

i
i

i
i

i
i

i
i

Polygon Mesh Processing

i
i

i
i

i
i

i
i

Polygon Mesh
Processing

Mario Botsch
Leif Kobbelt
Mark Pauly
Pierre Alliez
Bruno Lévy

A K Peters, Ltd.
Natick, Massachusetts

i
i

i
i

i
i

i
i

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

5 Commonwealth Road, Suite 2C

Natick, MA 01760-1526

www.akpeters.com

Copyright c© 2010 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Polygon mesh processing / Mario Botsch ... [et al.].
p. cm.

Includes bibliographical references and index.
ISBN 978-1-56881-426-1 (alk. paper)
1. Geometry–Data processing. 2. Mathematical models. 3. Computer

graphics. 4. Polygons. I. Botsch, Mario.

QA447.P62 2010
516.20285–dc22

2009024954

Printed in India

14 13 12 11 10 10 9 8 7 6 5 4 3 2 1

i
i

i
i

i
i

i
i

CONTENTS

Preface ix

1 Surface Representations 1
1.1 Surface Definition and Properties 3

1.2 Approximation Power . 5

1.3 Parametric Surface Representations 7

1.4 Implicit Surface Representations 13

1.5 Conversion Methods . 15

1.6 Summary and Further Reading 20

2 Mesh Data Structures 21
2.1 Face-Based Data Structures 22

2.2 Edge-Based Data Structures 24

2.3 Halfedge-Based Data Structure 25

2.4 Directed-Edge Data Structure 27

2.5 Summary and Further Reading 28

3 Differential Geometry 29
3.1 Curves . 29

3.2 Surfaces . 31

3.3 Discrete Differential Operators 40

3.4 Summary and Further Reading 48

v

i
i

i
i

i
i

i
i

vi Contents

4 Smoothing 49
4.1 Fourier Transform and Manifold Harmonics 50
4.2 Diffusion Flow . 54
4.3 Fairing . 57
4.4 Summary and Further Reading 61

5 Parameterization 63
5.1 General Goals . 64
5.2 Parameterization of a Triangulated Surface 66
5.3 Barycentric Mapping . 67
5.4 Conformal Mapping . 71
5.5 Methods Based on Distortion Analysis 78
5.6 Summary and Further Reading 82

6 Remeshing 85
6.1 Local Structure . 86
6.2 Global Structure . 87
6.3 Correspondences . 89
6.4 Voronoi Diagrams and Delaunay Triangulations 89
6.5 Triangle-Based Remeshing 92
6.6 Quad-dominant Remeshing 104
6.7 Summary and Further Reading 110

7 Simplification & Approximation 111
7.1 Vertex Clustering . 113
7.2 Incremental Decimation 115
7.3 Shape Approximation . 122
7.4 Out-of-Core Methods . 127
7.5 Summary and Further Reading 130

8 Model Repair 131
8.1 Types of Artifacts: The “Freak Show” 132
8.2 Types of Repair Algorithms 132
8.3 Types of Input . 135
8.4 Surface-Oriented Algorithms 139
8.5 Volumetric Repair Algorithms 144
8.6 Summary and Further Reading 150

9 Deformation 151
9.1 Transformation Propagation 153
9.2 Shell-Based Deformation 155
9.3 Multi-Scale Deformation 157
9.4 Differential Coordinates 164

i
i

i
i

i
i

i
i

Contents vii

9.5 Freeform Deformation . 169
9.6 Radial Basis Functions . 173
9.7 Limitations of Linear Methods 175
9.8 Summary and Further Reading 177

A Numerics 181
A.1 Discretizing Poisson and Laplace Equations 181
A.2 Data Structures for Sparse Matrices 184
A.3 Iterative Solvers . 187
A.4 Sparse Direct Cholesky Solver 193
A.5 Non-Symmetric Indefinite Systems 196
A.6 Comparison . 197

Bibliography 203

Index 226

i
i

i
i

i
i

i
i

PREFACE

Recent innovation in 3D acquisition technology, such as computer tomog-
raphy, magnetic resonance imaging, 3D laser scanning, ultrasound, radar,
and microscopy has enabled highly accurate digitization of complex 3D
objects. Numerous scientific disciplines, such as neuroscience, mechanical
engineering, and astrophysics, rely on the analysis and processing of such
geometric data to understand intricate geometric structures and facilitate
new scientific discoveries. A similar abundance of digital 3D content can be
observed in other fields and industries, including entertainment, cultural
heritage, geo-exploration, architecture, and urban modeling. Concurrent
to these advances in 3D sensing technology, we are experiencing a revolu-
tion in digital manufacturing technology (e.g., in bio-medicine, commodity
product design, and architecture). Novel materials and robotic production
will soon allow the automated creation of complex, fully functional physical
artifacts from a digital design plan.

Between acquisition and production lies the discipline of digital geome-
try processing, a relatively new field of computer science that is concerned
with mathematical models and algorithms for analyzing and manipulat-
ing geometric data. Typical operations include surface reconstruction from
point samples, filtering operations for noise removal, geometry analysis,
shape simplification, and geometric modeling and interactive design. The
abundance of data sources, processing operations, and manufacturing tech-
nologies has resulted in a great wealth of mathematical representations
for geometric data. In this context, polygon meshes have become in-
creasingly popular in recent years and are nowadays used intensively in

ix

i
i

i
i

i
i

i
i

x Preface

many different areas of computer graphics and geometry processing. In

Figure 1. Geometry processing

pipeline. (Image from [Botsch

et al. 06b].)

computer-aided geometric design (CAGD),
triangle and polygon meshes have devel-
oped into a valuable alternative to tra-
ditional spline surfaces since their con-
ceptual simplicity allows for flexible and
highly efficient processing. Moreover, the
consequent use of polygon meshes as a
surface representation avoids error-prone
conversions (e.g., from CAD surfaces to
mesh-based input data of numerical simu-
lations). Besides classical geometric mod-
eling, other major areas frequently employ-
ing polygon meshes are computer games
and movie production. In this context, ge-
ometric models acquired by 3D scanning
techniques typically have to undergo post-
processing and shape optimization tech-
niques before being used in production.

This book discusses the main compo-
nents of the geometry processing pipeline
based on polygon meshes, as illustrated
on the right. For the instructive purposes
of this book, the order in which topics
are described deviates somewhat from the
typical processing order shown in the fig-
ure. We first discuss general concepts of
surface representations in Chapter 1 and
highlight the advantageous properties of
polygon meshes for digital geometry pro-
cessing. Chapter 2 presents efficient data
structures for the implementation of poly-
gon meshes. Chapter 3 introduces fun-
damental concepts of differential geome-
try and gives derivations for their discrete
analogs. These form the basis of algo-
rithms for mesh smoothing (Chapter 4) to
reduce noise in scanned surfaces by gener-
alizing signal processing techniques to ir-
regular polygon meshes. Chapter 5 intro-
duces different methods for computing sur-
face parameterizations that are essential in
many geometry processing tasks. General

i
i

i
i

i
i

i
i

Preface xi

remeshing methods (Chapter 6) allow optimizing the shape of triangle or
polygon elements, which is important for the robustness of numerical simu-
lations and further processing operations. Mesh simplification and approx-
imation techniques (Chapter 7) are commonly required for error-controlled
simplification of highly complex meshes acquired by 3D scanning or auto-
matically generated along the processing pipeline. Chapter 8 describes the
different sources of input data and introduces different types of geometric
and topological degeneracies and inconsistencies. We discuss methods for
removing these artifacts, resulting in defect-free 2-manifold meshes suit-
able for further processing. Chapter 9 presents techniques for intuitive and
interactive shape deformation. Since linear systems appear in many of the
presented mesh processing algorithms, in the appendix we describe efficient
algorithms for solving linear systems and compare several existing libraries.

The idea for this book originated from a series of tutorials and courses
on mesh processing and geometric modeling. In 2006, Mario and Mark
organized and taught a course on polygon mesh processing for industry
practitioners at ETH Zurich. The same year, Leif, as well as Christian
Rössl and Stephan Bischoff, joined them for two full-day tutorials at ACM
SIGGRAPH and Eurographics, respectively. The syllabus was restructured
for courses at SIGGRAPH 2007 and Eurographics 2008, with Pierre and
Bruno replacing Christian and Stephan as presenters.

Our thanks go to Christian Rössl and Stephan Bischoff for their contri-
butions to the early versions of the course, to Henrik Zimmer for help with
the book cover model, and to Silke Kölsch for proofreading the text. We are
immensely grateful to Alice Peters of A K Peters for her encouragement,
advice, and patience, to Sarah Cutler for the excellent editing, and the
entire A K Peters team for their support. This book would not have been
possible without the contributions of our numerous scientific collaborators
and colleagues who helped shape the field of polygon mesh processing. Last
but not least, a big thanks to our students. Their questions and feedback
have been immensely valuable for refining the material of the book, and
their enthusiasm has been the ultimate source of motivation for this project.

i
i

i
i

i
i

i
i

SURFACE

REPRESENTATIONS

Geometry processing is mostly about applying algorithms to geometric
models. If the algorithms represent the action, then the geometry is the
object . In this section we are going to discuss various mathematical repre-
sentations for geometric objects. While these representations can be 2D or
3D, the actual geometry that we are dealing with will always be the 2D
surface of a 3D solid object. As we will see throughout this book, for each
specific problem in geometry processing, we can identify a characteristic
set of operations by which the computation is dominated, and hence we
have to choose an appropriate representation that supports the efficient
implementation of these operations.

From a high-level point of view, there are two major classes of surface
representations: parametric representations and implicit representations.
Parametric surfaces are defined by a vector-valued parameterization func-
tion f : Ω → S that maps a 2D parameter domain Ω ⊂ IR2 to the surface
S = f(Ω) ⊂ IR3. In contrast, an implicit (or volumetric) surface represen-
tation is defined to be the zero set of a scalar-valued function F : IR3 → IR,
i.e., S = {x ∈ IR3 | F (x) = 0}.

For illustration, we can define curves analogously in a parametric fash-
ion by functions f : Ω → C with Ω = [a, b] ⊂ IR. A corresponding implicit
definition is only available for planar curves, i.e., C = {x ∈ IR2 |F (x) = 0}
with F : IR2 → IR. A simple 2D example is the unit circle, which can be

1

i
i

i
i

i
i

i
i

2 1. Surface Representations

defined by the range of a parametric function

f : [0, 2π]→ IR2 , t 7→
(

cos t
sin t

)
,

as well as by the kernel of the implicit function

F : IR2 → IR , (x, y) 7→
√
x2 + y2 − 1.

Similarly, in 3D, a sphere can be represented by a parametric or an implicit
equation (see Section 3.2 for more details).

For more complex shapes, it is often not feasible to find an explicit
formulation with a single function that approximates a given shape with
sufficient accuracy. Hence, the function domain is usually split into smaller
sub-regions and an individual function (surface patch) is defined for each
segment. In this piecewise definition, each function needs to approximate
the given shape only locally, while the global approximation tolerance is
controlled by the size and number of the segments. The mathematical
challenge is to guarantee a consistent transition from each patch to its
neighboring ones. The most common piecewise surface definition in the
parametric case is the segmentation of Ω into triangles or quadrangles.
For implicit surface definitions, the embedding space is usually split into
hexahedral (voxels) or tetrahedral cells.

Both parametric and implicit representations have their particular
strengths and weaknesses, such that for each geometric problem the better
suited one should be chosen. In order to analyze geometric operations and
their requirements on the surface representation, one can classify them into
the following three categories [Kobbelt 03]:

I Evaluation. This entails the sampling of the surface geometry or of
other surface attributes, e.g., the surface normal field. A typical
application example is surface rendering.

