CMSC427 Midterm

Fall 2020

University honor pledge. I pledge on my honor that I have not given nor received any unauthorized assistance on this assignment/examination.

Signature: \quad FOLNTIons

Instructions:

- Partial credit will be given, which is easiest when you write clearly, explain your answers, and show the equations you use.
- You shouldn't need a calculator for calculations - setting up equations will be enough - but may use one if you wish. If you use Octave, Wolfram Alpha, or another site to compute note that - but the exam should not require it.
- The exam is open book and open notes. You may use the internet, but the boundary is that you may not copy answers from websites or others.

Grade

Section	Worth	Received
I. Vectors and operations	$\mathbf{2 5}$	
II. Curves and surfaces	$\mathbf{2 0}$	
III. Transformations	$\mathbf{3 0}$	
IV. Polygons and meshes	$\mathbf{1 5}$	
V. Shading	$\mathbf{1 0}$	
Total	$\mathbf{1 0 0}$	

Section I: Vectors and operations ($25 \mathbf{p t s}$)

1. (5 pts) Without computing the angle explicitly, is the angle between this pair of vectors in the previous problem greater than, less than, or equal to 90 degrees? $v 1=<1,1,0>$ and $v 2=<-2,0,1>$.

$$
\sqrt{ } \cdot v 2=\langle 1,1,0\rangle \cdot\langle-2,0,1\rangle=-2
$$

Since $V 1 \cdot v 2<0$ the angle is greeter then 90° - obtuse.
2. (6 pts) Using vector operations, how would you determine if four points P1, P2, P3 and P4 are coplanar?

Use 3 points to curpute a plane

$$
\begin{array}{ll}
n=\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right) & \text { normal } \\
p=P_{1} & \text { point on plane }
\end{array}
$$

so the puint-normel form.
Now take e $(p \psi-p l) \cdot n$ and if That's Zero P4 is or the plane.
3. (4 pts) Reflection vector. Given this data for a vertex in a mesh, compute the reflection vector R.

Vertex at $(0,0,0)$
Normal < $1,0,0>$
Light at ($1,1,1$)
Camera at $(1,0,1)$

$$
\cdot(C \text { mara }(1,0,1) \text { not } \text { needed })
$$

$$
\begin{aligned}
\bar{n} & =\langle 1,0,0\rangle \\
L & =\langle 1,1,1\rangle \\
R & =2(1, \vec{n}) \vec{n}-L \\
& =2(\langle 1,1,1\rangle \cdot\langle 1,0,0\rangle) n-\langle 1,1,1\rangle \\
& =2(1)\langle 1,0,0\rangle-\langle 1,1,1\rangle \\
& =\langle 2,0,0\rangle-\langle 1,1,1\rangle=\langle 1,-1,1\rangle
\end{aligned}
$$

4. (10 pts) Given a 3D parametric surface $\mathrm{P}(\mathrm{u}, \mathrm{v})=\left\langle\mathrm{R}^{*} \cos (\mathrm{v}), \mathrm{h}^{*} \mathrm{v}+\mathrm{d}, \mathrm{u}^{\wedge} 2\right\rangle$, compute the parametric normal as a function of (u, v).

$$
\begin{aligned}
\frac{\partial P(u, v)}{\partial u} & =\langle 0,0,2 u\rangle \\
\frac{\partial P(u, v)}{\partial v} & =\langle-R \sin v, h, 0\rangle \\
\frac{\partial P}{\partial v} \times \frac{\partial P}{\partial v} & =\left|\begin{array}{ccc}
i & j & k \\
0 & 0 & 2 v \\
-R \sin v & h & 0
\end{array}\right| \\
& =\langle 2 u h,-2 u R \sin v, 0\rangle
\end{aligned}
$$

Section II: Curves and surfaces ($\mathbf{2 0} \mathbf{~ p t s}$)

1. (8 pts) Given the two points $(1,1)$ and $(4,2)$, in the diagram below, give the following:

a) A parametric equation for the line.

$$
\begin{aligned}
P(t) & =t v+\rho_{0} \quad \rho_{0}=(1,1) \rho_{1}=\langle 4,2) \\
& =t\langle 3,1\rangle+(1,1)
\end{aligned}
$$

b) The point-normal form of the same line.

$$
\begin{aligned}
\text { normal } & =r^{\perp}=\langle-1,3\rangle \\
p & =p_{0} \quad \text { point on line }
\end{aligned}
$$

For any point q, q is on line if

$$
(q-p) \cdot n=0
$$

c) What is the distance from $(3,1)$ to the line?

$$
\bar{n}=\frac{v^{2}}{\mid v+}=\frac{\langle-1,3\rangle}{\sqrt{10}}
$$

$$
\begin{aligned}
d & =|(3,1)-(1,1) \cdot \bar{n}| \\
& =\left|\langle 2,0\rangle \cdot \frac{\langle-1,3\rangle}{\sqrt{10}}\right|=\frac{2}{\sqrt{10}}=\frac{\sqrt{2}}{\sqrt{5}}
\end{aligned}
$$

2. (8 pts) Compute the three vectors of the Frenet frame for the parametric curve $p(t)=<3 t, t^{\wedge} 2, \sin t>\quad$ Don't normalize for this exercise.

$$
\begin{aligned}
& P^{\prime}(t)=\langle 3,2 t, \cos t\rangle \\
& P^{\prime \prime}(t)=\langle 0,2,-\sin t\rangle \\
& P^{\prime} \dot{x} p^{\prime \prime}=\left|\begin{array}{ccc}
i & j k \\
3 & 2 t & \cos t \\
0 & 2-\sin t
\end{array}\right|=\langle-2 t \sin t-2 \cos t, \\
& 3 \sin t, 6\rangle
\end{aligned}
$$

Tangent is p^{\prime}, Normal $\rho^{\prime \prime}$, and
Binormal pix"
3. (4 pts) Assume the parametric curve in the previous problem gives the location, and through the Frenet frame, the direction and orientation of the camera. Explain how you would construct the camera matrix from the curve and frame?

