CMSC427 Fall 2020

Rotations and quaternions

Exercises:

1. Compute the average of the two angle-axis rotations (angle $=0$, vector $=<1,0,0>$) and (angle $=\pi / 4$, vector $=<0,1,1>)$ and renormalize.

Average the angle and the two vectors, and renormalize the resultant vector.

$$
\begin{array}{lll}
\text { Angle averaged }=\pi / 8 & \text { Vectors averaged } & =<0.5,0.5,0.5> \\
& \text { Renormalized } & =<0.5774,0.5774,0.5774>
\end{array}
$$

2. Compute the product of the two quaternions $\mathrm{p}=<2,1,1,0>$ and $\mathrm{q}=<1,0,1,1>$.

$$
\begin{aligned}
\mathrm{p} * \mathrm{q} & =(2+1 * \mathrm{i}+1 * j+0 * \mathrm{k}) *(1+0 * \mathrm{i}+1 * j+1 * \mathrm{k}) \\
& =(2+2 j+2 k)+(i+i j+i k)+(j+j j+j k)=(2+2 j+2 k)+(i+k-j)+(j-1+i) \\
& =1+2 i+2 j+3 k
\end{aligned}
$$

3. Compute the conjugate and length of p . What is the inverse of p ?

$$
\begin{aligned}
& \mathrm{p} *=(2-1 * \mathrm{i}-1 * \mathrm{j}-0 * \mathrm{k}) \\
& |\mathrm{p}|=2 * 2+1 * 1+1 * 1+0 * 0=6
\end{aligned}
$$

4. Work out for yourself that $p p^{*}=a^{2}+b^{2}+c^{2}+d^{2}$

$$
\begin{aligned}
\mathrm{pxq} & =(2+1 * i+1 * j+0 * k) *\left(2-1 * i-1 * j-0^{*} \mathrm{k}\right) \\
& =(2 * 2-2 \mathrm{i}-2 \mathrm{j}-0 \mathrm{k})+\left(2 \mathrm{i}-\mathrm{i}^{*} \mathrm{i}-\mathrm{i}^{*} \mathrm{j}-0^{*} \mathrm{i}^{*} \mathrm{k}\right)+\left(2 \mathrm{j}-\mathrm{j}^{*} \mathrm{i}-\mathrm{j}^{*} \mathrm{j}-0^{*} \mathrm{j}^{*} \mathrm{k}\right)+(0 * \mathrm{q}) / / \text { from } \mathrm{k} \\
& =(4-2 \mathrm{i}-2 \mathrm{j})+(2 \mathrm{i}+1-\mathrm{k})+(2 \mathrm{j}+\mathrm{k}+1) \\
& =4+(-2 \mathrm{i}+2 \mathrm{i})+(-2 \mathrm{j}+2 \mathrm{j})+(-\mathrm{k}+\mathrm{k})+1+1 \\
& =4+1+1+0=6
\end{aligned}
$$

5. Give two unit vectors in the same family as the pure unit quaternion $\mathrm{p}=<0,1,1,0>$
$\mathrm{p}=<0,1,1,0>$. I mean here two vectors in the same direction, so the vector parts are parallel.
$\mathrm{p} 1=<0.577,0.577,0.577,0>\quad \mathrm{p} 2=<0.333,0.6667,0.6667,0>$
6. Work out the rotation of a vector by angle-axis (angle $=\pi / 4$, vector $=<1,0,0>$) using Rodrigues' formula. Let $\theta=\pi / 4$, and $u=<1,0,0\rangle$, then we have
$\left.R(v)=(\cos \pi / 4) v^{+}(1-\cos \pi / 4)<1,0,0>,(<1,0,0>, \cdot v)+(\sin \pi / 4)(<1,0,0\rangle, \times v\right)$.
7. Work out for yourself the multiplication of two quaternions p, q and show it fits the standard formula with dot and cross products.

This a long, brute force development not worth doing on the final -see the end of the Mount lecture notes.
8. What is the quaternion for a rotation by angle theta around the x -axis? The z -axis?

The general formula for a rotation quaternion is $\mathrm{q}=\left(\cos (\theta / 2), \sin (\theta / 2)^{*} \mathrm{u}\right)$
So for an x -axis rotation is $\mathrm{q}=\left(\cos (\theta / 2), \sin (\theta / 2)^{*}<1,0,0>\right)=\cos (\theta / 2)+\sin (\theta / 2) \mathrm{i}$
For a z -axis rotation $\mathrm{q}=\mathrm{q}=\left(\cos (\theta / 2), \sin (\theta / 2)^{*}<0,0,1>\right)=\cos (\theta / 2)+\sin (\theta / 2) \mathrm{k}$
9. Compute the combined rotation from a 45 degree rotation around the x -axis followed by a 90 degree rotation around the z -axis (use \#8 to find the quaternions involved.)

The general formula for a rotation quaternion is $\mathrm{q}=\left(\cos (\theta / 2), \sin (\theta / 2)^{*} u\right)$
q1 $=\left(\cos (45 / 2), \sin (45 / 2)^{*}<1,0,0>\right)=\cos (22.5)+\sin (22.5) \mathrm{i}=\mathrm{a}+\mathrm{bi}$
$\mathrm{q} 2=\left(\cos (90 / 2), \sin (90 / 2)^{*}<0,0,1>\right)=\cos (45)+\sin (45) \mathrm{k}=\mathrm{c}+\mathrm{dk}$
Combined we have $\mathrm{q}=\mathrm{q} 2 * \mathrm{q} 1=(\mathrm{a}+\mathrm{bi}) *(\mathrm{c}+\mathrm{dk})=\mathrm{ac}+\mathrm{adk}+\mathrm{bci}+\mathrm{bdik}=\mathrm{ac}+\mathrm{bci}-\mathrm{bdj}+\mathrm{adk}$

