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CMSC 425: Lecture 15
Solid Modeling and Mesh Representation

Reading: The material on CSG comes from standard texts on solid modeling. The material on
DCELs comes from Chapter 2 in Computational Geometry: Algorithms and Applications by de
Berg, Cheong, van Kreveld, and Overmars. It is also covered in Chapter 2 of Foundations of
Multidimensional Data Structures by Samet.

Solid Object Representations: A major issue in geometric modeling for game assets is how
to represent solid geometric objects. There are two common ways in which to represent
solids. The first is based on representing an object’s boundary surface, called a boundary
representation or B-rep for short. The second is based on representing the object as boolean
operations applied to solid volumes, called CSG for constructive solid geometry. Both have
their advantages and disadvantages.

Volume Based Representations: One of the most popular volume-based representations is con-
structive solid geometry, or CSG for short. It is widely used in manufacturing applications.
One of the most intuitive ways to describe complex objects, especially those arising in man-
ufacturing applications, is as set of boolean operations (that is, set union, intersection, differ-
ence) applied to a basic set of primitive objects. Manufacturing is an important application of
computer graphics, and manufactured parts made by various milling and drilling operations
can be described most naturally in this way. For example, consider the object shown in Fig. 1.
It can be described as a rectangular block, minus the central rectangular notch, plus (union)
two cylindrical holes.

← −
+

+

Fig. 1: Constructive Solid Geometry.

This idea naturally leads to a tree representation of the object, where the leaves of the tree
are certain primitive object types (rectangular blocks, cylinders, cones, spheres, etc.) and
the internal nodes of the tree are boolean operations, union (X ∪ Y ), intersection (X ∩ Y ),
difference (X − Y ), etc. For example, the object above might be described with a tree of the
following sort. (In Fig. 1 we have used “+” for union.)

The primitive objects stored in the leaf nodes are represented in terms of a primitive object
type (block, cylinder, sphere, etc.) and a set of defining parameters (location, orientation,
lengths, radii, etc.) to define the location and shape of the primitive. The nodes of the tree
are also labeled by transformation matrices, indicating the transformation to be applied to
the object prior to applying the operation. By storing both the transformation and its inverse,
as we traverse the tree we can convert coordinates from the world coordinates (at the root of
the tree) to the appropriate local coordinate systems in each of the subtrees.
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Fig. 2: CSG Tree.

This method is called constructive solid geometry (CSG) and the tree representation is called
a CSG tree. One nice aspect to CSG and this hierarchical representation is that once a
complex part has been designed it can be reused by replicating the tree representing that
object. (Or if we share subtrees we get a representation as a directed acyclic graph or DAG.)

Point membership: CSG trees are examples of unevaluated models. For example, unlike a B-rep
representation in which each individual element of the representation describes a feature that
we know is a part of the object, it is not generally possible to infer the existence of any feature
locally (without looking at the entire tree).

Consider the simple membership question: Given a point P , does P lie inside or outside an
object described by a CSG tree? (For now, let us ignore the degenerate case where it lies on
the boundary.) How would you write an algorithm to solve this problem? The idea is to work
recursively, solving the problem on the subtrees first, and then combining results from the
subtrees to determine the result at the parent. We will write a procedure isMember(Point p,

CSGnode u) where p is the point, and u is pointer to a node in the CSG tree. This procedure
returns True if the object defined by the subtree rooted at u contains p and False otherwise.
If u is an internal node, let u.left and u.right denote the children of u. The algorithm breaks
down into the following cases.

Membership Test for CSG Tree

bool isMember(Point p, CSGnode u) {

if (u.isLeaf)

return u.primitiveMemberTest(p);

else if (u.isUnion)

return isMember(p, u.left) || isMember(p, u.right);

else if (u.isIntersect)

return isMember(p, u.left) && isMember(p, u.right);

else if (u.isDifference)

return isMember(p, u.left) && !isMember(p, u.right);

}

Note that the semantics of operations “||” and “&&” avoid making recursive calls when they
are not needed. For example, in the case of union, if p lies in the right subtree, then the left
subtree need not be searched.

Regularized boolean operations (Optional): There is a tricky issue in dealing with boolean
operations. This goes back to a the same tricky issue that arose in polygon filling, what to
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do about object boundaries. Consider two bodies A and B in Fig. 3(a), where B just touches
one of the vertical walls of A. The intersection A∩B shown in Fig. 3(b) contains a “dangling
piece” that has no width. That is, it is locally two-dimensional.

A B
A ∩B (A ∩B)∗

(a) (b) (c)

2-dimensional

Fig. 3: (a) A and B, (b) A ∩B, (c) A ∩∗ B.

