bicubic Bézier patch (step 1)

- Evaluate four u-direction Bézier curves at u
- Get intermediate points $\mathbf{q}_{0} \ldots \mathbf{q}_{3}$

Bicubic Bézier patch (step 2)

- Points $\mathbf{q}_{0} \ldots \mathbf{q}_{3}$ define a Bézier curve
- Evaluate it at v

$$
\mathbf{x}(u, v)=\operatorname{Bez}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right)
$$

Bicubic Bézier patch

- Same result in either order (evaluate u before v or vice versa)

$$
\begin{aligned}
& \mathbf{q}_{0}=\operatorname{Bez}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \quad \mathbf{r}_{0}=\operatorname{Bez}\left(v, \mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12}\right) \\
& \mathbf{q}_{1}=\operatorname{Bez}\left(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7}\right) \quad \mathbf{r}_{1}=\operatorname{Bez}\left(v, \mathbf{p}_{1}, \mathbf{p}_{5}, \mathbf{p}_{9}, \mathbf{p}_{13}\right) \\
& \mathbf{q}_{2}=\operatorname{Bez}\left(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11}\right) \quad \Leftrightarrow \quad \mathbf{r}_{2}=\operatorname{Bez}\left(v, \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14}\right) \\
& \mathbf{q}_{3}=\operatorname{Bez}\left(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}\right) \quad \mathbf{r}_{3}=\operatorname{Bez}\left(v, \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15}\right) \\
& \mathbf{x}(u, v)=\operatorname{Bez}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) \quad \mathbf{x}(u, v)=\operatorname{Bez}\left(u, \mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)
\end{aligned}
$$

Tensor product formulation

- Corresponds to weighted average formulation
- Construct two-dimensional weighting function as product of two one-dimensional functions
- Bernstein polynomials B_{i}, B_{j} as for curves

$$
\mathbf{x}(u, v)=\sum_{i} \sum_{j} \mathbf{p}_{i, j} B_{i}(u) B_{j}(v)
$$

- Same tensor product construction applies to higher order Bézier and NURBS surfaces

Bicubic Bézier patch: properties

- Convex hull: any point on the surface will fall within the convex hull of the control points
- Interpolates 4 corner points
- Approximates other 12 points, which act as "handles"
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges
- The parametric curves are all Bézier curves

Tangents of Bézier patch

- Remember parametric curves $\mathbf{x}\left(u, v_{0}\right), \mathbf{x}\left(u_{0}, v\right)$ where v_{0}, u_{0} is fixed
- Tangents to surface = tangents to parametric curves
- Tangents are partial derivatives of $\mathbf{x}(u, v)$
- Normal is cross product of the tangents

Tangents of Bézier patch

$$
\begin{aligned}
& \mathbf{q}_{\mathbf{0}}=\operatorname{Bez}\left(u, \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right) \quad \mathbf{r}_{0}=\operatorname{Bez}\left(v, \mathbf{p}_{0}, \mathbf{p}_{4}, \mathbf{p}_{8}, \mathbf{p}_{12}\right) \\
& \mathbf{q}_{1}=\operatorname{Bez}\left(u, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}, \mathbf{p}_{7}\right) \\
& \mathbf{r}_{1}=\operatorname{Bez}\left(v, \mathbf{p}_{1}, \mathbf{p}_{5}, \mathbf{p}_{9}, \mathbf{p}_{13}\right) \\
& \mathbf{q}_{2}=\operatorname{Bez}\left(u, \mathbf{p}_{8}, \mathbf{p}_{9}, \mathbf{p}_{10}, \mathbf{p}_{11}\right) \\
& \mathbf{r}_{2}=\operatorname{Bez}\left(v, \mathbf{p}_{2}, \mathbf{p}_{6}, \mathbf{p}_{10}, \mathbf{p}_{14}\right) \\
& \mathbf{q}_{3}=\operatorname{Bez}\left(u, \mathbf{p}_{12}, \mathbf{p}_{13}, \mathbf{p}_{14}, \mathbf{p}_{15}\right) \\
& \mathbf{r}_{3}=\operatorname{Bez}\left(v, \mathbf{p}_{3}, \mathbf{p}_{7}, \mathbf{p}_{11}, \mathbf{p}_{15}\right) \\
& \frac{\partial \mathbf{x}}{\partial v}(u, v)=\operatorname{Bez}\left(v, \mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) \\
& \frac{\partial \mathbf{x}}{\partial u}(u, v)=B e z^{\prime}\left(u, \mathbf{r}_{0}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)
\end{aligned}
$$