I Query. Spatial queries are used to determine whether or not a given
point p ∈ IR3 is inside or outside of the solid bounded by a surface
S, which is a key component for solid modeling operations. Another
typical query is the computation of a point’s distance to a surface.

I Modification. A surface can be modified either in terms of geometry
(surface deformation) or in terms of topology (e.g., when different
parts of the surface are to be merged, cut, or deleted).

We will see that parametric and implicit surface representations have
complementary advantages with respect to these three types of geometric
operations, i.e., the strengths in terms of efficiency or robustness of the one

i
i

i
i

i
i

i
i

1.1. Surface Definition and Properties 3

are often the drawbacks of the other. Hence, for each specific geometric
problem, the more suitable representation should be chosen, which, in turn,
requires efficient conversion routines between the two representations (see
Section 1.5). In Section 1.6 we present an outlook to approaches that
combine both representations in order to design algorithms that are both
efficient and robust.

1.1 Surface Definition and Properties

The common definition of a surface in the context of computer graph-
ics applications is “an orientable continuous 2D manifold embedded in
IR3.” Intuitively, this can be understood as the boundary surface of a
non-degenerate 3D solid where non-degenerate means that the solid does
not have any infinitely thin parts or features such that the surface properly
separates the “interior” and “exterior” of the solid (see Figure 1.1). A sur-
face with boundaries is one that can be extended into a proper manifold
surface by filling the holes.

Figure 1.1. An orientable continuous 2-manifold describes the surface of a non-

degenerate solid. A degenerate/non-manifold vertex (top left), which is fixed in

(top right). A solid with a degenerate/non-manifold edge (bottom left), fixed in

(bottom right).

i
i

i
i

i
i

i
i

4 1. Surface Representations

Figure 1.2. A manifold curve. While the points f(a), f(b), and f(c) are all

in close spatial proximity, only f(a) and f(b) are geodesic neighbors since their

pre-images a and b are neighbors, too. In red: The pre-image of a sufficiently

small δ neighborhood around f(a) in IR2 lies in an ε neighborhood of a in IR.

Since in most applications the raw information about the input surface
is obtained by discrete sampling (i.e., by evaluation if there already exists
a digital representation, or by probing if the input comes from a real ob-
ject), the first step in generating a mathematical surface representation is
to establish continuity. This requires building a consistent neighborhood
relation between the samples. In this context, consistency refers to the
existence of a manifold surface from which the samples are drawn.

While this so-called geodesic neighborhood relation (in contrast to a
spatial neighborhood relation) is difficult to access in implicit representa-
tions, it is quite easy to extract from parametric representations in which
two points on the surface are in geodesic proximity, if the corresponding
pre-images in Ω are close to each other (see Figure 1.2). From this obser-
vation we can derive an alternative characterization of local manifoldness:
a continuous parametric surface is locally manifold at a surface point p if,
for every other surface point q within a sufficiently small sphere of radius δ
around p, the corresponding pre-image is contained in a circle of some ra-
dius ε = O(δ) around the pre-image of p. A more intuitive way to express
this condition is to say that the surface patch that lies within a sufficiently
small δ-sphere around p is topologically equivalent (homeomorphic) to a
disk. Since this second definition does not require a parameterization, it
applies to implicit representations as well.

When generating a continuous surface from a set of discrete samples, we
can either require this surface to interpolate the samples or to approximate
them subject to a certain prescribed tolerance. The latter case is considered
more relevant in practical applications, since samples are usually affected by
position noise and the surface in between the samples is an approximation

i
i

i
i

i
i

i
i

1.2. Approximation Power 5

Figure 1.3. Three examples of fair surfaces, which define a blend between two

cylinders: a membrane surface that minimizes the surface area (left), a thin-plate

surface that minimizes total curvature (center), and a surface that minimizes the

variation of mean curvature (right). (Image taken from [Botsch and Kobbelt 04a].

c©2004 ACM, Inc. Included here by permission.)

anyway. In the next section we will consider the issue of approximation in
more detail.

Except for a well-defined set of sharp feature-curves and -corners, a sur-
face should be smooth in general. Mathematically this is measured by the
number k of continuous derivatives that the functions f or F have. Notice
that this analytical definition of Ck smoothness coincides with the intuitive
geometrical understanding of smoothness only if the partial derivatives of
f or the gradient of F , respectively, do not vanish locally (regularity).

An even stricter requirement for surfaces is fairness, where not only
the continuity of the derivatives but also their magnitude and variation is
considered. There is no general formal definition for the aesthetic concept
of fairness, but a surface is usually considered fair if, e.g., the curvature or
its variation is globally minimized (see Figure 1.3).

In Chapter 3 we will explain how the notion of curvature can be gener-
alized to polygon meshes such that properties like smoothness and fairness
can be applied to meshes as well (see Chapter 4).

1.2 Approximation Power

The exact mathematical modeling of a real object or its boundary is usu-
ally intractable. Hence, a digital surface representation can only be an
approximation in general. As mentioned in the introduction, in order to
simplify the approximation tasks, the domain of the representation is of-
ten split into small segments, and for each segment a function (a patch) is
defined that locally approximates the part of the input that belongs to the
segment.

i
i

i
i

i
i

i
i

6 1. Surface Representations

Since our surface representations are supposed to support efficient pro-
cessing, a natural choice is to restrict functions to the class of polynomi-
als because those can be evaluated by elementary arithmetic operations.
Another justification for the restriction to polynomials is the well-known
Weierstrass theorem that guarantees that each smooth function can be
approximated by a polynomial up to any desired precision [Ross 80].

From calculus we know that a C∞ function g with bounded derivatives
can be approximated over an interval of length h by a polynomial of degree
p such that the approximation error behaves like O(hp+1) (e.g., Taylor’s
theorem or generalized mean value theorem) [Rudin 02]. As a consequence
there are, in principle, two possibilities to improve the accuracy of an ap-
proximation with piecewise polynomials. We can either raise the degree of
the polynomial (p-refinement) or we can reduce the size of the individual
segments and use more segments for the approximation (h-refinement).

In geometry processing applications, h-refinement is usually preferred
over p-refinement since, for a discretely sampled input surface, we can-
not make reasonable assumptions about the boundedness of higher-order
derivatives. Moreover, for piecewise polynomials with higher degree, the
Ck smoothness conditions between segments are sometimes quite difficult
to satisfy. Finally, with today’s computer architectures, processing a large
number of very simple objects is often much more efficient than processing a
smaller number of more complex ones. This is why the somewhat extremal
choice of C0 piecewise linear surface representations, i.e., polygonal meshes,
have become the widely established standard in geometry processing.

While, for parametric surfaces, the O(hp+1) approximation error esti-
mate follows from the mean value theorem in a straightforward manner,
a more careful consideration is necessary for implicit representations. The
generalized mean value theorem states that if a sufficiently smooth function
g over an interval [a, a + h] is interpolated at the abscissae t0, . . . , tp by a
polynomial f of degree p, then the approximation error is bounded by

|f(t)− g(t)| ≤ 1

(p+ 1)!
max f (p+1)

p∏
i=0

(ti − t) = O(hp+1).

For an implicit representation G : IR3 → IR and the corresponding polyno-
mial approximant F , this theorem is still valid; however, here the actual
surface geometry is not defined by the function values G(x), for which this
theorem gives an error estimate, but by the zero level set of G, i.e., by
S = {x ∈ IR3 |G(x) = 0}.

Consider a point x on the implicit surface defined by the approximating
polynomial F , i.e., F (x) = 0 within some voxel. We can find a correspond-
ing point x + d on the implicit surface defined by G, i.e., G(x + d) = 0
by shooting a ray in normal direction to F , i.e., d = d∇F/‖∇F‖. For a

i
i

i
i

i
i

i
i

1.3. Parametric Surface Representations 7

sufficiently small voxel size h, we obtain

|F (x + d)| ≈ |d| ‖∇F (x)‖ ⇒ |d| ≈ |F (x + d)|
‖∇F (x)‖ ,

and from the mean value theorem we get

|F (x + d)−G(x + d)| = |F (x + d)| = O(hp+1),

which yields |d| = O(hp+1) if the magnitude of the gradient ‖∇F‖ is
bounded from below by some ε > 0. In practice one tries to find an
approximating polynomial F with low variation of the gradient magnitude
in order to have a uniform distribution of the approximation error.

1.3 Parametric Surface Representations
Parametric surface representations have the advantage that the function
f : Ω → S enables the reduction of many 3D problems on the surface S
to 2D problems in the parameter domain Ω. For instance, sample points
on the surface can easily be generated by sampling the domain Ω and
evaluating the function f . In a similar manner, geodesic neighborhoods,
i.e., neighborhoods on the surface S, can easily be found by considering
neighboring points in the parameter domain Ω. A simple composition
of f with a deformation function d : IR3 → IR3 results in an efficient
modification of the surface geometry.

On the other hand, generating a parametric surface parameterization f
can be very complex, since the parameter domain Ω has to match the topo-
logical and metric structure of the surface S (Chapter 5). When chang-
ing the shape of S, it might be necessary to update the parameteriza-
tion accordingly in order to reflect the respective changes of the under-
lying geometry: a low-distortion parameterization requires the metrics in
S and Ω to be similar, and hence we have to avoid or adapt to excessive
stretching.

Since the manifold surface S is defined as the range of the parameteriza-
tion f , its topology is equivalent to that of Ω if f is continuous and injective.
This implies that changing the topology of a parametric surface S can be
extremely complicated because not only the parameterization but also the
domain Ω has to be adjusted accordingly. The typical inside/outside or
signed distance queries are, in general, also very expensive on paramet-
ric surfaces since they usually require finding the closest point on S to the
query point (foot point). The same applies to the detection of self-collisions
(i.e., non-injectivities). Hence, topological modification and spatial queries
are the weak points of parametric surfaces.

i
i

i
i

i
i

i
i

8 1. Surface Representations

1.3.1 Spline Surfaces

Tensor-product spline surfaces—often called NURBS—are the standard
surface representation in today’s CAD systems. They are used for con-
structing high-quality surfaces (“class A”) as well as for freeform surface
editing tasks. Spline surfaces can be described conveniently by piecewise
polynomial or rational B-spline basis functions Nn

i (·). For more detail, see
e.g., [Farin 97,Piegl and Tiller 97,Prautzsch et al. 02].

A tensor product spline surface f of bi-degree n is a piecewise polyno-
mial surface that is built by connecting several polynomial patches in a
smooth Cn−1 manner. The rectangular segments are defined by two knot
vectors {u0, . . . , um+n} and {v0, . . . , vk+n} and the overall surface is then
obtained by

f : [un, um]× [vn, vk] → IR3 (1.1)

(u, v) 7→
m∑
i=0

k∑
j=0

cijN
n
i (u)Nn

j (v). (1.2)

The control points cij ∈ IR3 define the so-called control mesh of the spline
surface. Because Nn

i (u) ≥ 0 and
∑
iN

n
i ≡ 1, each surface point f(u, v) is a

convex combination of the control points cij ; i.e., the surface lies within the
convex hull of the control mesh. Due to the minimal support of the basis
functions, each control point has local influence only. These two properties
cause spline surfaces to closely follow the control mesh, thereby providing
a geometrically intuitive metaphor for modeling the shape of surfaces by
adjusting their control points.

A tensor-product surface—as the image of a rectangular domain under
the parameterization f—always represents a rectangular surface patch em-
bedded in IR3. If shapes of more complicated topological structure are to
be represented by spline surfaces, the model has to be decomposed into a
number of (possibly trimmed) tensor-product patches.

