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Today

Curves

« NURBS

Surfaces

e Parametric surfaces
e Bilinear patch

e Bicubic Bézier patch

e Advanced surface modeling



Piecewise Bezier curves

e Each segment contains four control points, four Bernstein
polynomials

o Disadvantage: continuity only if control points are placed
accordingly

u=

Bernstein
. 3
polynomials




B-splines

e Same idea, but generalized polynomial blending
functions

e Uniform B-splines have only one type of blending
function: B-spline (basis) function b,

e B-spline function of degree » is C*! continuous

e Local support, at each point u exactly n+1
functions are non-zero

01 23 4 5 6 78 9
Uniform B-spline (basis) functions of degree 3



B-splines

e Widely used for curve and surface
modeling

« Advantages over Bézier curves

- Built-in continuity
- Local support: curve only affected by nearby
control points

3 6 9 0 1 23 4 5 6 7 8 9
Bernstein polynomials, deg. 3 B-spline basis functions, deg. 3



B-splines

« Weighted average of control points p; using B-
spline functions b/(u)

x(u) = > bi(u)p;

e Positive, partition of unity => convex hull

property
. . . . [-1 3 -3 1]
e Matrix form (note different basis matrix; | « s o
caution: last lecture, matrices were il
transposed) B,
-1 3 =3 1][p, ]
3 2 1 3 -6 3 0}|p, . .
x(u)—[t t t1}6 30 3 0||p., where t=u—iandi=|u|
14 1 0]|p.;]
T BB—spline GB—'spline




Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational B-spline

« Non-Uniform Rational B-splines

 Interactive explanation

http://www.1biblio.org/e-notes/Splines/nurbs.html

e NOTE: notation now uses ¢ instead of u for
curve parameter



Non-uniform B-splines

Knot vector
e Defines B-spline bases functions

e Uniform B-spline bases and Bernstein
polynomials are special cases for specific
knot vectors

Advantage

o Can make corners if desired (not possible
with uniform b-splines)



Knot vector
» Knot vector is vector of locations {z;} on the ¢ axis

- B-spline function of degree n uses n+2 knots
* (Uniform) B-splines use a uniform knot vector ¢,=/

J

Uniform knot vector

01234087

“Knots j at position 7=

http://ibiblio.org/e-notes/Splines/basis.html




Knot vector

e Nonuniform B-splines use an arbitrary knot
vector

01234067
s

J

Uniform knot vector Nonuniform knot vector

http://ibiblio.org/e-notes/Splines/basis.html
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Nonuniform B-spline bases

Construction using knot vector
e Recursive

o Generate higher order bases step by step
from lower order bases

e Can prove

- Partition of unity (implies convex hull
property, i.e., curve is always in convex hull
Of ContrOl pOintS, https://en.wikipedia.org/wiki/Convexhull)

- Built-in continuity




Recursive construction

Nonuniform, linear
B-spline bases

Linear weighting
function

Multiply & add

Quadratic
B-spline basis

_Nonuniform

=227 knot vector
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- - -
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Recursive construction
Recipe

e Input: two neighboring basis functions of
degree n

- Multiply basis functions with linear weighting
functions (one increasing, one decreasing)

- Add
e Qutput: one basis function of degree n+1



For your reference...

e Recursive definition of non-uniform B-spline
basis functions b,

- Function b, has degree n
- Knot vector {¢;}

bioft) = I ¥ Lpsidioy Basis functions
PO 0 otherwise of degree 0
L —1; Litny1 — 1
j4+n T Ly j4+n4+1 " ty41

Recursive definition of higher order functions

http://en.wikipedia.org/wiki/B-spline 14




Special cases
» Uniform B-splines have knot vector 7=/

« Cubic Bezier curves {¢,}=1[0,0,0,0,1,1,1,1]

- Can make corners (C' discontinuity)

- Non-uniform knot vectors allow mixing
interpolating (e.g. at endpoints) and
approximating