These lower-dimensional parts can result from boolean operations, and are usually unwanted.
For this reason, it is common to modify the notion of a boolean operation to perform a
regularization step. Given a 3-dimensional set A, the regularization of A, denoted A∗, is the
set with all components of dimension less than 3 removed.

In order to define this formally, we must introduce some terms from topology. We can think
of every (reasonable) shape as consisting of three disjoint parts, its interior of a shape A,
denoted int(A), its exterior, denoted ext(A), and its boundary, denoted bnd(A) (or often ∂A).
Define the closure of any set to be the union of itself and its boundary, that is, closure(A) =
A ∪ bnd(A).

Topologically, the regularization A∗ is defined to be the closure of the interior of A

A∗ = closure(int(A)).

Note that int(A) does not contain the dangling element, and then its closure adds back the
boundary.

When performing operations in CSG trees, we assume that the operations are all regularized,
meaning that the resulting objects are regularized after the operation is performed.

A op∗ B = closure(int(A op B)).

where “op” is either ∩, ∪, or −. Eliminating these dangling elements tends to complicate CSG
algorithms, because it requires a bit more care in how geometric intersections are represented.

Meshes and Planar Graphs: As mentioned above, the other common method used for repre-
senting solid objects is based on boundary representations. This is the more common method,
since it fits well with modern graphics systems, which are highly optimized for rendering mesh-
based models. An important question is how to efficiently store such models in order to access
them.

When representing meshes, it is common to distinguish between two facets of the represen-
tations, geometry and topology. The geometric information involves the locations of objects,
such as the coordinates of vertices or the equations of its faces. The topological information
involves how the elements of the mesh are connected together, for example, which pairs of
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facets are connected to each other. This also involves issues such as whether there are holes
or cavities within the model.

Let us present some terminology. Given a point p lying on the mesh, define the neighborhood
about p to be a the points on the mesh that lie within an arbitrarily small distance of p.
A mesh is said to be a 2-manifold if the neighborhood around every point is 2-dimensional
(meaning that if it were a piece of sheet rubber, it could be laid flat in the plane without
overlapping itself. (An example is shown in Fig. 4(a), and examples of non-2-manifolds are
shown in Fig. 4(b). We allow our manifolds to have a boundary, and they may also have
contain holes. Intuitively, you can think of a 2-manifold (with boundary) to be a very thin
rubber sheet, to which someone may have cut out holes.

(a)

not a 2-manifold

(b)

2-manifold

(c) (d)

cell complex not a cell complex

Fig. 4: 2-Manifolds and cell complexes.

In order to represent surfaces, it is common to break them up into small polygonal elements,
which are typically triangles. (Triangles are nice, because are always convex and always
planar. In general, a polygonal in 3-dimensional space that is built using four or more vertices
might fail either of these properties.) When two triangles of the mesh are joined together,
they are joined edge-to-edge (see Fig. 4(c)). This implies, in particular, that a vertex of one
triangle will not appear in the interior of an edge or a face of another triangle (as in Fig. 4(d)).
Such a decomposition is called a cell complex or (when triangles only are involved) a simplicial
complex.

So, when we talk about a surface mesh, we will mean a cell-complex decomposition of a
2-manifold surface. Such a cell complex has the nice feature that it can be represented as a
planar graph, that is, a graph that can be drawn in the plane so that its edges do not cross over
each other. A planar graph subdivides the plane into 0-dimensional vertices, 1-dimensional
edges, and 2-dimensional faces (see Fig. 5(a)). Note that the region that lies outside the
graph is considered to be a face, called the external face. A planar graph in which all faces,
except the external face, have three sides is called a triangulation (see Fig. 5(b)). A useful
fact about planar graph is called Euler’s formula, which states that for any connected planar
graph with v vertices, e edges and f faces, v − e + f = 2 (see Fig. 5(c)).

An useful consequence of Euler’s formula is that planar graphs cannot be too large. While in
general, a graph with v vertices can have O(v2) edges, this is not true for planar graphs, and
in fact there can be at most O(v) edges and faces. To see why, first add edges to the graph
until it becomes triangulated. (This can only increase the numbers of edges and faces.) Since
every edge is incident to two faces and every face is incident to three edges, it follows that
3f = 2e. Thus, f = 2e/3 and e = 3f/2. Substituting these into Euler’s formula, we have
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(a) (b) (c)

Vertex Edge Face Triangulation

v = 5
e = 7
f = 4

v − e + f = 2

Euler’s formula

Fig. 5: Planar graphs and Euler’s formula.

v− e+ 2e/3 = 2, which implies that e = 3(v− 2). Also, v− 3f/2 + f = 2, which implies that
f = 2(v − 2). Since this is the case for triangulated graphs, which have the highest number
of edges and faces for a given number of vertices, so in summary we have

f ≤ 2(v − 2) = O(v) and e ≤ 3(v − 2) = O(v).

