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Lecture 1: 3-d Rotation and Quaternions

Rotation and Orientation in 3-Space: One of the trickier problems 3-d geometry is that of
parameterizing rotations and the orientation of frames. We have introduced the notion of
orientation before (e.g., clockwise or counterclockwise). Here we mean the term in a somewhat
different sense, as a directional position in space. Describing and managing rotations in 3-
space is a somewhat more difficult task (at least conceptually), compared with the relative
simplicity of rotations in the plane.

Why do we care about rotations? Suppose that you are an animation programmer for a
computer graphics studio. The object that you are animating is to be moved smoothly from
one location to another. If the object is in the same directional orientation before and after, we
can just translate from one location to the other. If not, we need to find a way of interpolating
between its two orientations. This usually involves rotations in 3-space. But how should these
rotations be performed so that the animation looks natural? Another example is one in which
the world is stationary, but the camera is moving from one location and viewing situation to
another. Again, how can we move smoothly and naturally from one to the other?

Since smoothly interpolating positions by translation is pretty easy to understand, let us
ignore the issue of position, and just focus on orientations and rotations about the origin.
Let F denote the standard coordinate frame, and consider another orthonormal frame G. We
want some way to represent G concisely, relative to F , and generally to interpolate a motion
from F to G (see Fig. ??).

y

z

x

F

G

u

w

v

Fig. 1: Moving between frames.

Of course, we could just represent F and G by their three orthonormal basis vectors. But
if we were to try to interpolate (linearly) between corresponding pairs of basis vectors, the
intermediate vectors would not necessarily be orthonormal.

We will explore two methods for dealing with rotation, Euler angles and quaternions.

Euler Angles: Leonard Euler was a famous mathematician who lived in the 18th century. He
proved many important theorems in geometry, algebra, and number theory, and he is credited
as the inventor of graph theory. Among his many theorems is one that states that the
composition any number of rotations in three-space can be expressed as a single rotation in
3-space about an appropriately chosen vector. Euler also showed that any rotation in 3-space
could be broken down into exactly three rotations, one about each of the coordinate axes.

Suppose that you are a pilot, such that the x-axis points to your left, the y-axis points ahead
of you, and the z-axis points up (see Fig. ??). Then a rotation about the x-axis, denoted by φ,
is called the pitch. A rotation about the y-axis, denoted by θ, is called roll. A rotation about
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the z-axis, denoted by ψ, is called yaw. Euler’s theorem states that any position in space can
be expressed by composing three such rotations, for an appropriate choice of (φ, θ, ψ).
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Fig. 2: Euler angles: pitch, roll, and yaw.

Shortcomings of Euler angles: There are some problems with Euler angles. One issue is the
fact that this representation depends on the choice of coordinate system. In the plane, a 30
degree rotation is the same, no matter what direction the axes are pointing (as long as they
are orthonormal and right-handed). However, the result of an Euler-angle rotation depends
very much on the choice of the coordinate frame and on the order in which the axes are
named. (Later, we will see that quaternions do provide such an intrinsic system.)

Another problem with Euler angles is called gimbal lock. Whenever we rotate about one axis,
it is possible that we could bring the other two axes into alignment with each other. (This
happens, for example if we rotate x by 90◦.) This causes problems because the other two axes
no longer rotate independently of each other, and we effectively lose one degree of freedom.
Gimbal lock as induced by one ordering of the axes can be avoided by changing the order in
which the rotations are performed. But, this is rather messy, and it would be nice to have a
system that is free of this problem.

Angular Displacement: Let us next consider an approach to rotation that is invariant under
rigid changes of the coordinate system. This will eventually lead us to the concept of a
quaternion.

In contrast to Euler angles, a more intrinsic way to express rotations (about the origin) in
3-space is in terms of two quantities, (θ, u), consisting of an angle θ, and an axis of rotation u.
Let’s consider how we might do this. First consider a vector v to be rotated. Let us assume
that u is of unit length.

Our goal is to describe the rotation of a vector v as a function of θ and u. Let R(v) denote
this rotated vector (see Fig. ??(a)). In order to derive this, we begin by decomposing v as
the sum of its components that are parallel to and orthogonal to u, respectively.

v‖ = (u · v)u v⊥ = v − v‖ = v − (u · v)u.

Note that v‖ is unaffected by the rotation, but v⊥ is rotated to a new position R(v⊥). To
determine this rotated position, we will first construct a vector that is orthogonal to v⊥ lying
in the plane of rotation.

w = u× v⊥ = u× (v − v‖) = (u× v)− (u× v‖) = u× v.
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Fig. 3: Angular displacement.

The last step follows from the fact that u and v‖ are parallel, and so the cross product is zero.
Clearly w is orthogonal to both v⊥ and u. Furthermore, because v⊥ is orthogonal to the unit
vector u, it follows from basic properties of the cross product that w is the same length as
v⊥.

Now, consider the plane spanned by v⊥ and w (see Fig. ??(b)). We have

R(v⊥) = (cos θ)v⊥ + (sin θ)w.