4 coinciding
knots

> U
Bézier curve as B-spline with nonuniform knot vector

http://www.1biblio.org/e-notes/Splines/basis.html
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Generalization: NURBS

http://en.wikipedia.org/wiki/Non-uniform_rational B-spline

« Non-Uniform Rational B-splines

 Interactive explanation

http://www.1biblio.org/e-notes/Splines/nurbs.html

e NOTE: notation now uses ¢ instead of u for
curve parameter
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Rational curves

e Big drawback of all polynomial curves

- Can’t make circles, ellipses, nor arcs, nor conic
sections

e Rational B-spline
- A type Of ratiOnal funCtiOn http://en.wikipedia.org/wiki/Rational function

- Add a weight to each control point i
- Control points with homogeneous coordinates w;,

_ > bi(u)w;p;
> bi(u)w;

x(u) = > bi(u)p; x(u)

Polynomial curve

- Rational
(b-spline, Bezier) ationar Lurve

Not polynomial any more!



Rational curves

e Weight causes point to “pull” more (or
less)

e With proper points & weights, can do
circles

Polynomial
curve

. ull more
Rational | P

curve

pull less
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Rational curves

e Can generate curves for conic sections
(circles, ellipses, etc.) with appropriate

weights

H

http://en.wikipedia.org/wiki/Conic_section

e Need extra user interface to adjust the
weights

e Often, hand-drawn curves are unweighted
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Summary: NURBS

e Math is more complicated

- (Non-uniform) knot vectors
- Rational functions

e Very widely used for curve and surface modeling

- Supported by virtually all 3D modeling tools
- Open source modeling tool: hitp:/www.blender.or

e Techniques for cutting, inserting, merging,
revolving, etc...

e Applets

— http://ibiblio.org/e-notes/Splines/Intro.htm
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Curved surfaces

Curves

e Described by a 1D series of control points

e A function x(7)

e Segments joined together to form a longer curve
Surfaces

e Described by a 2D mesh of control points

e Parameters have two dimensions (two
dimensional parameter domain)

e A function x(u,v)

e Patches joined together to form a bigger surface



Parametric surface patch

* x(u,v): R>—R?3 is a point in 3D space for any (u,v) pair

— u,v each range from 0 to 1 (by convention)

N

2D parameter domain
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Parametric surface patch

* x(u,v): RZ—R3 is a point in 3D space for any (u,v) pair

2D parameter domain
e Parametric curves

- For fixed u,, have a v curve x(u,,v)
- For fixed v,, have a u curve x(u,v))

- For any point on the surface, there is one pair
of parametric curves that go through point
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Tangents

e The tangent to a parametric curve is also tangent to the
surface

e For any point on the surface, there are a pair of (parametric)

tangent vectors given by the partial derivatives with respect
touandv

e Note: not necessarily perpendicular to each other
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Tangents
Notation

e Tangent along u direction

ox 9,
o —(u,v) Or %X(u v)  or xu(u,v)

e Tangent along v direction

ox o,
5 —(u,v) or %X(u v)  or X,(u,v)

e Tangents are vector valued functions, i.e.,
vectors!



Surface normal

e Cross product of the two tangent vectors
Xy, (u, v) X X, (u, v)

e Order matters (determines normal orientation)

o Usually, want unit normal
- Need to normalize by dividing through length
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e Advanced surface modeling



Bilinear patch

e Control mesh with four points p,, p;, P, P3

 Compute x(u,v) using a two-step construction
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Bilinear patch (step 1)

e For a given value of u, evaluate the linear curves on the
two u-direction edges

e Use the same value u for both:

q,=Lerp(u,p,,p;)

q;

P

qy=Lerp(u,py,p1)
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Bilinear patch (step 2)
« Consider that q,, q, define a line segment

e Evaluate it using v to get x

x = Lerp(v,q,,q,)

Py, q;
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Bilinear patch

« Combining the steps, we get the full formula

x(u,v) = Lerp(v, Lerp(u,p,,p,), Lerp(u,p,,p;))

Py, q;
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Bilinear patch
e Try the other order

e Evaluate first in the v direction

r, = Lerp(v,p,,p,) Y, =Lerp(v,p,,p;)
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Bilinear patch

e Consider that r,, r, define a line segment

e Evaluate it using u to get x

X = Lerp(u,ro,rl)
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Bilinear patch

e« The full formula for the v direction first:

x(u,v) = Lerp(u, Lerp(v,py,P, ), Lerp(v, p,, P3))
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Bilinear patch

« It works out the same either way!