The DCEL: The doubly-connected edge list, or DCEL (often pronouced “dee cell”) is a common
data structure for representing cell complexes on 2-manifold surfaces. Although the edges of a
mesh are undirected, it will be convenient to represent each undirected edge by two oppositely
directed edges, called half-edges. An edge directed from u to v is said to have u as its origin
and v as its destination.

For now, let us make the simplifying assumption that the faces of the mesh do not have
holes inside of them. (This assumption can always be satisfied by introducing some number
of bridging edges that join the outer boundary of the face to each of the holes.) With this
assumption, the edges of each face form a single cyclic list.

The DCEL consists of three principal elements, vertices, edges, and faces. For each, we store
the following information:

Vertex: Each vertex stores its spatial coordinates, along with a reference to any single inci-
dent half-edge that has this vertex as its origin, v.incident.

Face: Each face f stores a reference to a single half-edge for which this face is the incident
face, f.incident. (Such a half-edge will be directed counterclockwise about the face.)

Edge: Each half-edge (u, v) is naturally associated with two vertices, its origin u and its
destination v, its twin half-edge (v, u), and its two incident faces, one to the left and
one to the right. To distinguish left from right, let us assume that our mesh has an
outward facing side and an inward side. (This works fine for most meshes that arise in
solid modeling, since they enclose solid bodies. There are exceptions, however, such as
a Mobius strip.) Consider the half-edge (u, v) and imagine that you are standing in the
middle of the edge on the outer side of the mesh with u behind you and v in front. The
face to your left is the half-edge’s left face, and the other is the right face.

Each half-edge e the DCEL stores the following references (see Fig. 6):

• e.org: e’s origin

• e.twin: e’s oppositely directed twin half-edge
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• e.left: the face on e’s left side

• e.next: the next half-edge after e in counterclockwise order about e’s left face

• e.prev: the previous half-edge to e in counterclockwise order about e’s left face (that
is, the next edge in clockwise order).

e
e.twin

e.org
e.next

e.prev

e.left

Fig. 6: Doubly-connected edge list.

You might observe that there are a number of potentially useful references that we did
not store. This is done to save space, because they can all be computed easily from the
above:

• e.dest: e’s destination vertex (e.dest← e.twin.org)

• e.right: the face on e’s right side (e.right← e.twin.left)

• e.onext: the next half-edge that shares e’s origin that comes after e in counterclock-
wise order (e.onext← e.prev.twin)

• e.oprev: the previous half-edge that shares e’s origin that comes before e in counter-
clockwise order (e.oprev← e.twin.next)

Fig. 6 shows two ways of visualizing the DCEL. One is in terms of a collection of doubled-up
directed edges. An alternative way of viewing the data structure that gives a better sense of
the connectivity structure is based on covering each edge with a two element block, one for
e and the other for its twin. The next and prev references define a doubly-linked list around
each of the faces of the mesh. The next references are directed counterclockwise around each
face and the prev references are directed clockwise.

Mesh traversal with DCELs: Suppose that we have a mesh stored and a DCEL, and we want
to enumerate the vertices that lie on some face f in counterclockwise order about the face.
We could start at any incident edge e, output its origin e.org, and then go to the next edge in
counterclockwise order about the face e.next. This is presented in the procedure faceVertices

below.

As another example, suppose that we want to enumerate all the vertices that are neighbors
of a given vertex v in clockwise order about this vertex. We could start at any incident edge
e (which by definition has e as its origin), output its destination vertex, and then visit the
next vertex about the origin in clockwise order.
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Enumerate the vertices about a face

faceVerticesCCW(Face f) {

Edge start = f.incident;

Edge e = start;

do {

output e.org;

e = e.next;

} while (e != start);

}

Enumerate the neighbors of a vertex

vertexNeighborsCW(Vertex v) {

Edge start = v.incident;

Edge e = start;

do {

output e.dest; // formally: output e.twin.org

e = e.oprev; // formally: e = e.twin.next

} while (e != start);

}

There are a number of data structures for storing cell complexes that are functionally equiv-
alent to the DCEL (for example, the winged-edge data structure, the half-edge data structure,
and the quad-edge data structure.) These data structures all share the useful property that it
is possible to traverse the edges (and hence indirectly the vertices and faces) that are incident
to any vertex or any face in time proportional to the number of such edges. Furthermore,
this traversal may be done in either clockwise or counterclockwise order. Furthermore, it is
possible to efficiently make changes to the structure (e.g., splitting a face by adding an edge
or collapsing an edge into a vertex). These operations are often useful when dealing with
dynamic meshes. Intuitively, these data structures provide a natural way to generalize the
concept of a doubly linked list to 2-dimensional cell complexes.
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