From this and the fact that R(v‖) = v‖, we have

R(v) = R(v‖) +R(v⊥)

= v‖ + (cos θ)v⊥ + (sin θ)w

= (u · v)u+ (cos θ)(v − (u · v)u) + (sin θ)w

= (cos θ)v + (1− cos θ)u(u · v) + (sin θ)(u× v).

In summary, we have the following formula expressing the effect of the rotation of vector v
by angle θ about a rotation axis u:

R(v) = (cos θ)v + (1− cos θ)u(u · v) + (sin θ)(u× v). (1)

This expression is the image of v under the rotation. Notice that, unlike Euler angles, this is
expressed entirely in terms of intrinsic geometric functions (such as dot and cross product),
which do not depend on the choice of coordinate frame. This is a major advantage of this
approach over Euler angles.

Quaternions: We will now delve into a subject, which at first may seem quite unrelated. But
keep the above expression in mind, since it will reappear in most surprising way. This story
begins in the early 19th century, when the great mathematician William Rowan Hamilton
was searching for a generalization of the complex number system.

Imaginary numbers can be thought of as linear combinations of two basis elements, 1 and i,
which satisfy the multiplication rules 12 = 1, i2 = −1 and 1 · i = i · 1 = i. (The interpretation
of i =

√
−1 arises from the second rule.) A complex number a + bi can be thought of as a

vector in 2-dimensional space (a, b). Two important concepts with complex numbers are the
modulus, which is defined to be

√
a2 + b2, and the conjugate, which is defined to be (a,−b). In
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vector terms, the modulus is just the length of the vector and the conjugate is just a vertical
reflection about the x-axis. If a complex number is of modulus 1, then it can be expressed
as (cos θ, sin θ). Thus, there is a connection between complex numbers and 2-dimensional
rotations. Also, observe that, given such a unit modulus complex number, its conjugate is
(cos θ,− sin θ) = (cos(−θ), sin(−θ)). Thus, taking the conjugate is something like negating
the associated angle.

Hamilton was wondering whether this idea could be extended to three dimensional space. You
might reason that, to go from 2D to 3D, you need to replace the single imaginary quantity
i with two imaginary quantities, say i and j. Unfortunately, this this idea does not work.
After years of work, Hamilton came up with the idea of, rather than using two imaginaries,
instead using three imaginaries i, j, and k, which behave as follows:

i2 = j2 = k2 = ijk = −1 ij = k, jk = i, ki = j.

Combining these, it follows that ji = −k, kj = −i and ik = −j. The skew symmetry of
multiplication (e.g., ij = −ji) was actually a major leap, since multiplication systems up to
that time had been commutative.)

Hamilton defined a quaternion to be a generalized complex number of the form

q = q0 + q1i+ q2j + q3k.

Thus, a quaternion can be viewed as a 4-dimensional vector q = (q0, q1, q2, q3). The first
quantity is a scalar, and the last three define a 3-dimensional vector, and so it is a bit more
intuitive to express this as q = (s, u), where s = q0 is a scalar and u = (q1, q2, q3) is a vector
in 3-space. We can define the same concepts as we did with complex numbers:

Conjugate: q∗ = (s,−u).

Modulus: |q| =
√
q20 + q21 + q22 + q23 =

√
s2 + (u · u).

Unit Quaternion: q is said to be a unit quaternion if |q| = 1.

Quaternion multiplication: Consider two quaternions q = (s, u) and p = (t, v):

q = (s, u) = s+ uxi+ uyj + uzk

p = (t, v) = t+ vxi+ vyj + vzk.

If we multiply these two together, we’ll get lots of cross-product terms, such as (uxi)(vyj),
but we can simplify these by using Hamilton’s rules. That is, (uxi)(vyj) = uxvh(ij) = uxvhk.
If we do this, simplify, and collect common terms, we get a very messy formula involving 16
different terms (see the appendix at the end of this lecture). The formula can be expressed
somewhat succinctly in the following form:

qp = (st− (u · v), sv + tu+ u× v).

Note that the above expression is in the quaternion scalar-vector form. The first term st−(u·v)
evaluates to a scalar (recalling that the dot product returns a scalar), and the second term
(sv+ tu+u×v) is a sum of three vectors, and so is a vector. It can be shown that quaternion
multiplication is associative, but not commutative.
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Quaternion multiplication and 3-dimensional rotation: Before considering rotations, we first
define a pure quaternion to be one with a 0 scalar component

p = (0, v).

Any quaternion of nonzero magnitude has a multiplicative inverse, which is defined to be

q−1 =
1

|q|2q
∗.

(To see why this works, try multiplying qq−1, and see what you get.) Observe that if q is a
unit quaternion, then it follows that q−1 = q∗.

As you might have guessed, our objective will be to show that there is a relation between
rotating vectors and multiplying quaternions. In order apply this insight, we need to first
show how to represent rotations as quaternions and 3-dimensional vectors as quaternions.
After a bit of experimentation, the following does the trick:

Vector: Given a vector v = (vx, vy, vz) to be rotated, we will represent it by the pure
quaternion (0, v).

