CMSC427
Fractals

## Parametric surfaces

- Typically
- Smooth
- Compact
- Andrew Marsh
- From $1^{\text {st }}$ day



## More complex patterns and shapes?



## Fractals

- Class of shapes characterized by recursive structure
- Self-similarity
- Parts are similar to each other and the whole



## Self-similarity in nature - again



## Artificial fractals



- fractal cow???



## Dimensionality of curves and surfaces

- How many dimensions is a curve?



## Dimensionality of curves and surfaces

- How many dimensions is a curve?
- 1
- One variable describes where you are



## Surface?

- Number of dimensions?



## Surface?

- Number of dimensions?
- 2D
- Embedded in 3D space, but still 2D in (u,v)
- Terminology: manifold


Recursive rewrite process

- Koch curve



## Recursive rewrite process

- Koch curve

Stage 0


- Recursive replace lines by generator
- Koch curve is limit


Stage 1

Stage 2


Stage 3


## Change initiator: Koch snowflake

- Koch curve

http://ecademy.agnesscott.edu/~/riddle/ifs/kcurve/kcurve.htm


## Change generator: other curves

- Dragon curve

http://www.shodor.org/master/fractal/software/Snowflake.html


## Length of Koch curve?

- Initiator - length 1
- Generator?


Stage 0

Stage 1

Stage 2


Stage 3


Stage 4

Continue

## Length of Koch curve?

- Initiator - length 1
- Generator?

- $G=4 / 3$
- Stage n: Length $=\left(\frac{4}{3}\right)^{n}$
- $\lim _{n \rightarrow \infty}\left(\frac{4}{3}\right)^{n}=\infty$


Stage 1

Stage 2



Stage 4

Continue.

Infinite length curve in finite space

- Is one parameter t enough to describe where you are?



## Infinite length curve in finite space

- Is one parameter t enough to describe where you are?
- No - takes infinite length to get to any position



## Infinite length curve in finite space

- Is one parameter t enough to describe where you are?
- No - takes infinite length to get to any position
- Does it take 2 parameters ( $u, v$ )?



## Infinite length curve in finite space

- Is one parameter t enough to describe where you are?
- No - takes infinite length to get to any position
- Does it take 2 parameters ( $u, v$ )?
- No - we can position anywhere in plane



## Fractal dimension

- Dimension of Koch curve is 1.26186
- Between 1 and 2 dimensions



## Measuring fractal dimension

- Log ratio of how length increases as measuring rod decreases
- Measure coast with progressively shorter rods


Great Britain

$\mathrm{N}=9$
$\mathrm{r}=1$

$\left\lvert\, \begin{gathered}\mathrm{N}=19 \\ \mathrm{r}=2\end{gathered}\right.$

$\quad \mathrm{N}=48$
$\mathrm{l}=4$

$N=97$
$r=8$

## Measuring fractal dimension

- Measuring generator dimension
- Formula:
- $D=\frac{\log N}{\log _{s}^{\frac{1}{s}}}$
- N - number of parts
- S - scale factor for one part

- $N=$ ?
- $\mathrm{S}=$ ?


## Measuring fractal dimension

- Measuring generator dimension
- Formula:
- $D=\frac{\log N}{\log _{s}^{\frac{1}{s}}}$
- N - number of parts
- S - scale factor for one part

- $N=8$
- $S=1 / 4$

$$
D=\frac{\log 8}{\log \frac{1}{1 / 4}}=\frac{\log 8}{\log 4}=\frac{3}{2}=1.5
$$

## Measuring fractal dimension

- Measuring generator dimension
- Formula:
- $D=\frac{\log N}{\log _{s}^{\frac{1}{s}}}$
- N - number of parts
- S - scale factor for one part

- $N=8$
- $S=1 / 4$

$$
D=\frac{\log 8}{\log \frac{1}{1 / 4}}=\frac{\log 8}{\log 4}=\frac{3}{2}=1.5
$$

## Measuring fractal dimension

- Measuring generator dimension
- Formula:
- $D=\frac{\log N}{\log \frac{1}{s}}$
- N - number of parts
- S - scale factor for one part
- $N=$ ?
- $S=$ ?