As a consequence of these topological constraints, typical CAD models
often consist of a huge collection of surface patches. In order to represent a
high-quality, globally smooth surface, these patches have to be connected in
a smooth manner, leading to additional geometric constraints that have to
be taken care of throughout all surface processing phases. The large number
of surface patches and the resulting topological and geometric constraints
significantly complicate surface construction, and in particular the later
surface modeling tasks.

Another drawback of classical tensor-product spline representations is
that adding more control vertices (refinement) is only possible by split-
ting parameter intervals [ui, ui+1] or [vj , vj+1], which affects an entire
row or column of the control mesh, respectively. Here, the alternative

i
i

i
i

i
i

i
i

1.3. Parametric Surface Representations 9

representation by T-splines can improve the situation since they enable
the local refinement of the control mesh [Sederberg et al. 03].

1.3.2 Subdivision Surfaces

Subdivision surfaces [Zorin et al. 00] can be considered a generalization
of spline surfaces since they are also controlled by a coarse control mesh,
but in contrast to spline surfaces, they can represent surfaces of arbitrary
topology. Subdivision surfaces are generated by repeated refinement of
control meshes: after each topological refinement step, the positions of the
(old and new) vertices are adjusted based on a set of local averaging rules
(see Figure 1.4). A careful analysis of these rules reveals that in the limit
this process results in a surface of provable smoothness [Peters and Reif 08].

As a consequence, subdivision surfaces are restricted neither by topo-
logical (other than manifoldness) nor by geometric constraints as spline
surfaces are, and their inherent hierarchical structure allows for highly
efficient algorithms. However, subdivision techniques are limited to pro-
ducing meshes with so-called semiregular subdivision connectivity, i.e., sur-
face meshes whose triangulations are the result of repeated uniform refine-
ment of a coarse control mesh. As this constraint is not met by arbitrary
meshes, those would have to be remeshed to subdivision connectivity in a

Figure 1.4. Subdivision surfaces are generated by iterative uniform refinement of

a coarse control mesh. (Image taken from [Botsch 05].)

i
i

i
i

i
i

i
i

10 1. Surface Representations

preprocessing step [Eck et al. 95, Lee et al. 98, Kobbelt et al. 99a, Guskov
et al. 00]. But, since this remeshing corresponds to a resampling of the sur-
face, it usually leads to sampling artifacts and loss of information. In order
to avoid the restrictions caused by these connectivity constraints, our goal
is to work on arbitrary triangle meshes, as they provide higher flexibility
and still allow for efficient surface processing.

1.3.3 Triangle Meshes

In many geometry processing algorithms, triangle meshes are considered a
collection of triangles without any particular mathematical structure. In
principle, however, each triangle defines, via its barycentric parameteriza-
tion, a segment of a piecewise linear surface representation.

Every point p in the interior of a triangle [a,b, c] can be written in a
unique fashion as a barycentric combination of the corner points:

p = α a + β b + γ c, (1.3)

with
α+ β + γ = 1, α, β, γ ≥ 0.

By choosing an arbitrary triangle [u,v,w] in the parameter domain, we
can define a linear mapping f : IR2 → IR3 with

αu + β v + γw 7→ α a + β b + γ c. (1.4)

Based on this per-triangle mapping, it is sufficient to define a 2D posi-
tion for each vertex in order to derive a global parameterization for an
entire triangle mesh. In Chapter 5 we will discuss sophisticated meth-
ods for choosing this triangulation in the parameter domain such that
the distortion caused by the piecewise linear mapping from IR2 to IR3 is
minimized.

A triangle mesh M consists of a geometric and a topological compo-
nent, where the latter can be represented by a graph structure (simplicial
complex) with a set of vertices

V = {v1, . . . , vV }

and a set of triangular faces connecting them

F = {f1, . . . , fF } , fi ∈ V × V × V.

However, as we will see in Chapter 2, it is sometimes more efficient to
represent the connectivity of a triangle mesh in terms of the edges of the
respective graph,

E = {e1, . . . , eE} , ei ∈ V × V.

i
i

i
i

i
i

i
i

1.3. Parametric Surface Representations 11

The geometric embedding of a triangle mesh into IR3 is specified by asso-
ciating a 3D position pi to each vertex vi ∈ V:

P = {p1, . . . ,pV } , pi := p(vi) =

 x(vi)
y(vi)
z(vi)

 ∈ IR3,

such that each face f ∈ F actually corresponds to a triangle in 3-space
specified by its three vertex positions. Notice that even if the geometric
embedding is defined by assigning 3D positions to the discrete vertices,
the resulting polygonal surface is still a continuous surface consisting of
triangular pieces with linear parameterization functions (Equation (1.4)).

If a sufficiently smooth surface is approximated by such a piecewise
linear function, the approximation error is of the order O(h2), with h de-
noting the maximum edge length. Due to this quadratic approximation
power, the error is reduced by a factor of about 1/4 when halving the edge
lengths. As this refinement splits each triangle into four sub-triangles, it
increases the number of triangles from F to 4F (see Figure 1.5). Hence,
the approximation error of a triangle mesh is inversely proportional to its
number of faces. The actual magnitude of the approximation error depends
on the second-order terms of the Taylor expansion, i.e., on the curvature
of the underlying smooth surface. From this we can conclude that a suf-
ficient approximation is possible with just a moderate mesh complexity:
the vertex density has to be locally adapted to the surface curvature, such
that flat areas are sparsely sampled, while in curved regions the sampling
density is higher.

As stated before, an important topological quality of a surface is whether
or not it is 2-manifold (short for two-dimensional manifold), which is the
case if, for each point, the surface is locally homeomorphic to a disk (or a
half-disk at boundaries). A triangle mesh is a 2-manifold if it contains nei-
ther non-manifold edges nor non-manifold vertices nor self-intersections. A
non-manifold edge has more than two incident triangles and a non-manifold

Figure 1.5. Each subdivision step halves the edge lengths, increases the number

of faces by a factor of 4, and reduces the approximation error by a factor of

about 1
4
. (Image taken from [Botsch et al. 06b].)

i
i

i
i

i
i

i
i

12 1. Surface Representations

Figure 1.6. Two surface sheets meet at a non-manifold vertex (left). A non-

manifold edge has more than two incident faces (center). The right configuration,

although being non-manifold in the strict sense, can be handled by most data

structures (see Chapter 2). (Image taken from [Botsch 05].)

vertex is generated by pinching two surface sheets together at that vertex
such that the vertex is incident to more than one fan of triangles (see
Figure 1.6). Non-manifold meshes are problematic for most algorithms,
since around non-manifold configurations there exists no well-defined local
geodesic neighborhood.

The famous Euler formula [Coxeter 89] states an interesting relation
between the numbers of vertices V , edges E, and faces F in a closed and
connected (but otherwise unstructured) mesh:

V − E + F = 2 (1− g), (1.5)

where g is the genus of the surface and intuitively counts the number of
handles of an object (see Figure 1.7). Since for most practical applications
the genus is small compared to the number of elements, the righthand side
of Equation (1.5) can be assumed to be negligible. Given this and the fact
that each triangle is bounded by three edges and that each interior manifold
edge is incident to two triangles, one can derive the following interesting
mesh statistics:

Figure 1.7. A sphere of genus 0 (left), a torus of genus 1 (center), and a double-

torus of genus 2 (right). (Image taken from [Botsch et al. 06b].)

i
i

i
i

i
i

i
i

1.4. Implicit Surface Representations 13

I The number of triangles is twice the number of vertices: F ≈ 2V .

I The number of edges is three times the number of vertices: E ≈ 3V .

I The average vertex valence (number of incident edges) is 6.

These relations will become important when estimating the runtime com-
plexity of mesh processing algorithms and when analyzing data structures
or file formats for triangle meshes in Chapter 2.

1.4 Implicit Surface Representations
The basic concept of implicit or volumetric representations for geometric
models is to characterize the whole embedding space of an object by classi-
fying each 3D point to lie either inside, outside, or exactly on the surface S
that bounds a solid object.

There are different representations for implicit functions, such as al-
gebraic surfaces, radial basis functions, or discrete voxelizations. In any
case, the surface S is defined to be the zero-level isosurface of a scalar-
valued function F : IR3 → IR. By convention, negative function values of F
designate points inside the object and positive value points outside the
object. The zero-level isosurface S contains the points exactly on the sur-
face, separating the inside from the outside. An implicit surface does not
have any holes as long as the defining function F is continuous. Moreover,
since an implicit surface is a level set of a potential function, geometric
self-intersections cannot occur. This will later be exploited for mesh repair
(Chapter 8).

As a consequence, geometric inside/outside queries simplify to function
evaluations of F and checking the sign of the resulting value. This makes
implicit representations well suited for constructive solid geometry (CSG),
where complex objects are constructed by Boolean operations applied to
geometric primitives (see Figure 1.8). The different Boolean operations

Figure 1.8. A complex object constructed by Boolean operations. (Image taken

from [Botsch et al. 06b].)

i
i

i
i

i
i

i
i

14 1. Surface Representations

can easily be computed by min and max combinations of the individual
primitives’ implicit functions.

Implicit surfaces can be deformed by decreasing (= growing) or increas-
ing (= shrinking) the function values of F locally. Since the structure of F
(e.g., the voxel grid) is independent from the topology of the level-set sur-
face, we can easily change the surface topology and connectivity.

The implicit function F for a given surface S is not uniquely determined
since, e.g., any scalar multiple λF yields the same zero-set. However, the
most common and most natural representation is the so-called signed dis-
tance function, which maps each 3D point x to its signed distance d(x)
from the surface S: the absolute value |d(x)| measures the distance of x
to S; the sign indicates whether the point x is inside or outside of the solid
bounded by S. In addition to inside/outside queries, this representation
also simplifies distance computations to simple function evaluations, which
can be used to compute and control the global error for mesh processing
algorithms [Wu and Kobbelt 03,Botsch et al. 04] or for collision detection
computations.

On the other hand, generating sample points on an implicit surface,
finding geodesic neighborhoods, and even just rendering the surface is rel-
atively difficult. Moreover, implicit surfaces do not provide any means
of parameterization, which is why it is very difficult to consistently paste
textures onto evolving implicit surfaces.

The most common spatial data structures for implicit surface represen-
tations are regular grids and adaptive data structures (discussed below).

1.4.1 Regular Grids

In order to efficiently process implicit representations, the continuous scalar
field F is typically discretized in some bounding box around the object us-
ing a sufficiently dense grid with nodes gijk ∈ IR3. The most basic represen-
tation, therefore, is a uniform scalar grid of sampled values Fijk := F (gijk),
and function values within voxels are derived by trilinear interpolation, thus
providing quadratic approximation order. However, the memory consump-
tion of this naive data structure grows cubically if the precision is increased
by reducing the edge length of grid voxels.

1.4.2 Adaptive Data Structures

For better memory efficiency, the sampling density is often adapted to
the local geometric significance in the scalar field F : since precise signed
distance values are most important in the vicinity of the surface, a higher
sampling rate has to be used in these regions only. Instead of a uniform
3D grid, a hierarchical octree is then used to store the sampled values
[Samet 94]. The further refinement of an octree cell lying completely inside

i
i

i
i

i
i

i
i

1.5. Conversion Methods 15

Figure 1.9. Different adaptive approximations of a signed distance field with

the same accuracy: three-color quadtree (left, 12040 cells), adaptively sampled

distance fields (ADF) [Frisken et al. 00] (center, 895 cells), and binary space

partitioning (BSP) tree [Wu and Kobbelt 03] (right, 254 cells). (Image taken

from [Wu and Kobbelt 03].)

