CMSC427 Fractals

Parametric surfaces

- Typically
 - Smooth
 - Compact

- Andrew Marsh
- From 1st day

More complex patterns and shapes?

Fractals

- Class of shapes characterized by recursive structure
- Self-similarity
 - Parts are similar to each other and the whole

Self-similarity in nature - again

Artificial fractals

• fractal cow???

Dimensionality of curves and surfaces

How many dimensions is a curve?

Dimensionality of curves and surfaces

- How many dimensions is a curve?
- 1
- One variable describes where you are

Surface?

• Number of dimensions?

Surface?

- Number of dimensions?
- 2D
- Embedded in 3D space, but still 2D in (u,v)
- Terminology: manifold

Recursive rewrite process

Koch curve

Recursive rewrite process

Koch curve

Koch curve is limit

Change initiator: Koch snowflake

Koch curve

http://ecademy.agnesscott.edu/~Iriddle/ifs/kcurve/kcurve.htm

Change generator: other curves

Dragon curve

http://www.shodor.org/master/fractal/software/Snowflake.html

Length of Koch curve?

- Initiator length 1
- Generator?

Length of Koch curve?

- Initiator length 1
- Generator?

- G = 4/3
- Stage n: Length = $\left(\frac{4}{3}\right)^n$
- $\lim_{n\to\infty} \left(\frac{4}{3}\right)^n = \infty$

• Is one parameter t enough to describe where you are?

- Is one parameter t enough to describe where you are?
- No takes infinite length to get to any position

- Is one parameter t enough to describe where you are?
- No takes infinite length to get to any position
- Does it take 2 parameters (u,v)?

- Is one parameter t enough to describe where you are?
- No takes infinite length to get to any position
- Does it take 2 parameters (u,v)?
- No we can position anywhere in plane

Fractal dimension

- Dimension of Koch curve is 1.26186
- Between 1 and 2 dimensions

- Log ratio of how length increases as measuring rod decreases
- Measure coast with progressively shorter rods

Measuring generator dimension

•
$$D = \frac{\log N}{\log \frac{1}{s}}$$

- N number of parts
- S scale factor for one part

•
$$N = 3$$

•
$$S = ?$$

Measuring generator dimension

$$D = \frac{\log N}{\log \frac{1}{s}}$$

- N number of parts
- S scale factor for one part

•
$$N = 8$$

$$D = \frac{\log 8}{\log \frac{1}{1/4}} = \frac{\log 8}{\log 4} = \frac{3}{2} = 1.5$$

Measuring generator dimension

$$\bullet D = \frac{\log N}{\log \frac{1}{s}}$$

- N number of parts
- S scale factor for one part

•
$$N = 8$$

$$D = \frac{\log 8}{\log \frac{1}{1/4}} = \frac{\log 8}{\log 4} = \frac{3}{2} = 1.5$$

Measuring generator dimension

•
$$D = \frac{\log N}{\log \frac{1}{s}}$$

- N number of parts
- S scale factor for one part

- N = 3
- S = ?

Measuring generator dimension

•
$$D = \frac{\log N}{\log \frac{1}{s}}$$

- N number of parts
- S scale factor for one part

• N = 6
• S =
$$\frac{\sqrt{2}}{4}$$

$$D = \frac{\log 6}{\log \frac{1}{\sqrt{2}/4}} = \frac{\log 8}{\log 4/\sqrt{2}} = \frac{3}{2} = 1.723$$

Creating fractals

- Recursive generators
- L-systems (Lindermeyer)
- Iterated function systems (IFS)
- Particle systems
- Midpoint displacement

Iterated Function Systems (IFS)

Serpinski gasket

Copy machine version

Reduce and duplicate

Copy machine version

Triangle with 3 scaled and translated versions

$$f_1(\mathbf{x}) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \mathbf{x}$$

scale by r

$$f_2(\mathbf{x}) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$$
scale by r

$$f_3(\mathbf{x}) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.250 \\ 0.433 \end{bmatrix}$$
 scale by r