X(M,V) — Lerp(v,Lerp(u,po,pl),Lerp(u,pz,p3))
X(u,v) = Lerp(u, Lerp(v,p,,p, ), Lerp(v,p,,p5))




e Visualization
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Bilinear patches
 Weighted sum of control points

x(u,v) = (1—u)(1—v)py+u(l—v)p1+ (1—u)vps+uvps
e Bilinear polynomial

X(u,v) = (Po—P1—P2+P3)uv+(P1—Po)u+(P2—Po)v+Po

e Matrix form exists, too



Properties

» Interpolates the control points
e The boundaries are straight line segments
o |If all 4 points of the control mesh are co-planar, the patch is flat

« |f the points are not coplanar, get a curved surface

- saddle shape, AKA hyperbolic paraboloid
e The parametric curves are all straight line segments!

- a (doubly) ruled surface: has (two) straight lines through every point

p:-
P AP

P-

| f
S
P. P.
} 3 F 3
] L]

Po Po

e Not terribly useful as a modeling primitive
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Bicubic Bézier patch
« Grid of 4x4 control points, p, through p,

e Four rows of control points define Bézier curves along u

P45P5sPesP75 PgsP9sP10sP11> P12:P13sP14P15

e Four columns define Bézier curves along v
P1sPePoP13; PPeP1osP1a: P3sPrsPiisPis
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Bicubic Bézier patch (step 1)
e Evaluate four u-direction Bézier curves at u
e Get intermediate points q, q;
q, = Bez(u,py,p,,P,,P5)
q, = Bez(u,p,,Ps,Ps-P7)

q, = Bez(u,pg,Py,P1o>P11)
q; = Bez(u, P15, P 13, PissPis)

14
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Bicubic Bézier patch (step 2)
e Points q, ... q, define a Bézier curve

e Evaluate it atyv

X(u,v) = Bez(v,q,,9,,9,,9;)
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Bicubic Bézier patch

o Same result in either order (evaluate u before v or vice
versa)

q, = Bez(u,p,,P>P,,>P3) r, = Bez(v,py, P4, PssP1o)
q, = Bez(u,p,,Ps,Pe,P-) I, = Bez(v,p,,Ps,Py>Pi3)
q, = Bez(u,pg,PosP1osP1y) < T, =Bez(v,Py,PesPiosPis)
q, = Bez(t,p 5, P3P 14sPis) r; = Bez(v,p5,P7,P115P5)
X(u,v) = Bez(v,q,,4;,4,,9;) X(u,v) = Bez(u, 1y, 1,1, 1;)
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Tensor product formulation

e Corresponds to weighted average
formulation

e Construct two-dimensional weighting
function as product of two one-dimensional
functions

- Bernstein polynomials B, B; as for curves

X(u,v) = 3> Pi,Bi(u)Bj(v)

e Same tensor product construction applies
to higher order Bézier and NURBS surfaces



Bicubic Bézier patch: properties

Convex hull: any point on the surface will fall within the
convex hull of the control points

Interpolates 4 corner points
Approximates other 12 points, which act as “handles”

The boundaries of the patch are the Bezier curves
defined by the points on the mesh edges

The parametric curves are all Bézier curves
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Tangents of Bézier patch

Remember parametric curves x(u,v,), x(u,v) where v,, u, is
fixed

Tangents to surface = tangents to parametric curves
Tangents are partial derivatives of x(u,v)