(black) or outside (white) the object does not improve the approximation
of the surface S. Adaptively refining only those cells that are intersected
by the surface (grey) yields a uniformly refined crust of leaf cells around
the surface and reduces the storage complexity from cubic to quadratic
(see Figure 1.9 (left)). This structure is called three-color octree because it
consists of black, white, and grey cells.

If the local refinement is additionally restricted to those cells where the
trilinear interpolant deviates more than a prescribed tolerance from the
actual distance field, the resulting approximation adapts to the locality of
the surface as well as to its local shape complexity [Frisken et al. 00] (see
Figure 1.9 (center)). Since extreme refinement is only necessary in regions
of high surface curvature, this approach reduces the storage complexity
even further and results in a memory consumption comparable to that of
mesh representations.

Similarly, an adaptive binary space-decomposition with linear (instead
of trilinear) interpolants at the leaves can be used [Wu and Kobbelt 03].
Although the asymptotic complexity as well as the approximation power
are the same, the latter method provides slightly better memory efficiency
at the cost of less compact cells (see Figure 1.9 (right)).

1.5 Conversion Methods

In order to exploit the specific advantages of parametric and implicit sur-
face representations, efficient conversion methods between the two are nec-
essary. However, notice that both kinds of representations are usually finite

i
i

i
i

i
i

i
i

16 1. Surface Representations

samplings (e.g., triangle meshes in the parametric case, uniform/adaptive
grids in the implicit case) and that each conversion corresponds to a re-
sampling step. Hence, special care has to be taken in order to minimize
loss of information during these conversion routines.

1.5.1 Parametric to Implicit

The conversion of a parametric surface representation to an implicit one
amounts to the computation or approximation of its signed distance field.
This can be done very efficiently by voxelization or 3D scan-conversion tech-
niques [Kaufman 87], but the resulting approximation is piecewise constant
only. As a surface’s distance field is, in general, not smooth everywhere, a
piecewise linear or piecewise trilinear approximation seems to be the best
compromise between approximation accuracy and computational efficiency.

Since we focus on polygonal meshes as parametric representation in
this book, the conversion to an implicit representation basically requires
the computation of signed distances to the triangle mesh at the nodes of a
(uniform or adaptive) 3D grid.

Computing the exact distance of a grid node to a given mesh requires to
calculate the distance to the closest triangle, which can be found efficiently
by using spatial data structures, e.g., kd-trees [Samet 94]. Notice that, in
order to compute a signed distance field, one additionally has to determine
whether a grid node lies inside or outside the object. If g denotes the grid
node and c its closest point on the surface, then the sign can be derived from
the angle between the vector g−c and the outer normal n(c): The point g
is defined to be inside if (g−c)Tn(c) < 0. The robustness and reliability of
this test strongly depends on the way the normal n(c) is computed. Using
angle-weighted pseudo-normals for faces, edges, and vertices can be shown
to yield correct results [Bærentzen and Aanæs 05].

Computing the distances on the entire grid can be accelerated by fast
marching methods [Sethian 96]. In a first step, the exact signed distance
values are computed for all grid nodes in the immediate vicinity of the tri-
angle mesh. After this initialization, the fast marching method propagates
distances to the remaining grid nodes with unknown distance value in a
breadth-first manner.

1.5.2 Implicit to Parametric

The conversion from an implicit or volumetric representation to a trian-
gle mesh, the so-called isosurface extraction, occurs for instance in CSG
modeling (see Figure 1.8) and in medical applications, e.g., to extract the
skull surface from a CT head scan. The de-facto standard algorithm for
isosurface extraction is marching cubes [Lorensen and Cline 87]. This grid-
based method samples the implicit function on a regular grid and processes

i
i

i
i

i
i

i
i

1.5. Conversion Methods 17

Figure 1.10. The 15 base configurations of the marching cubes triangulation

table. The other 241 cases can be found by rotation, reflection, or inversion.

(Image taken from [Botsch 05].)

each cell of the discrete distance field separately, thereby allowing for triv-
ial parallelization. For each cell that is intersected by the isosurface S,
a surface patch is generated based on local criteria. The collection of all
these small pieces eventually yields a triangle mesh approximation of the
complete isosurface S.

For each grid edge intersecting the surface S, the marching cubes al-
gorithm computes a sample point that approximates this intersection. In
terms of the scalar field F , this means that the sign of F differs at the
grid edge’s endpoints p1 and p2. Since the trilinear approximation F is
actually linear along the grid edges, the intersection point s can be found
by linear interpolation of the distance values d1 := F (p1) and d2 := F (p2)
at the edge’s endpoints:

s =
|d2|

|d1|+ |d2|
p1 +

|d1|
|d1|+ |d2|

p2.

The resulting sample points of each cell are then connected to a triangulated
surface patch based on a triangulation look-up table holding all possible
configurations of edge intersections (see Figure 1.10). Since the possible
combinatorial configurations are determined by the signs at a cell’s corners,
their number, and hence the size of the table, is 28 = 256.

i
i

i
i

i
i

i
i

18 1. Surface Representations

Notice that a few cell configurations are ambiguous, which might lead
to cracks in the extracted surface. A properly modified look-up table yields
a simple and efficient solution, however, at the price of sacrificing the sym-
metry with regard to sign inversion of F [Montani et al. 94]. The resulting
isosurfaces then are watertight 2-manifolds, which is exploited by many
mesh repair techniques (Chapter 8).

Marching cubes computes intersection points on the edges of a regular
grid only, which causes sharp edges or corners to be “chopped off.” A
faithful reconstruction of sharp features requires additional sample points
within the cells containing them. The Extended Marching Cubes algorithm
[Kobbelt et al. 01] therefore examines the distance function’s gradient ∇F
to detect those cells that contain a sharp feature and to find additional
sample points by intersecting the estimated tangent planes at the edge
intersection points of the voxel.

This principle is depicted in 2D in Figure 1.11, and a 3D example of
the well-known fandisk dataset is shown in Figure 1.12. An example im-
plementation of extended marching cubes based on the OpenMesh data
structure [Botsch et al. 02] can be downloaded from [Kobbelt et al. 05].

The high triangle complexity of the extracted isosurfaces remains a
major problem for marching cubes-like approaches. Instead of decimating
the resulting meshes (see Chapter 7) in a post-process, the algorithm can
be modified to work directly on adaptively refined octrees [Westermann
et al. 99].

Ju et al. [Ju et al. 02] proposed the dual contouring approach, which
also extracts meshes from adaptive octrees directly. In contrast to march-
ing cubes, dual contouring generates the vertices in the interior of the
voxels and constructs a polygon for every voxel edge that intersects the
isosurface. A drawback, however, is that the dual approach yields non-
manifold meshes for cell configurations containing multiple surface sheets.
This can be fixed by the technique described in [Bischoff et al. 05]. An-
other promising approach is the cubical marching squares algorithm [Ho
et al. 05], which also provides adaptive and feature-sensitive isosurface
extraction.

Finally, an alternative to marching cubes and its variants consists of re-
fining and filtering a 3D Delaunay triangulation [Boissonnat and Oudot 05].
The resulting surface mesh is shown to contain only well-shaped triangles
and faithfully approximates the input surface in terms of both topology and
geometry. An example implementation of a Delaunay refinement approach
can be downloaded from the website of the Computational Geometry Al-
gorithms Library (CGAL) [CGAL 09].

i
i

i
i

i
i

i
i

1.6. Summary and Further Reading 19

Figure 1.11. By using point and normal information on both sides of the sharp

feature, one can find a good estimate for the feature point at the intersection

of the tangent elements. The dashed lines are the result the standard marching

cubes algorithm would produce, and the bold lines are the tangents used in the

extended algorithm. (Image taken from [Botsch 05].)

Figure 1.12. Two reconstructions of the fandisk dataset from a 65 × 65 × 65

sampling of its signed distance field. The standard marching cubes algorithm

leads to severe alias artifacts near sharp features (top), whereas the feature-

sensitive isosurface extraction faithfully reconstructs them (bottom).

i
i

i
i

i
i

i
i

20 1. Surface Representations

1.6 Summary and Further Reading
In this chapter we discussed the advantages and disadvantages of various
mathematical geometry representations. The two major concepts of para-
metric vs. implicit representations have almost complementary strengths
and weaknesses. Parametric surfaces can capture even the finest detail, are
easy to sample, and can be modified intuitively but it is difficult to answer
distance queries and topological changes require a major restructuring. On
the other hand, topological changes and distance queries are easy for im-
plicit surfaces but sampling and shape editing is not straightforward and
the geometric detail resolution depends on the voxel size.

There is the approach of hybrid representations [Bischoff and Kobbelt 05,
Bischoff et al. 05], which merges the two concepts such that the advantages
of both can be combined. For example, an adaptive octree with a set of
triangles stored in each voxel cell supports efficient distance queries as well
as a high detail resolution.

There are many other conversion techniques for further reading. Shen
et al. [Shen et al. 04], e.g., have proposed an approach which converts a
polygon soup into implicit surfaces, which can range from interpolating to
approximating with adjustable smoothness and tolerance.

Besides the approaches described here, which are most relevant for
the techniques presented in this book, there are many other representa-
tions suitable for efficient geometry processing. Radial basis functions
[Light 92] are a prominent example, as are partition of unity implicits
[Ohtake et al. 03] and point-based representations [Pauly 03, Kobbelt and
Botsch 04]—just to mention a few.

i
i

i
i

i
i

i
i

MESH DATA

STRUCTURES

The efficiency and memory consumption of the geometric modeling algo-
rithms presented in this book largely depend on the underlying surface
mesh data structures. This chapter provides a brief overview of the most
common data structures of the wide variety described in the literature.

Choosing a mesh data structure requires taking into account topological
as well as algorithmic considerations:

I Topological requirements. Which kinds of meshes need to be repre-
sented by the data structure? Can we rely on 2-manifold meshes,
or do we need to represent complex edges and singular vertices (see
Section 1.3.3)? Can we restrict ourselves to pure triangle meshes, or
do we need to represent arbitrary polygonal meshes? Are the meshes
regular, semi-regular, irregular (see Chapter 6)? Do we want to build
up a hierarchy of increasingly refined meshes (see Section 1.3.2)?

I Algorithmic requirements. Which kinds of algorithms will be operating
on the data structure? Do we simply want to render the mesh, or
do we need efficient access to local neighborhoods of vertices, edges,
and faces? Will the mesh be static or will its geometry and/or con-
nectivity change over time? Do we need to associate additional data
with vertices, edges, and faces of the mesh? Do we have special re-
quirements in terms of memory consumption (i.e., are the data sets
massive)?

Evaluating a data structure requires measuring various criteria such
as (a) time to construct it during preprocessing, (b) time to answer a

21

i
i

i
i

i
i

i
i

22 2. Mesh Data Structures

specific query, (c) time to perform a specific operation, and (d) memory
consumption and redundancy. While it is not uncommon to design a data
structure specialized to a particular algorithm, there are a number of data
structures common to several algorithms in geometry processing, which we
review in this chapter.

2.1 Face-Based Data Structures
The simplest way to represent a surface mesh consists of storing a set of
individual polygonal faces represented by their vertex positions (the so-
called face-set). For the simpler case of triangular meshes this requires
storing three vertex positions per face (see Figure 2.1 (left)). Using 32-
bit single precision numbers to represent vertex coordinates, this requires
3·3·4 = 36 bytes per triangle. Since due to Euler’s formula (Equation (1.5))
the number of faces F is about twice the number of vertices V , this data
structure consumes on average 72 bytes/vertex. As it does not represent the
mesh connectivity, it is commonly referred to as triangle soup or polygon
soup. Some data exchange formats, such as stereolithography (STL), use
this representation as a common denominator.