Tessellating a Bézier patch

- Uniform tessellation is most straightforward
- Evaluate points on uniform grid of u, v coordinates
- Compute tangents at each point, take cross product to get pervertex normal
- Draw triangle strips (several choices of direction)

- Adaptive tessellation/recursive subdivision
- Potential for "cracks" if patches on opposite sides of an edge divide differently
- Tricky to get right, but can be done

Piecewise Bézier surface

- Lay out grid of adjacent meshes of control points
- For C^{0} continuity, must share points on the edge
- Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points
- So if adjacent meshes share edge points, the patches will line up exactly
- But we have a crease...

Grid of control points

Piecewise Bézier surface

C1 continuity

- Want parametric curves that cross each edge to have C^{1} continuity
- Handles must be equal-and-opposite across edge
C^{0} continuous

C^{1} continuous

Modeling with Bézier patches

- Original Utah teapot specified as Bézier Patches

http://en.wikipedia.org/wiki/Utah teapot

B-spline/NURBS surfaces

- B-spline/NURBS patches instead of Bézier
- For the same reason as using B-spline/NURBS curves
- More flexible (can model spheres)
- Better mathematical properties, continuity

Today

Curves

- NURBS

Surfaces

- Parametric surfaces
- Bilinear patch
- Bicubic Bézier patch
- Advanced surface modeling

Modeling headaches

- Original Teapot is not "watertight" http://en.wikipedia.org/wiki/Utah_teapot
- Spout $\&$ handle intersect with body
- No bottom
- Hole in spout
- Gap between lid and body

Quadrilateral topology

- Surfaces made up of quadrilateral patches
- 4 corners
- 4 (curved) boundaries

Makes it hard to

- join or abut curved pieces
- build surfaces with awkward topology or structure

Trim curves

- Cut away part of surface
- Define "holes" with trim curves in u / v domain
- Tessellation uses trim curve to define surface
- Still hard to fit different parts together

Subdivision surfaces

- Goal
- Create smooth surfaces from small number of control points, like splines
- More flexibility for the topology of the control points (not restricted to quadrilateral grid)
- Idea
- Start with initial coarse polygon mesh
- Create smooth surface recursively by

1. Splitting (subdividing) mesh into finer polygons
2. Smoothing the vertices of the polygons
3. Repeat from 1.

Subdivision surfaces

Input mesh

Subdivision
\& smoothing

Subdivision
\& smoothing

Subdivision
\& smoothing

Limit surface

Subdivision schemes

- Various schemes available to subdivide and smooth

Doo-Sabin
http://en.wikipedia.org/wiki/Doo $\% \mathrm{E} 2 \% 80 \% 93$ Sabin subdivision surface

- All provide certain guarantees for smoothness of limit surface

Loop subdivision

- Subdivision
- Split each triangle into four
- Smoothing

- New vertex positions as weighted average of neighbors
- Different cases

Cases for β :
$\beta=\begin{aligned} & \frac{3}{8 n} n>3 \\ & \frac{3}{16} n=3\end{aligned}$
Number of neighbors n

Subdivision surfaces

- Arbitrary mesh of control points
- Arbitrary topology or connectivity
- Not restricted to quadrilateral topology
- No global u, v parameters
- Work by recursively subdividing mesh faces
- Used in particular for character animation
- One surface rather than collection of patches
- Can deform geometry without creating cracks

Subdivision surfaces

Next time

- Implementing subdivision surfaces

