In-Class Exercise: Extra Credit

Given vertex v in a cell complex of a 2-manifold, the link of v is defined to be the edges that bound the faces that are incident to v, excluding the edges that are incident to v itself. Present a procedure (in pseudocode) that, given a vertex v of a DCEL, returns a list L consisting of the half edges of v 's link ordered counterclockwise about v. For example, in the figure below, a possible output would be $\left\langle e_{1}, \ldots, e_{11}\right\rangle$. (Any cyclic permutation would be correct.)

Solution:

The solution provided below is very short, but a bit tricky. We start with any edge e that is directed out of v. We start following edges around the face lying to e 's left side, adding each to the link. (In the above figure, this will add e_{1} through e_{4} to the list, and the next edge visited will be directed into v.) When we return to v (that is, when the destination of the edge is v) we make a U-turn by setting e to its twin, and resume from there. (In the figure above, the next edge to be visited will be e_{5}.)

```
link(Vertex v) {
    L = new empty-list
    e = e0 = v.incident; // any edge coming out of v
    do {
        e = e.next; // next edge about e's left face
        if (e.dest == v) // returning to v?
            e = e.twin;
        else
            add e to L; // e is an edge of the link
    } while (e != e0);
}
```