However, this representation is not sufficient for most applications: con-
nectivity information cannot be accessed explicitly, and vertices and asso-
ciated data are replicated as many times as the degree of the vertices.
The latter redundancy can be avoided by a so-called indexed face set or
shared-vertex data structure, which stores an array of vertices and encodes
polygons as sets of indices into this array (see Figure 2.1 (right)). For the
case of triangle meshes, and using 32 bits to store vertex coordinates and
face indices, this representation requires 12 bytes for each vertex and for
each triangle, i.e., it consumes on average 12 bytes/vertex + 12 bytes/face
= 36 bytes/vertex, which is only half of the face-set structure.

Figure 2.1. Face-set data structure (left) and indexed face-set data structure

(right) for triangle meshes.

i
i

i
i

i
i

i
i

2.1. Face-Based Data Structures 23

Because it is simple and efficient in storage, this representation is used
in many file formats such as OFF, OBJ, and VRML. Similarly, it is rel-
evant for a class of efficient rendering algorithms that assume static data
(OpenGL vertex arrays; see [Shreiner and Khronos OpenGL ARB Working
Group 09]).

However, without additional connectivity information, this data struc-
ture requires expensive searches to recover the local adjacency information
of a vertex and hence is not efficient enough for most algorithms.

This is a minimal set of operations frequently used by most algorithms:

I Access to individual vertices, edges, and faces. This includes the
enumeration of all elements in unspecified order.

I Oriented traversal of the edges of a face, which refers to finding the
next edge (or previous edge) in a face. With additional access to
vertices, for example, the rendering of faces is enabled.

I Access to the incident faces of an edge. Depending on the orientation,
this is either the left or right face in the manifold case. This enables
access to neighboring faces.

I Given an edge, access to its two endpoint vertices.

I Given a vertex, at least one incident face or edge must be accessible.
Then for manifold meshes all other elements in the so-called one-ring
neighborhood of a vertex can be enumerated (i.e., all incident faces
or edges and neighboring vertices).

These operations, which enable both local and global traversal of the mesh,
relate vertices, edges, and faces of the mesh by connectivity information
(and orientation).

We now review several data structures devised for fast traversal of sur-
face meshes.

Figure 2.2. Connectivity information stored in a face-based data structure.

i
i

i
i

i
i

i
i

24 2. Mesh Data Structures

A standard face-based data structure for triangle meshes that includes
connectivity information consists of storing, for each face, references to
its three vertices as well as references to its neighboring triangles. Each
vertex stores a reference to one of its incident faces in addition to its 3D
position (see Figure 2.2). Based on this connectivity information one can
circulate around a vertex in order to enumerate its one-ring neighborhood,
and perform all other operations listed above. This representation is used,
for instance, for the 2D triangulation data structures of CGAL [CGAL 09]
and consumes only 24 bytes/face + 16 bytes/vertex = 64 bytes/vertex.

However, this data structure also has some drawbacks. First, it does
not explicitly store edges, so, for example, no data can be attached to
edges. Second, enumerating the one-ring of a center vertex requires a large
number of case distinctions (is the center vertex the first, second, or third
vertex of the current triangle?). Finally, if this data structure is to be used
for general polygonal meshes, the data type for faces no longer has constant
size, which makes the implementation more complex and less efficient.

2.2 Edge-Based Data Structures

Data structures for general polygon meshes are logically edge-based, since
the connectivity primarily relates to the mesh edges. Well-known edge-
based data structures are the winged-edge [Baumgart 72] and quad-edge
[Guibas and Stolfi 85] data structures in different variants (see, for instance,
[O’Rourke 94]).

The winged-edge structure is depicted in Figure 2.3. Each edge stores
references to its endpoint vertices, to its two incident faces, and to the next
and previous edge within the left and right face, respectively. Vertices and
faces store a reference to one of its incident edges. In total, this leads to a
memory consumption of 16 bytes/vertex + 32 bytes/edge + 4 bytes/face
= 120 bytes/vertex (since F ≈ 2V and E ≈ 3V due to the Euler formula
in Equation (1.5)).

Figure 2.3. Connectivity information stored in an edge-based data structure.

i
i

i
i

i
i

i
i

2.3. Halfedge-Based Data Structure 25

While an edge-based data structure can represent arbitrary polygonal
meshes, traversing the one-ring still requires case distinctions (is the center
vertex the first or second vertex of an edge?). This issue is finally addressed
by halfedge data structures, as described in the next section.

2.3 Halfedge-Based Data Structure
Halfedge data structures [Mantyla 88, Kettner 99] avoid the case distinc-
tions of edge-based data structures by splitting each (unoriented) edge into
two oriented halfedges, as depicted in Figure 2.4. This data structure is able
to represent arbitrary polygonal meshes that are subsets of orientable (com-
binatorial) 2-manifolds (no complex edges and vertices, see Figure 1.6).

In a halfedge data structure, halfedges are oriented consistently in coun-
terclockwise order around each face and along each boundary. Each bound-
ary may therefore be seen here as an empty face of potentially high degree.
As a by-product, each halfedge designates a unique corner (a non-shared
vertex in a face) and hence attributes such as texture coordinates or nor-
mals can be stored per corner.

For each halfedge we store a reference to

I the vertex it points to,

I its adjacent face (a zero pointer if it is a boundary halfedge),

I the next halfedge of the face or boundary (in counterclockwise direc-
tion),

I the previous halfedge in the face, and

I its opposite (or inverse) halfedge.

Note that the opposite halfedge does not have to be stored if two oppos-
ing halfedges are always grouped in pairs and stored in subsequent array

Figure 2.4. Connectivity information stored in an halfedge-based data structure.

i
i

i
i

i
i

i
i

26 2. Mesh Data Structures

Figure 2.5. The one-ring neighbors of the center vertex can be enumerated by

starting with an outgoing halfedge of the center (left), and then repeatedly ro-

tating clockwise by stepping to the opposite halfedge (center) and next halfedge

(right) until the first halfedge is reached again.

locations halfedges[i] and halfedges[i+1]. The opposite halfedge is then
given implicitly by addition modulo 2. Moreover, we obtain an explicit rep-
resentation for “full” edges as a pair of two halfedges, which is important
when we want to associate data with edges rather than with halfedges. The
reference to the previous halfedge in a face may also be omitted, since it
can be found by stepping along the next halfedge references.

Additionally, each face stores a reference to one of its halfedges, and
each vertex stores an outgoing halfedge. Since the number of halfedges H
is about six times the number of vertices V , the total memory consumption
is 16 bytes/vertex + 20 bytes/halfedge + 4 bytes/face = 144 bytes/veretx.
Not explicitly storing the previous and opposite halfedge reduces the mem-
ory costs to 96 bytes/vertex.

A halfedge data structure enables us to enumerate for each element
(i.e., vertex, edge, halfedge, or face) all of its adjacent elements. In partic-
ular, the one-ring neighborhood of a given vertex can now be enumerated
without inefficient case distinctions, as shown in Figure 2.5 and in the
pseudocode below.

void enumerate_one_ring(VertexRef center , Function func)

{

HalfedgeRef h = outgoing_halfedge(center);

HalfedgeRef hstop = h;

do {

VertexRef v = vertex(h);

func(v); // process vertex v

h = next_halfedge(opposite_halfedge(h));

} while (h != hstop);

}

The implementation of the references (e.g., HalfedgeRef) can be real-
ized, for instance, by using pointers or indices. In practice, index repre-
sentations (see, e.g., Section 2.4) are more flexible even though memory

i
i

i
i

i
i

i
i

2.4. Directed-Edge Data Structure 27

access is indirect: using indices into data arrays enables efficient memory
relocation (and simpler and more compact memory management) and all
attributes of a vertex (edge, halfedge, face) can be identified by the same
index.

2.4 Directed-Edge Data Structure

The directed-edge data structure [Campagna et al. 98] is a memory-efficient
variant of the halfedge data structure that is particularly designed for tri-
angle meshes. It is based on indices that reference each element in the mesh
(vertex, face, or halfedge). The indexing follows certain rules that implicitly
encode some of the connectivity information of the triangle mesh. Instead
of pairing opposite halfedges (as proposed in the previous section), this
data structure groups the three halfedges belonging to a common triangle.

To be more precise, let f be the index of a face. Then, the indices of
its three halfedges are given as

halfedge(f, i) = 3f + i, i = 0, 1, 2.

Now let h be the index of a halfedge. Then, the index of its adjacent face
and its index within that face are simply given by

face(h) = h/3, face index(h) = h mod 3.

The index of h’s next halfedge can be computed as (h + 1) mod 3. The
remaining parts of the connectivity have to be stored explicitly: each vertex
stores its position and the index to an outgoing halfedge; each halfedge
stores the index of its opposite halfedge and the index of its vertex. This
leads to a memory consumption of only 16 bytes/vertex + 8 bytes/halfedge
= 64 bytes/vertex, which is just as much as the simple face-based structure
of Section 2.1, although the directed edges data structure offers much more
functionality.

Directed edges can represent all triangle meshes that can be represented
by a general halfedge data structure. Note, however, that the boundaries
are handled by special (e.g., negative) indices indicating that the opposite
halfedge is invalid. Traversing boundary loops is more expensive, since
there is no atomic operation to enumerate the next boundary edge. For
a general halfedge structure, this can efficiently be accessed by the next

halfedge along the boundary.

Although we have here described the directed-edge data structure for
pure triangle meshes, an adaption to pure quad meshes is straightforward.
However, it is not possible to mix triangles and quads, or to represent

i
i

i
i

i
i

i
i

28 2. Mesh Data Structures

general polygonal meshes. The main benefit of directed edges is its mem-
ory efficiency. Its drawbacks are (a) the restriction to pure triangle/quad
meshes and (b) the lack of an explicit representation of edges.

2.5 Summary and Further Reading
Carefully designed data structures are central for geometry processing al-
gorithms based on polygonal meshes. For most algorithms presented in this
book we recommend halfedge data structures, or directed-edge data struc-
tures as a special case for triangle meshes. While implementing such data
structures may look like a simple programming exercise at a first glance, it
is actually much harder to achieve a good balance between versatility, mem-
ory consumption, and computational efficiency. For those reasons we rec-
ommend using existing implementations that provide a number of generic
features and that have been matured over time. Some of the publicly avail-
able implementations include CGAL,1 OpenMesh,2 and MeshLab.3

For a detailed overview and comparison of different mesh data struc-
tures we refer the reader to [Kettner 99], and to [Floriani and Hui 03,
Floriani and Hui 05] for data structures for non-manifold meshes. For
further reading there are a number of data structures that are special-
ized for a variety of tasks and size of data, such as processing massive
meshes [Isenburg and Lindstrom 05] and view-dependent rendering of mas-
sive meshes [Cignoni et al. 04]. Finally, we point the reader to data struc-
tures that offer a trade-off between low memory consumption and full ac-
cess [Kallmann and Thalmann 01,Aleardi et al. 08].

1CGAL: http://www.cgal.org
2OpenMesh: http://www.openmesh.org
3MeshLab: http://www.meshlab.org

http://www.cgal.org
http://www.openmesh.org
http://www.meshlab.org

i
i

i
i

i
i

i
i

DIFFERENTIAL

GEOMETRY

This chapter introduces some of the fundamental concepts of differential
geometry. We focus on properties that are relevant for the geometry pro-
cessing algorithms described in subsequent chapters and refer to standard
textbooks such as [do Carmo 76] for proofs and an in-depth discussion. Dif-
ferential geometry employs methods of differential calculus to describe local
properties of smooth curves and surfaces. We will start our discussion with
planar curves to provide some geometric intuition, before reviewing funda-
mental differential geometry concepts of smooth 2-manifold surfaces. The
remainder of the chapter will be concerned with the extension to polygonal
surfaces. In particular, we will present discrete curvature measures and
give a derivation of the standard discrete approximation of the Laplace-
Beltrami operator for triangle meshes.