Barnsley Fern IFS

• http://www.zeuscat.com/andrew/chaos/spleenwort.fern.html

L-systems

- Grammar based technique
 - Represent shape as string of symbol
 - Each symbol has meaning in drawing shape
- Two parts
 - Grammar for generating strings
 - Rendering algorithm for interpreting strings as shapes

L-system turtle for rendering strings

- Turtle graphic commands
 - Turtle has state <angle, x, y>
 - Knows where it is and which direction it is pointed
- F move forward a distance d, draw
- f move forward a distance d, no draw
- + turn left by angle delta
- - turn right by angle delta
- [,] push and pop turtle stack to remember state

Example: drawing F+F+F+F with angle=90 degrees

- Initial state <90,0,0> (default)
- 1) F forward one unit
- 2) + turn right 90 degrees
- 3) F forward one unit
- 4) + right 90
- And so on ...
- Draws box
- Steps:

Example: drawing F[+F]F with angle=90 degrees

- Initial state <90,0,0>
- 1) F forward one unit
- 2) [push state (red)
- 3) + turn right 90 degrees
- 4) F forward one unit
- 5)] pop state
- 6) F— forward one unit
- Steps:

6

L-system for Koch curve

- Initiator
- Replacement rule (no [])
 - F -> F+F--F+F

- Angle 60 degrees
- Distance 1 unit

L-system for Koch curve: generating the string

- Stage 0
 - F
- Stage 1
 - F+F--F+F
- Stage 2
 - F+F--F+F+F+F--F+F--F+F+F+F+F--F+F

L-system for trees/shrubs

$$egin{aligned} \mathbf{a} \\ \mathbf{n=5}, \delta=25.7^{\circ} \\ \mathbf{F} \\ \mathbf{F} \rightarrow \mathbf{F} [+\mathbf{F}] \, \mathbf{F} [-\mathbf{F}] \, \mathbf{F} \end{aligned}$$

$$\begin{array}{l} \mathbf{b} \\ \mathbf{n=5}, \delta=20^{\circ} \\ \mathbf{F} \\ \mathbf{F} \rightarrow \mathbf{F}[+\mathbf{F}] \mathbf{F}[-\mathbf{F}] \mathbf{[F]} \end{array}$$

c
n=4,
$$\delta$$
=22.5°
F
F \rightarrow FF-[-F+F+F]+
[+F-F-F]

 $\begin{array}{l} \mathbf{e} \\ \mathbf{n} = 7, \delta = 25.7^{\circ} \\ \mathbf{X} \\ \mathbf{X} \rightarrow \mathbf{F} \left[+ \mathbf{X} \right] \left[- \mathbf{X} \right] \mathbf{F} \mathbf{X} \\ \mathbf{F} \rightarrow \mathbf{F} \mathbf{F} \end{array}$

f n=5, δ =22.5° X X \rightarrow F-[[X]+X]+F[+FX]-X F \rightarrow FF

Stochastic L-system

- Probability augmented replacement rules
- Choose each rule with given probabilty
- Generates more natural shapes (trees, shrubs)

Mandelbrot and Julia sets

Mandelbrot equation

- Consider complex plane
- C = x + yi

- Iterate the function
- $Z = Z^2 + C$
- With Z0 = 0
- If the sequence Z0, Z1, Z2, remains bounded, Z is in the Mandelbrot set
- If it diverges, not in set when |Z| > 2
- Color by number of iterations to divergence

L-Systems

- Consider complex plane
- C = x + yi

- Iterate the function
- $Z = Z^2 + C$
- With Z0 = 0
- If the sequence Z0, Z1, Z2, remains bounded, Z is in the Mandelbrot set
- If it diverges, not in set when |Z| > 2
- Color by number of iterations to divergence

Evolutionary art

- Todd and Latham
- Rutherford
- Karl Sims

• http://www.karlsims.com

Particle systems

- Dyanamic systems of particles
- Model water, plants, fire, smoke
- https://www.youtube.com/watch?v=heW3vn1hP2E
- https://www.youtube.com/watch?v=HtF2qWKM_go

