CMSC427 Piecewise parametric curve exercises

1. If you use a Hermite curve to interpolate through the points of a polyline, to insure C 1 continuity at points you have to be careful not to not use uneven tangents - eg, at point Pk compute the left tangent to $\mathrm{Pk}-1$, and the right tangent to $\mathrm{Pk}+1$. How can you compute input tangents to get a smooth curve?


Use The vector $v=P_{n+1}-P_{n-1}$
as the tangent @ PK
This makes the
tangent the
some for

left
and resht
curves
@

2. Here's the Hermite curve we developed in class. If you carry through the matrix math, what are the coefficients $a$ and $b$ for the cubic and quadratic terms?

$$
\begin{aligned}
& P(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{a} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\boldsymbol{d}
\end{array}\right]=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{P} \mathbf{0} \\
\boldsymbol{P} \mathbf{1} \\
\boldsymbol{T} \mathbf{0} \\
\boldsymbol{T} \mathbf{1}
\end{array}\right] \\
& a=\left[\begin{array}{lll}
2 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
p_{1} \\
T_{0} \\
T_{1}
\end{array}\right] \\
& =2 P_{0}-2 P_{1}+T O+T 1 \\
& b=\left[\begin{array}{llll}
-3 & 3 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
\frac{P_{1}}{10} \\
1
\end{array}\right] \\
& =-3 P_{0}+3 P_{1}-2 T_{0}-T_{1}
\end{aligned}
$$

3. Using the derivation of the Hermite cubic curve as done in the lecture materials, apply that derivation to create a similar parametric form of a Hermite quadratic curve. Given three points P0, P1, P2, calculate a quadratic form of the Hermite curve. Have the curve interpolate through $P 1$ and P2, and use P0-P1 as the tangent for the first endpoint.

What are the blending functions from this solution?
The cure is $P(t)=a t^{2}+b t+c$

$$
f^{\prime}(t)=2 a t+b
$$

To solve for $a_{1} b_{1} \subset w$, th tangent $\in t=0$ civil to $x_{1}-x_{0}$

$$
\begin{aligned}
& f(0)=x_{0}=c \\
& p(1)=x_{1}=a+b+c \\
& p^{\prime}(0)=\Delta x=b=x_{1}-x_{0}
\end{aligned}
$$

Solving for $a$ : $x_{1}=a+b+c$

$$
=a+\left(x_{1}-x_{0}\right)+x_{0}
$$

so $a=0$
A straight line tron Po to P1 is the soktom
The equation is $P(t)=\left(x_{1}-x_{0}\right) t+x_{0}$

$$
=t x_{1}+(1-t) x_{0}
$$

Bleating functions are
$t$ and (1-t)
4. Given the Hermite curve we computed in class, what would be the first derivative of the curve? Represent it as below, as the product of a vector of powers of $t$ and a basis matrix.

$$
\begin{aligned}
& P(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{a} \\
\boldsymbol{b} \\
\boldsymbol{c} \\
\boldsymbol{d}
\end{array}\right]=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{P} \mathbf{P} \\
\boldsymbol{P} \mathbf{1} \\
\boldsymbol{T 0} \\
\boldsymbol{T} \mathbf{1}
\end{array}\right] \\
& P^{\prime}(t)=\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
p_{1} \\
T_{0} \\
T_{1}
\end{array}\right]
\end{aligned}
$$