3.1 Curves

We consider smooth planar curves, that is, differentiable 1-manifolds em-
bedded in IR2. Such a curve can be represented in parametric form by
a vector-valued function x : [a, b] → IR2 with x(u) = (x(u), y(u))T for
u ∈ [a, b] ⊂ IR (see Chapter 1). The coordinates x and y are assumed
to be differentiable functions of u. The tangent vector x′(u) to the curve
at a point x(u) is defined as the first derivative of the coordinate func-
tion, that is x′(u) = (x′(u), y′(u))T . For instance, in point mechanics, the

29

i
i

i
i

i
i

i
i

30 3. Differential Geometry

trajectory of a point is a curve parameterized by time (u = t) and the tan-
gent vector x′(t) corresponds to the velocity vector at time t. We assume
the parameterization to be regular such that x′(u) 6= 0 for all u ∈ [a, b]. A
normal vector n(u) at x(u) can be computed as n(u) = x′(u)⊥/‖x′(u)⊥‖,
where ⊥ denotes rotation by 90◦.

Since a curve is defined as the image of a function x, the same curve can
be obtained with a different parameterization. For example, both x1(u) =
(u, u)T and x2(u) = (u2, u2)T describe the same curve for u ∈ [0, 1], namely
the straight line segment connecting the points (0, 0)T and (1, 1)T . How-
ever, their parameterization is different and thus in general x1(u) 6= x2(u)
for a fixed u. As this example illustrates, we can change the parameteriza-
tion without changing the shape of the curve. Using the reparameterization
v(u) = u2, we obtain x1(v(u)) = x1(u2) = x2(u). Differential geometry of
curves is concerned with properties of a curve that are independent of a
specific parameterization, such as length or curvature.

3.1.1 Arc Length

The length l(c, d) of any curve segment defined on an interval [c, d] ⊆
[a, b] can be computed as the integral of the tangent vector, i.e., l(c, d) =∫ d
c
‖x′(u)‖du. The tangent vector x′ thus encodes the metric of the curve.

Parametric curves allow for a unique parameterization that can be defined
as a length-preserving mapping, i.e., an isometry, between the parameter
interval and the curve using the reparameterization

s = s(u) =

∫ u

a

‖x′(t)‖dt. (3.1)

This arc length parameterization is independent of the specific represen-
tation of the curve and maps the parameter interval [a, b] to [0, L], where

L = l(a, b) =
∫ b
a
‖x′(u)‖du is the total length of the curve. The name

stems from the important property that for any point x(s) on the curve,
the length of the curve from x(0) to x(s) is equal to s. While any regular
curve can be parameterized with respect to arc length, we will see in Chap-
ter 5 that such a canonical parameterization cannot in general be defined
for surfaces.

3.1.2 Curvature

Assuming a regular curve is parameterized with respect to arc length, we
can define the curvature at a point x(s) as

κ(s) := ‖x′′(s)‖.

i
i

i
i

i
i

i
i

3.2. Surfaces 31

For an arbitrary regular curve with parameterization u, we can define cur-
vature using the reparameterization according to arc length s(u). Intu-
itively, curvature measures how strongly a curve deviates from a straight
line. In other words, curvature relates the derivative of the tangent vector
of a curve and the curve normal vector and can also be defined using the
relation x′′(s) = κ(s)n(s). Note that in this definition curvature is signed
and thus changes sign when the orientation of the normal is reversed. It
can easily be seen that the curvature of a straight line vanishes and that
any curve with zero curvature everywhere must be a line segment. Pla-
nar curves of constant curvature are circular arcs. Curvature can also be
defined as the inverse of the radius of the osculating circle. This circle
best approximates the curve locally at a point x(u) and can be constructed
as follows: Let c(u−, u, u+) be the circle that passes through three curve
points x(u−), x(u), and x(u+) with u− < u < u+. Then the osculating cir-
cle c(u) at x(u) is defined as c = limu−,u+→u c(u−, u, u+). The osculating
circle has radius 1/κ(u) and is tangent to the curve at x(u).

3.2 Surfaces
Length and curvature are Euclidean invariants of a curve; that is, they do
not change under rigid motions. We will now look at similar metric and
curvature properties for smooth surfaces embedded in IR3. These proper-
ties are easier to define using a parametric representation of the surface,
explained below. Then, metric properties will be derived from this para-
metric representation. The discretization of these differential properties to
triangle meshes will be described in Section 3.3.

3.2.1 Parametric Representation of Surfaces

To give an example of a parametric surface representation, we consider
the problem of drawing a map of the world. As shown in Figure 3.1, the
problem is to find a way to “unfold” the surface of the world, in order to
obtain a flat 2D surface. Since the surface of the world is closed, a cut is
necessary to unfold it. For instance, it can be cut along a meridian, i.e.,
a curve joining the two poles. In the unfolding process, note that the two
poles are stretched and become two curves. The North Pole is transformed
into the segment AC, and the South Pole into the segment BD. It can
also be noticed that the meridian along which the sphere has been cut
corresponds to two different curves: the segments AB and the CD. In
other words, if a city is located exactly on this meridian, it appears on the
map twice.

As shown in Figure 3.2, it is possible to provide each point of the map
with two coordinates (θ, φ). In the mapping shown in Figure 3.1, the

i
i

i
i

i
i

i
i

32 3. Differential Geometry

Figure 3.1. Cut me a meridian, and I will unfold the world! (Image taken from

[Hormann et al. 07]. c©2007 ACM, Inc. Included here by permission.)

(x, y, z) coordinates in 3D space and the (θ, φ) coordinates in the map are
linked by the following equation, referred to as a parametric equation of a
sphere:

x(θ, φ) =

x(θ, φ)
y(θ, φ)
z(θ, φ)

 =

R cos(θ) cos(φ)
R sin(θ) cos(φ)

R sin(φ)

 ,

where θ ∈ [0, 2π], φ ∈ [−π/2, π/2], and R denotes the radius of the

Figure 3.2. Spherical coordinates. (Image taken from [Hormann et al. 07]. c©2007

ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

3.2. Surfaces 33

sphere. For a general surface we will later denote this mapping by x(u, v) =

(x(u, v), y(u, v), z(u, v))
T

.
Note that this equation is different from the implicit equation of the

sphere, x2+y2+z2 = R2. The implicit equation provides a means of testing
whether a given point is on the sphere, whereas the parametric equation
describes a way of transforming the rectangle [0, 2π] × [−π/2, π/2] into a
sphere (see also Chapter 1).

For the parametric equation, the following definitions can be given:

I The coordinates (θ, φ) at a point p = (x, y, z) are referred to as the
spherical coordinates of p.

I Each vertical line in the map, defined by θ = constant, corresponds
to a curve on the 3D surface, referred to as an iso-θ curve. In our
case, the iso-θ curves are circles traversing the two poles of the sphere
(the meridians of the globe).

I Each horizontal line in the map, defined by φ = constant, corresponds
to an iso-φ curve. In our case, the iso-φ curves are the parallels of
the globe, and the iso-φ corresponding to φ = 0 is the equator.

As can be seen in Figure 3.2, drawing the iso-θ and the iso-φ curves helps
understanding how the map is distorted when applied onto the surface. In
the map, the iso-θ and iso-φ curves are respectively vertical and horizontal
lines, forming a regular grid. Visualizing what this grid becomes when
the map is applied onto the surface makes it possible to see the distortion
occurring near the poles. In these zones, the squares of the grid are highly
distorted. The next subsection presents a way of measuring and quantifying
the corresponding distortions, before we generalize the notion of curvature
from curves to surfaces.

3.2.2 Metric Properties

Let a continuous surface S ⊂ IR3 be given in parametric form as

x(u, v) =

x(u, v)
y(u, v)
z(u, v)

 , (u, v) ∈ Ω ⊂ IR2,

where x, y, and z are differentiable functions in u and v, and Ω is the
parameter domain. The scalars (u, v) are the coordinates in parameter
space.

Similar to the curve case, the metric of the surface is determined by the
first derivatives of the function x. As shown in Figure 3.3, the two partial

i
i

i
i

i
i

i
i

34 3. Differential Geometry

Figure 3.3. Transforming a vector w̄ from parametric space into a tangent vector

w of a surface S described by a parameterization x. (Image taken from [Hormann

et al. 07]. c©2007 ACM, Inc. Included here by permission.)

derivatives

xu(u0, v0) :=
∂x

∂u
(u0, v0) and xv(u0, v0) :=

∂x

∂v
(u0, v0)

are, respectively, the tangent vectors of the two iso-parameter curves

Cu(t) = x(u0 + t, v0) and Cv(t) = x(u0, v0 + t)

at the point x(u0, v0) ∈ S. In the following we drop the parameters (u0, v0)
or (u, v) for notational brevity. It is important to remember, however,
that all quantities are defined point-wise and will typically vary across the
surface.

Assuming a regular parameterization, i.e., xu × xv 6= 0, the tangent
plane to S is spanned by the two tangent vectors xu and xv. The sur-
face normal vector is orthogonal to both tangent vectors and can thus be
computed as

n =
xu × xv
‖xu × xv‖

.

In addition, we can define arbitrary directional derivatives of x. Given a
direction vector w̄ = (uw, vw)T defined in parameter space, we consider the
straight line parameterized by t passing through (u0, v0) and oriented by
w̄ given by (u, v) = (u0, v0) + tw̄. The image of this straight line through
x is the curve

Cw(t) = x(u0 + tuw, v0 + tvw).

The directional derivative w of x at (u0, v0) relative to the direction w̄ is
defined to be the tangent to Cw at t = 0, given by w = ∂Cw(t)/∂t. By

i
i

i
i

i
i

i
i

3.2. Surfaces 35

applying the chain rule, it follows that w = Jw̄, where J is the Jacobian
matrix of x defined as

J =

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 =
[
xu , xv

]
.

First fundamental form. The Jacobian matrix of the parameterization func-
tion x corresponds to the linear map that transforms a vector w̄ in param-
eter space into a tangent vector w on the surface. More generally, the
Jacobian matrix encodes the metric of the surface in the sense that it al-
lows measuring how angles, distances, and areas are transformed by the
mapping from the parameter domain to the surface. Let w̄1 and w̄2 be
two unit direction vectors in the parameter space. The cosine of the angle
between these two vectors is given by the scalar product w̄T

1 w̄2. The scalar
product between the corresponding tangent vectors on the surface is then
given as

wT
1 w2 = (Jw̄1)

T
(Jw̄2) = w̄T

1

(
JTJ

)
w̄2.

The matrix product JTJ is also known as the first fundamental form of x
and typically written as

I = JTJ =

[
E F
F G

]
:=

[
xTuxu xTuxv

xTuxv xTv xv

]
. (3.2)

The first fundamental form I defines an inner product on the tangent space
of S. Besides measuring angles, we can use this inner product to determine
the squared length of a tangent vector w as ||w||2 = w̄T Iw̄.

This allows measuring the length of a curve x(t) = x(u(t)), defined as
the image of a regular curve u(t) = (u(t), v(t)) in the parameter domain.
The tangent vector of the curve is given by the chain rule as

dx(u(t))

dt
=

∂x

∂u

du

dt
+

∂x

∂v

dv

dt
= xuut + xvvt.