We have at $=p(t)$
Assuring the vectors are normalized, then

$$
M l_{C}=\left\lvert\, \begin{array}{ccc}
T & -T \cdot a t \\
N & -N \cdot a t \\
B & -B \cdot a t \\
0 & 0 & 0
\end{array} 1\right.
$$

Section III: Transformations ($25 \mathbf{p t s}$)

1. (7 pts) Show that 2D homogeneous scale and rotation matrices do not commute by giving an example.

$$
\begin{aligned}
& \text { Let } M_{S}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \text { and } M_{R}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \theta=90^{\circ} \\
& \text { Then } M_{S}^{*} M_{R}=\left[\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right] \\
& M_{R} * M_{S}=\left[\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

2. (8 pts) Give matrices to rotate and translate a shape around its center of mass. Assume the center of mass is at (x, y), and the rotation is theta. Since it's in 2D the rotation isn't around a specific axis - we're in the wy plane. Give the matrices, and then give the composition of matrices you'd need to perform the operations in the right order. Do not calculate out the final matrix.
with $M_{(0,1)} N_{T(x, y)}$

$$
N_{T(x, y)}=\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

$$
M=n_{T(x, y)} * M(t) * M_{-T(x, y)}
$$

3. (10 pts) Given the input data below, compute the camera coordinate system wc, ec and rc, and the camera matrix.
at $=(1,0,1)$
$\operatorname{lookAt}=(1,0,0)$
up $=\langle 0,1,0\rangle$

$$
\begin{aligned}
z_{c} & =a t-\text { lookAt }=(1,0,1)-(1,0,0)=\langle 0,0,1\rangle \\
x_{c} & =U p \times z_{c}=\left|\begin{array}{lll}
1 & j & k \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=\langle 1,0,0\rangle \\
x_{c} & =z_{c} \times x_{c}=\left|\begin{array}{ccc}
i & 1 & k \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right|=\langle 0,1,0\rangle \\
d & =\left\langle x_{c} \cdot \text { at, Ye. at, } z_{c} \cdot \text { at }\right\rangle \\
& =\langle 1,0,1\rangle \\
M c & =\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

4. (5 pts) Derive a perspective equation for x from the following diagram, and give the perspective matrix that results. This is the most general case, where the focal point at $\mathrm{Z}=\mathrm{F}$, and the image plane at $\mathrm{Z}=\mathrm{N}$, can vary relative to the origin.

$$
W_{p}=\left[\begin{array}{cccc}
F-N & 0 & 0 & 0 \\
0 & F-N & 0 & 0 \\
0 & 0 & F-N & 0 \\
0 & 0 & 1 & F
\end{array}\right]\left[\begin{array}{l}
x \\
x \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x(F, N) \\
x(F-N) \\
z(F-N) \\
F+z
\end{array}\right]
$$

After hurrogenous normalization
we have

Section IV: Polygons and meshes (15 pts)

1. (5 pts) Given a polygon of n points, what's the brute force algorithm to determine if the points represent a simple polygon, and approximately what the big O efficiency of the algorithm.

If there are n points there are n edges. The bute force algounth tests each par ct edges for intersection, so $o\left(n^{2}\right)$.

$$
\text { More precisely, } \frac{n(n+1)}{2}
$$

2. (5 pts) What's the approximate space efficiency for N vertices of using a triangle strip over using triangles, given that the latter requires you to send each vertices multiple times, once for each triangle?

The reduction is to about $1 / 3$ ot
the original list since ya crit
need to seat a vertex multaplettimes for each triangle it belorss to.
3. (5 pts) An indexed polygon mesh data structure can maintain three lists, vertices, normals and faces. What information does a face have?

A face must list the vertices and
associated normals.

Section V: Shading ($\mathbf{1 0} \mathbf{~ p t s)}$

1. (4 pts) In the basic shading model that we've covered, what's the role of the ambient term? How does it cover up for flaws in how the model approximates lighting in a scene?
The shading model we here used has only direct illumination-lisht direct form source to surface. The ambient form accounts for light bouncing around the scene-slobal Illumination, indirect lighting
2. (6 pts) Given the following data for a scene:

Vertex at $(0,0,0)$

$$
\text { with } \mathrm{kd}=0.80, \mathrm{ks}=0.70, \mathrm{cl}=100, \mathrm{p}=2
$$

Normal $<1,0,0>$
Light at ($1,1,1$)
Camera at $(1,0,1)$

Set up the computation for the specular component with the Phong model. You may assume you have the reflection vector R from Section I, problem 3 .

(Your R vector need not be correct).

$$
=\langle 1,0,1\rangle
$$

adequate for answer