Normal is cross product of the tangents
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Tangents of Bézier patch

q, = Bez(u,p,,p,,p,.P5) r, = Bez(v,p,,P,>Ps>P1y)
q, = Bez(u,p,,Ps,Ps.P;) r, = Bez(v,p,,Ps,Po,Py3)
q, = Bez(u,pg, Py, Pig-P11) r, = Bez(v,p,,Ps>PiosP1s)
q; = Bez(u,p,,,P 5P 14>Pi5) r; = Bez(v,p;,P7,P15P;s)
1) 1),
a(u’V) = BeZ,(Vaqoaqpqza(h) a_u(uav) = BeZ'(u,l‘O,l‘l,l‘z,l‘3)
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Tessellating a Bézier patch

o Uniform tessellation is most straightforward

- Evaluate points on uniform grid of u, v coordinates

- Compute tangents at each point, take cross product to get per-

vertex normal
- Draw triangle strips (several choices of direction)

o Adaptive tessellation/recursive subdivision

- Potential for “cracks” if patches on opposite sides of an edge
divide differently
- Tricky to get right, but can be done

49



Piecewise Beézier surface

e Lay out grid of adjacent meshes of control points
o For COcontinuity, must share points on the edge
- Each edge of a Bézier patch is a Bézier curve based

only on the edge mesh points

- So if adjacent meshes share edge points, the patches
will line up exactly

e But we have a crease...

Grid of control points Piecewise Bézier surface
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C' continuity

« Want parametric curves that cross each
edge to have C'! continuity

- Handles must be equal-and-opposite across
edge

CO continuous C' continuous

[http://www.spiritone.com/~english/cyclopedia/patches.html]
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Modeling with Bézier patches

e Original Utah teapot specified as
Bézier Patches

http://en.wikipedia.org/wiki/Utah_teapot
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B-spline/NURBS surfaces

e B-spline/NURBS patches instead of Bezier

e For the same reason as using B-spline/NURBS
curves

- More flexible (can model spheres)
- Better mathematical properties, continuity

A
i @ |\
T 4 VLY
1l 4 \
o . ':f;-'

. ==
4th order NURBS patch

http://de.wikipedia.org/wiki/Non-Uniform Rational B-Spline
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Modeling headaches

e Original Teapot is not “watertight”

http://en.wikipedia.org/wiki/Utah_teapot

- Spout & handle intersect with body
- No bottom

- Hole in spout

- Gap between lid and body
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Quadrilateral topology

e Surfaces made up of quadrilateral patches

- 4 corners
- 4 (curved) boundaries

Makes it hard to
e join or abut curved pieces

 build surfaces with awkward topology or
structure



Trim curves
e Cut away part of surface

e Define “holes” with trim curves in u/v domain
e Tessellation uses trim curve to define surface
o Still hard to fit different parts together

v
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Subdivision surfaces

e Goal

- Create smooth surfaces from small number of
control points, like splines

- More flexibility for the topology of the control
points (not restricted to quadrilateral grid)

e Idea

- Start with initial coarse polygon mesh

- Create smooth surface recursively by
1. Splitting (subdividing) mesh into finer polygons
2. Smoothing the vertices of the polygons
3. Repeat from 1.



Subdivision surfaces

http://en.wikipedia.org/wiki/Catmull%E2%80%93Clark subdivision_surface

Input mesh Subdivision
& smoothing

C

Limit surface

Subdivision  Subdivision
& smoothing & smoothing

59



Subdivision schemes

e Various schemes available to subdivide and
smooth

Doo-Sabin | Loop

http://en.wikipedia.org/wiki/D0o0%E2%80%93Sabin subdivision surface http://en.wikipedia.org/wiki/Loop subdivision surface

o All provide certain guarantees for
smoothness of limit surface
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Loop subdivision

e Subdivision

- Split each triangle into four

e Smoothing

- New vertex positions as weighted average of neighbors

- Different cases

1/8

1/8

http://eraphics.stanford.edu/~mdfisher/subdivision.html

Cases for g

Number of
neighbors n
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Subdivision surfaces

e Arbitrary mesh of control points
e Arbitrary topology or connectivity
- Not restricted to quadrilateral
topology
- No global u,v parameters
e Work by recursively subdividing mesh
faces

e Used in particular for character
animation

- One surface rather than
collection of patches

- Can deform geometry without
creating cracks

Subdivision surfaces
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Next time

e Implementing subdivision surfaces
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