Hence, we can determine the length l(a, b) of x(u(t)) for a parameter in-
terval [a, b] using Equation (3.1) as

l(a, b) =

∫ b

a

√
(ut, vt)I(ut, vt)Tdt

=

∫ b

a

√
Eu2

t + 2Futvt +Gv2
t dt.

i
i

i
i

i
i

i
i

36 3. Differential Geometry

Similarly, we can measure the surface area A corresponding to a certain
parameter region U ⊆ Ω as

A =

∫∫
U

√
det(I)dudv =

∫∫
U

√
EG− F 2dudv. (3.3)

Since it allows measuring angles, distances and areas, the first fundamental
form I can be considered as a geometric tool, sometimes also denoted by
the letter G and called the metric tensor.

Anisotropy. Using the Jacobian matrix, a direction w̄ emanating from a
parameter-space location (u0, v0) can be transformed through the param-
eterization into a tangent vector w. As shown in Figure 3.4, it is also
possible to transform a small circle through the parameterization x, and
show that it becomes a small ellipse, called the anisotropy ellipse. Consid-
ering the eigenvectors ē1 and ē2 of the first fundamental form I and the
associated eigenvalues λ1 and λ2, the anisotropy ellipse is characterized as
follows:

I the axes of the anisotropy ellipse are e1 = Jē1 and e2 = Jē2;

I the lengths of the axes are σ1 =
√
λ1 and σ2 =

√
λ2.

Note that the lengths of the axes σ1 and σ2 also correspond to the singular
values of the Jacobian matrix J.

Their expression can be found by computing the square roots of the ze-
ros of the characteristic polynomial p(σ) = det(I−σ Id), where Id denotes

Figure 3.4. Anisotropy: a small circle is transformed into a small ellipse. (Image

taken from [Hormann et al. 07]. c©2007 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

3.2. Surfaces 37

the identity matrix:

σ1 =

√
1/2(E +G) +

√
(E −G)2 + 4F 2,

σ2 =

√
1/2(E +G)−

√
(E −G)2 + 4F 2,

where E,F,G denote the coefficients of the first fundamental form I (Equa-
tion (3.2)).

3.2.3 Surface Curvature

To extend the notion of curvature from curves to surfaces, we look at the
curvature of curves embedded in the surface. Let t = utxu + vtxv be a
tangent vector at a surface point p ∈ S represented as t̄ = (ut, vt)

T in
parameter space. The normal curvature κn(t̄) at p is the curvature of
the planar curve created by intersecting the surface at p with the plane
spanned by t and the surface normal n (see Figure 3.5). We can express
normal curvature in direction t̄ as

κn(t̄) =
t̄
T
II t̄

t̄
T
It̄

=
eu2
t + 2futvt + gv2

t

Eu2
t + 2Futvt +Gv2

t

, (3.4)

where II denotes the second fundamental form defined as

II =

[
e f
f g

]
:=

[
xTuun xTuvn

xTuvn xTvvn

]
.

Figure 3.5. The intersection of the surface with a plane spanned by a tangent

vector and the normal vector defines a normal section: a planar curve embedded

in the surface. By analyzing the curvature of such curves, we can define the

curvature of the surface.

i
i

i
i

i
i

i
i

38 3. Differential Geometry

Here, second-order partial derivatives of x are denoted as

xuu :=
∂2x

∂u2
, xuv :=

∂2x

∂u ∂v
, xvv :=

∂2x

∂v2
.

The curvature properties of the surface can be characterized by consid-
ering the curvature of all normal sections at p, i.e., by rotating the tangent
vector t around the surface normal. Assuming κn(t̄) varies with t̄, it can
be shown that the rational quadratic function of Equation (3.4) has two
distinct extremal values, called the principal curvatures. We denote with
κ1 the maximum curvature and with κ2 the minimum curvature.

If κ1 6= κ2, we can identify two unique unit tangent vectors t1 and t2,
called the principal directions, that are associated with the two principal
curvatures κ1 and κ2, respectively. Surface points with κ1 = κ2 are called
umbilical or locally spherical. For such points, all tangent vectors can be
considered principal directions and the curvature profile is isotropic. For
example, every point on a sphere or plane is umbilical, and every connected
surface that consists of umbilical points only must be either contained in a
sphere or a plane.

Euler theorem. An important theorem by Euler relates the normal curva-
ture to the principal curvatures:

κn(t̄) = κ1 cos2 ψ + κ2 sin2 ψ,

where ψ is the angle between t and t1. This relation shows that the curva-
ture of a surface is entirely determined by the two principal curvatures; any
normal curvature is a convex combination of the minimum and maximum
curvature. Euler’s theorem also states that principal directions are always
orthogonal to each other. This property can be exploited, for example, in
quad-dominant remeshing (as described in Chapter 6), where a network of
lines of curvature is computed. For all non-umbilical points, these curves
are tangent to the two unique principal directions and thus intersect at
right angles on the surface.

Curvature tensor. The local properties of a surface can be described com-
pactly using the curvature tensor C, a symmetric 3× 3 matrix with eigen-
values κ1, κ2, 0, and corresponding eigenvectors t1, t2, n. The curva-
ture tensor can be constructed as C = PDP−1, with P = [t1, t2,n] and
D = diag(κ1, κ2, 0).

Two other curvature measures will be used extensively throughout the
book:

I The mean curvature H is defined as the average of the principal
curvatures:

H =
κ1 + κ2

2
. (3.5)

i
i

i
i

i
i

i
i

3.2. Surfaces 39

Figure 3.6. Color-coded curvature values, mean curvature (left) and Gaussian

curvature (right). (Image taken from [Botsch et al. 06b]. c©2006 ACM, Inc.

Included here by permission.)

I The Gaussian curvature K is defined as the product of the principal
curvatures, i.e.,

K = κ1κ2. (3.6)

Gaussian curvature can be used to classify surface points into three dis-
tinct categories: elliptical points (K > 0), hyperbolic points (K < 0), and
parabolic points (K = 0). At hyperbolic points the surface is locally saddle-
shaped, while elliptical points indicate local convexity. Parabolic points
typically lie on curves separating elliptical and hyperbolic regions. Gaus-
sian and mean curvature are often used for visual inspection of surfaces, as
shown in Figure 3.6.

Intrinsic geometry. In differential geometry, properties that only depend on
the first fundamental form (Equation (3.2)) are called intrinsic. Intuitively,
the intrinsic geometry of a surface can be perceived by 2D creatures that
live on the surface without knowledge of the third dimension. Examples
include length and angles of curves on the surface. Gauss’ famous Theo-
rema Egregium states that the Gaussian curvature is invariant under local
isometries and as such also intrinsic to the surface [do Carmo 76]. Thus
Gaussian curvature can be determined directly from the first fundamental
form. In contrast, mean curvature is not invariant under isometries but
depends on the embedding. Note that the term intrinsic is often also used
to denote independence of a particular parameterization.

Laplace operator. The following chapters will make extensive use of the
Laplace operator ∆ and the Laplace-Beltrami operator ∆S . In general, the
Laplace operator is defined as the divergence of the gradient, i.e., ∆ = ∇2 =
∇ · ∇. For a 2-parameter function f(u, v) in Euclidean space this second-
order differential operator can be written as the sum of second partial

i
i

i
i

i
i

i
i

40 3. Differential Geometry

derivatives

∆f = div∇f = div

(
fu
fv

)
= fuu + fvv.

The Laplace-Beltrami operator extends this concept to functions defined
on surfaces. For a given function f defined on a manifold surface S, the
Laplace-Beltrami is defined as

∆Sf = divS ∇Sf,
which requires a suitable definition of the divergence and gradient operators
on manifolds (see [do Carmo 76] for details). Applied to the coordinate
function x of the surface, the Laplace-Beltrami operator evaluates to the
mean curvature normal:

∆S x = −2Hn. (3.7)

Note that even though this equation relates the Laplace-Beltrami operator
to the (non-intrinsic) mean curvature of the surface, the operator itself is
an intrinsic property that only depends on the metric of the surface, i.e.,
the first fundamental form. For simplicity, we often drop the subscript and
simply use the symbol ∆ to denote the Laplace-Beltrami operator when
clear from the context.

3.3 Discrete Differential Operators
The differential properties defined in the previous section require a sur-
face to be sufficiently often differentiable, e.g., the definition of curvature
requires the existence of second derivatives. Since polygonal meshes are
piecewise linear surfaces, the concepts introduced above cannot be applied
directly. The following definitions of discrete differential operators are thus
based on the assumption that meshes can be interpreted as piecewise linear
approximations of smooth surfaces. The goal is then to compute approx-
imations of the differential properties of this underlying surface directly
from the mesh data. Different approaches have been proposed in recent
years. We will focus on the de-facto standard discretization of the Laplace-
Beltrami operator and provide a brief derivation of the resulting formula,
closely following [Meyer et al. 03]. Alternative derivations of the same re-
sult have been presented in [Pinkall and Polthier 93, Desbrun et al. 99].
For more details we refer to the references provided in Section 3.4 and the
survey [Petitjean 02].

3.3.1 Local Averaging Region

The general idea is to compute discrete differential properties as spatial
averages over a local neighborhood N (x) of a point x on the mesh. Often

i
i

i
i

i
i

i
i

3.3. Discrete Differential Operators 41

Figure 3.7. Blue color indicates the local averaging regions used for computing

discrete differential operators associated with the center vertex of the one-ring

neighborhood.

x coincides with a mesh vertex vi, and n-ring neighborhoods Nn(vi) or
local geodesic balls are used as the averaging domain. The size of the local
neighborhood critically affects the stability and accuracy of the discrete op-
erators. The bigger the neighborhoods, the more smoothing is introduced
by the averaging operation, which makes the computations more stable in
the presence of noise. For clean data sets, small neighborhoods are typically
preferable, as they more accurately capture fine-scale variations of differ-
ential properties. Figure 3.7 illustrates three variants of averaging regions
defined on vertex one-ring neighborhoods. The barycentric cell connects
the triangle barycenters with the edge midpoints. Alternatively, we can
define a local Voronoi cell by replacing the triangle barycenters with tri-
angle circumcenters. The tightness of the Voronoi cell leads to tight error
bounds for the discrete operators as shown in [Meyer et al. 03]. However,
as the figure illustrates, the circumcenter can be outside of the triangle.
While this does not invalidate the discretizations presented below, slightly
better approximation properties can be obtained by ensuring that the local
averaging regions build a perfect tiling of the mesh surface. This can be
achieved by replacing the circumcenter for obtuse triangles with the mid-
point of the edge opposing the center vertex. The resulting averaging area
is denoted as mixed Voronoi cell.

3.3.2 Normal Vectors

Many operations in geometry processing and computer graphics require
normal vectors, either per face or per vertex; for example, in Phong shading.
Normal vectors for individual triangles T = (xi,xj ,xj) can be computed
as the normalized cross-product of two triangle edges:

n(T) =
(xj − xi)× (xk − xi)

‖(xj − xi)× (xk − xi)‖
.

i
i

i
i

i
i

i
i

42 3. Differential Geometry

Computing vertex normals as spatial averages of normal vectors in a
local one-ring neighborhood leads to a normalized weighted average of the
(constant) normal vectors of incident triangles:

n(v) =

∑
T∈N1(v) αT n(T)∥∥∥∑T∈N1(v) αT n(T)

∥∥∥ .
There are numerous alternatives for the weights αT . We describe the

most frequently used ones below and compare them in Figure 3.8:

I Constant weights αT = 1 are efficient to compute but do not consider
edge lengths, triangle areas, or angles, and hence can give counterin-
tuitive results for irregular meshes.