Rotation: To represent a rotation by angle θ about a unit vector u, you might think, we’ll
use the scalar part to represent θ and the vector part to represent u. Unfortunately, this
doesn’t quite work. After a bit of experimentation, you will discover that the right way
to encode this rotation is with the quaternion q = (cos(θ/2), (sin(θ/2))u). (You might
wonder, why we do we use θ/2, rather than θ. The reason, as we shall see below, is that
“this is what works.”)

Rotation Operator: Given a vector v represented by the quaternion p = (0, v) and a
rotation represented by a unit quaternion q, we define the rotation operator to be:

Rq(p) = qpq−1 = qpq∗.

(The last equality results from the fact that q−1 = q∗, if q is a unit quaternion). We
claim that the result of this operation will always be a unit quaternion, and so it is
possible to interpret the result as a vector. In particular, this vector will be the result
of applying the rotation q to v.

Why does this work? Let’s begin by applying the multiplication rule and use the fact that
q−1 = q∗ for a unit quaternion q = (s, u). Given p = (0, v), by expanding the rotation
operator definition and simplifying we obtain:

Rq(p) = (0, (s2 − (u · u))v + 2u(u · v) + 2s(u× v)). (2)

(We leave the derivation as an exercise, but a few nontrivial facts regarding dot products and
cross products need to applied.)

Let us see if we can express this in a more suggestive form. Since q is of unit magnitude, we
can express it as

q =

(
cos

θ

2
,

(
sin

θ

2

)
u

)
, where ‖u‖ = 1.
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Plugging this into the above expression and applying some standard trigonometric identities,
we obtain

Rq(p) =

(
0,

(
cos2

θ

2
− sin2 θ

2

)
v + 2

(
sin2 θ

2

)
u(u · v) + 2 cos

θ

2
sin

θ

2
(u× v)

)
= (0, (cos θ)v + (1− cos θ)u(u · v) + sin θ(u× v)).

Now, recall the rotation displacement equation presented earlier in the lecture. The vector
part of this quaternion is identical, implying that the quaternion rotation operator achieves
the desired rotation.

Example: Consider the 3-d rotation shown in Fig. ??. This rotation can be achieved by performing
a rotation about the y-axis by θ = −90 degrees. Thus θ = −π/2, and u = (0, 1, 0). Thus the
quaternion that encodes this rotation is

q = (cos(θ/2), (sin(θ/2))u) =
(

cos
(
−π

4

)
, sin

(
−π

4

)
(0, 1, 0)

)
=

(
1√
2
,

(
0,− 1√

2
, 0

))
.
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Fig. 4: Rotation example.

Let us consider how the x-unit vector v = (1, 0, 0)T is transformed under this rotation.
To reduce this to a quaternion operation, we encode v as a pure quaternion p = (0, v) =
(0, (1, 0, 0)). We then apply the rotation operator, and so by Eq. (??) we have

Rq(p) = (0, (1/2− 1/2)(1, 0, 0) + 2(0, 1, 0)0 + (2/
√

2)((0,−1/
√

2, 0)× (1, 0, 0)))

= (0, (0, 0, 0) + (0, 0, 0) + (−1)(0, 0,−1))

= (0, (0, 0, 1)).

Thus p is mapped to a point on the z-axis, as expected.

Composing Rotations: We have shown that each unit quaternion corresponds to a rotation in 3-
space. This is an elegant representation, but can we manipulate rotations through quaternion
operations? The answer is yes. In particular, the action of multiplying two unit quaternions
results in another unit quaternion. Furthermore, the resulting product quaternion corresponds
to the composition of the two rotations. In particular, given two unit quaternions q and q′,
a rotation by q followed by a rotation by q′ is equivalent to a single rotation by the product
q′′ = q′q. That is,

Rq′Rq = Rq′′ where q′′ = q′q.
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This follows from the associativity of quaternion multiplication, and the fact that (qq′)−1 =
q−1q′−1, as shown below.

Rq′(Rq(p)) = q′(qpq−1)q′−1 = (q′q)p(q−1q′−1)

= (q′q)p(qq′)−1 = q′′pq′′−1

= Rq′′(p).

Quaternion Summary: In summary, quaternions are a generalization of the concept of complex
numbers, which can be used to represent rotations in three dimensional space. Unlike Euler
angles, quaternions are independent of the coordinate system. Also, they do not suffer from
the problem of gimbal lock. Thus, from a mathematical perspective, they represent a much
cleaner system for representing rotations.

• Quaternions can be used to represent the rotation (orientation) of an object in 3-
dimensional space.

• A rotation by a given angle θ about a unit vector u can be represented by the unit
quaternion q = (cos(θ/2), (sin(θ/2))u).

• A vector v is represented by the pure quaternion p = (0, v).

• The effect of applying this rotation to v is given by Rq(p) = qpq∗. This is a pure
quaternion, and so can be mapped back to a vector by discarding the scalar part.

• Given two rotation quaternions q and q′, the product q′q corresponds to applying q
followed by q′.
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