## Measuring fractal dimension

- Measuring generator dimension
- Formula:
- $D=\frac{\log N}{\log _{s}^{\frac{1}{2}}}$
- N - number of parts
- S - scale factor for one part

- $N=6$
- $\mathrm{S}=\frac{\sqrt{2}}{4}$

$$
D=\frac{\log 6}{\log \frac{1}{\sqrt{2} / 4}}=\frac{\log 8}{\log 4 / \sqrt{2}}=\frac{3}{2}=1.723
$$

## Creating fractals

- Recursive generators
- L-systems (Lindermeyer)
- Iterated function systems (IFS)
- Particle systems
- Midpoint displacement


## Iterated Function Systems (IFS)

- Serpinski gasket



## Copy machine version

- Reduce and duplicate



## Copy machine version

- Triangle with 3 scaled and translated versions

$$
\begin{aligned}
f_{1}(\mathbf{x})= & {\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] \mathbf{x} } \\
& \text { scale by } r
\end{aligned}
$$

$$
f_{2}(\mathbf{x})=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]
$$

$$
\text { scale by } r
$$

$$
f_{3}(\mathbf{x})=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0.250 \\
0.433
\end{array}\right]
$$

$$
\text { scale by } r
$$

## Barnsley Fern IFS

- http://www.zeuscat.com/andrew/chaos/spleenwort.fern.html



## L-systems

- Grammar based technique
- Represent shape as string of symbol
- Each symbol has meaning in drawing shape
- Two parts
- Grammar for generating strings
- Rendering algorithm for interpreting strings as shapes



## L-system turtle for rendering strings

- Turtle graphic commands
- Turtle has state <angle, $x, y$ >
- Knows where it is and which direction it is pointed
- F - move forward a distance d, draw
- f-move forward a distance d, no draw
-     +         - turn left by angle delta
-     -         - turn right by angle delta
- [,] - push and pop turtle stack to remember state


## Example: drawing $F+F+F+F$ with angle $=90$ degrees

- Initial state <90,0,0> (default)
-1) F - forward one unit
- 2)         +             - turn right 90 degrees
-3) F - forward one unit

-4) + - right 90
- And so on ...
- Draws box
- Steps:






## Example: drawing $F[+F] F$ with angle=90 degrees

- Initial state <90,0,0>
-1) F - forward one unit
- 2) [ - push state (red)
-3) + - turn right 90 degrees
- 4) F - forward one unit
-5) ] - pop state
-6) F-forward one unit
- Steps:



## L-system for Koch curve

- Initiator

F

- Replacement rule (no [])
- F $->$ F+F--F+F
- Angle 60 degrees
- Distance 1 unit



## L-system for Koch curve: generating the string

- Stage 0
- F

Replace F's by rule F -> F+F--F+F
Don't replace +, -, [, ]

- Stage 1
- F+F--F+F
- Stage 2
- $\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}+\mathrm{F}+\mathrm{F}--\mathrm{F}+\mathrm{F}$





## L-system for trees/shrubs



## Stochastic L-system

- Probability augmented replacement rules
- Choose each rule with given probabilty
- Generates more natural shapes (trees, shrubs)



## Mandelbrot and Julia sets



## Mandelbrot equation

- Consider complex plane
- $C=x+y i$
- Iterate the function
- $Z=Z^{2}+C$

- With Z0 $=0$
- If the sequence $\mathrm{Z} 0, \mathrm{Z} 1, \mathrm{Z} 2$, remains bounded, Z is in the Mandelbrot set
- If it diverges, not in set - when $|\mathrm{Z}|>2$
- Color by number of iterations to divergence


## L-Systems

- Consider complex plane
- $C=x+y i$
- Iterate the function
- $Z=Z^{2}+C$

- With $\mathrm{Z} 0=0$
- If the sequence $\mathrm{Z} 0, \mathrm{Z} 1, \mathrm{Z} 2$, remains bounded, Z is in the Mandelbrot set
- If it diverges, not in set - when $|\mathrm{Z}|>2$
- Color by number of iterations to divergence


## Evolutionary art

- Todd and Latham
- Rutherford
- Karl Sims
- http://www.karlsims.com



## Particle systems

- Dyanamic systems of particles
- Model water, plants, fire, smoke
- https://www.youtube.com/watch?v=heW3vn1hP2E
- https://www.youtube.com/watch?v=HtF2qWKM go