I The local averaging regions shown in Figure 3.7 suggest a weighting
based on triangle area, i.e., αT = |T |. This method is particularly
efficient to compute, since the area-weighted face normals are just
the (un-normalized) cross-product of two triangle edges. However,
counterintuitive results can occur, too.

I Averaging over sufficiently small geodesic disks corresponds to weight-
ing by incident triangle angles αT = θT (see Figure 3.10). The in-
volved trigonometric functions make this method computationally
more expensive, but it gives superior results in general.

For most applications, angle-weighted face normals provide a good
trade-off between computational efficiency and accuracy. More details and
a comparison of different methods can be found in [Max 99,Jin et al. 05].

Figure 3.8. Different methods for computing per-vertex normals on a regularly

tessellated cylinder: constant weights and area weights yield the result in the

center; angle weights, the result on the right.

i
i

i
i

i
i

i
i

3.3. Discrete Differential Operators 43

3.3.3 Gradients

Since the Laplace-Beltrami operator is defined as the divergence of the
gradient, we will first look at a suitable definition of the gradient of a
function on a piecewise linear triangle mesh. These gradients also play
an important role in mesh parameterization (Chapter 5) and deformation
(Chapter 9).

We assume a piecewise linear function f that is given at each mesh
vertex as f(vi) = f(xi) = f(ui) = fi and interpolated linearly within each
triangle (xi,xj ,xk):

f(u) = fiBi(u) + fjBj(u) + fkBk(u),

where u = (u, v) is the parameter pair corresponding to the surface point
x in a 2D conformal parameterization induced by the triangle (see also
Chapter 5). Figure 3.9 shows the linear barycentric basis functions used
for the interpolation.

The gradient of f is given as

∇f(u) = fi∇Bi(u) + fj∇Bj(u) + fk∇Bk(u).

Since the basis functions satisfy the barycentric condition of partition of
unity, i.e., Bi(u) +Bj(u) +Bk(u) = 1 for all u, the gradients of the basis
functions sum to zero, i.e., ∇Bi(u) + ∇Bj(u) + ∇Bk(u) = 0. Hence the
above equation can be written as

∇f(u) = (fj − fi)∇Bj(u) + (fk − fi)∇Bk(u).

As Figure 3.9 illustrates, the steepest ascent direction of the basis func-
tions is orthogonal to the opposite edge of the corresponding vertex. With
appropriate normalization, the gradient of Bi is therefore given as

∇Bi(u) =
(xk − xj)

⊥

2AT
, (3.8)

Figure 3.9. The linear basis functions for barycentric interpolation on a triangle.

i
i

i
i

i
i

i
i

44 3. Differential Geometry

where ⊥ denotes a counterclockwise rotation by 90◦ in the triangle plane
and AT is the area of triangle T . Consequently, the gradient of the piecewise
linear function f within a triangle T evaluates to the constant

∇f(u) = (fj − fi)
(xi − xk)⊥

2AT
+ (fk − fi)

(xj − xi)
⊥

2AT
. (3.9)

3.3.4 Discrete Laplace-Beltrami Operator

We discuss two discretizations of the Laplace-Beltrami operator: the uni-
form graph Laplacian and the widely used cotangent formula.

Uniform Laplacian. Taubin [Taubin 95] proposed the uniform discretiza-
tion of the Laplace-Beltrami operator

∆f(vi) =
1

|N1(vi)|
∑

vj∈N1(vi)

(fj − fi), (3.10)

where the sum is taken over all one-ring neighbors vj ∈ N1(vi). Applied to
the coordinate function x, the uniform graph Laplacian ∆xi evaluates to
the vector pointing from the center vertex xi to the average of the one-ring
vertices xj . While simple and efficient to compute, the resulting vector can
be non-zero even for a planar configuration of vertices. However, in such
a setting we would expect a zero Laplacian since the mean curvature over
the entire mesh region is zero (c.f. Equation (3.7)). This indicates that
the uniform Laplacian is not an appropriate discretization for non-uniform
meshes. Indeed, since the definition only depends on the connectivity of the
mesh, the uniform Laplacian does not adapt at all to the spatial distribution
of vertices. While disadvantageous in many applications, we discuss in
Chapters 4 and 6 how this invariance to the embedding can be exploited
to improve the local distribution of vertices in isotropic remeshing.

Cotangent formula. A more accurate discretization of the Laplace-Beltrami
operator can be derived using a mixed finite element/finite volume method
[Meyer et al. 03]. The goal is to integrate the divergence of the gradient
of a piecewise linear function over a local averaging domain Ai = A(vi).
To simplify the integration we make use of the divergence theorem for a
vector-valued function F:∫

Ai

div F(u) dA =

∫
∂Ai

F(u) · n(u) ds.

This equation relates the integration over the averaging area Ai to an
integration along the boundary ∂Ai of Ai, where n is the outward pointing

i
i

i
i

i
i

i
i

3.3. Discrete Differential Operators 45

Figure 3.10. Illustration of the quantities used in the derivation of the discrete

Laplace-Beltrami operator and discrete Gaussian curvature operator.

unit normal of the boundary (see Figure 3.10). Applied to the Laplacian,
this evaluates to∫

Ai

∆f(u) dA =

∫
Ai

div∇f(u) dA =

∫
∂Ai

∇f(u) · n(u) ds.

We split this integral by considering the integration separately for each
triangle. Since the boundary of the local Voronoi region passes through
the midpoints a and b of the two triangle edges (see Figure 3.10 (right)),
and ∇f(x) is constant within each triangle, the integral for a triangle T
evaluates to ∫

∂Ai∩T
∇f(u) · n(u)ds = ∇f(u) · (a− b)⊥

=
1

2
∇f(u) · (xj − xk)⊥.

Plugging in Equation (3.9) yields∫
∂Ai∩T

∇f(u) · n(u)ds = (fj − fi)
(xi − xk)⊥ · (xj − xk)⊥

4AT

+ (fk − fi)
(xj − xi)

⊥ · (xj − xk)⊥

4AT
.

Let γj , γk denote the inner triangle angles at vertices vj , vk, respectively.
Since AT = 1

2 sin γj ‖xj − xi‖ ‖xj − xk‖ = 1
2 sin γk ‖xi − xk‖ ‖xj − xk‖,

and cos γj =
(xj−xi)·(xj−xk)
‖xj−xi‖‖xj−xk‖ and cos γk =

(xi−xk)·(xj−xk)
‖xi−xk‖‖xj−xk‖ , this expression

simplifies to∫
∂Ai∩T

∇f(u) · n(u)ds =
1

2
(cot γk(fj − fi) + cot γj(fk − fi)) .

i
i

i
i

i
i

i
i

46 3. Differential Geometry

Thus when integrating over the entire averaging region Ai we obtain∫
Ai

∆f(u)dA =
1

2

∑
vj∈N1(vi)

(cotαi,j + cotβi,j)(fj − fi),

where we re-labeled the angles as shown in Figure 3.10. Thus the discrete
average of the Laplace-Beltrami operator of a function f at vertex vi is
given as

∆f(vi) :=
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cotβi,j) (fj − fi) . (3.11)

Equation (3.11) is probably the most widely used discretization of the
Laplace-Beltrami operator for triangle meshes in computer graphics and
is typically applied for various geometry processing tasks, such as surface
smoothing (Chapter 4), parameterization (Chapter 5), and shape modeling
(Chapter 9).

However, there are also some disadvantages of the cotangent discretiza-
tion. The cotangent weights (cotαi,j + cotβi,j) become negative if αi,j +
βi,j > π. This can lead to flipped triangles in certain applications, e.g.,
when computing a parameterization (see Chapter 5). In addition, the dis-
crete Laplace-Beltrami of Equation (3.11) is not purely intrinsic, i.e., its
evaluation can lead to different results, even for two isometric surfaces with
different triangulations. We refer to the references of Section 3.4 for some
alternative discrete definitions of the Laplace-Beltrami that address some
of these shortcomings.

Since the Laplacian is defined as the divergence of the gradient, for
completeness we briefly describe the divergence operator [Tong et al. 03].
Consider a vector field w : S → IR3 defined by a constant vector wT per
triangle T (e.g., the gradient of a piecewise linear function f). The discrete
divergence computes a scalar value div w(vi) per vertex vi from the vector
field at its incident triangles T ∈ N (vi):

div w(vi) =
1

Ai

∑
T∈N1(vi)

∇Bi|T ·wT AT , (3.12)

where ∇Bi|T is the (constant) gradient vector of the basis function
of vertex vi in triangle T (see Equation (3.8)). Note that the discretizations
of divergence (3.12), gradient (3.9), and Laplacian (3.11) are consistent in
the sense that ∆f = div∇f holds also in the discrete case.

3.3.5 Discrete Curvature

When applied to the coordinate function x, the Laplace-Beltrami opera-
tor provides a discrete approximation of the mean curvature normal (see

i
i

i
i

i
i

i
i

3.3. Discrete Differential Operators 47

Equation (3.7)). Thus we can define the absolute discrete mean curvature
at vertex vi as

H(vi) =
1

2
‖∆xi‖ . (3.13)

Meyer and colleagues [Meyer et al. 03] also present a derivation of a discrete
operator for Gaussian curvature:

K(vi) =
1

Ai

2π −
∑

vj∈N1(vi)

θj

 , (3.14)

where the θjs denote the angles of the incident triangles at vertex vi (see
Figure 3.10). This formula is a direct consequence of the Gauss-Bonnet
theorem [do Carmo 76]. Given the discrete approximations of mean cur-
vature (Equation (3.13)) and Gaussian curvature (Equation (3.14)), the
principal curvatures can be computed from Equations (3.6) and (3.5) as

κ1,2(vi) = H(vi)±
√
H(vi)2 −K(vi).

3.3.6 Discrete Curvature Tensor

Similar to the plenitude of discrete versions of the Laplace-Beltrami op-
erator, numerous methods have been proposed for directly estimating the
curvature tensor on polygonal surfaces (see references in Section 3.4). We
briefly describe the method introduced by Cohen-Steiner and Morvan
[Cohen-Steiner and Morvan 03], which has been successfully applied for
surface remeshing [Alliez et al. 03a] and curvature-domain shape process-
ing [Eigensatz et al. 08]. A similar definition has been presented in [Hilde-
brandt and Polthier 04].

The basic idea is to define a curvature tensor for each edge by assigning
a minimum curvature of zero along the edge and a maximum curvature
according to the dihedral angle across the edge. Averaging over the local
neighborhood region A(v) yields a simple summation formula over the edges
intersecting A(v):

C(v) =
1

A(v)

∑
e∈A(v)

β(e) ‖e ∩A(v)‖ ē ēT ,

where β(e) is the signed dihedral angle between the normals of the two
incident faces of edge e, ‖e ∩A(v)‖ is the length of the part of e that is
contained in A(v), and ē = e/‖e‖. The local neighborhood A(v) is typically
chosen to be the one- or two-ring of the vertex v, but can also be computed
as a local geodesic disk, i.e., all points on the mesh that are within a certain
(geodesic) distance from v. This can be more appropriate for non-uniformly

i
i

i
i

i
i

i
i

48 3. Differential Geometry

tessellated surfaces, where the size of n-ring neighborhoods Nn(v) can vary
significantly over the mesh. As noted in [Rusinkiewicz 04], tensor averaging
can yield inaccurate results for low-valence vertices and small (e.g., one-
ring) neighborhoods.

3.4 Summary and Further Reading
The derivation of discrete analogs to differential properties of smooth sur-
faces has been an active area of research for many years. Pinkall and
Polthier discuss discrete minimal surfaces and present a derivation of Equa-
tion (3.11) using a minimization of the Dirichlet energy on the mesh [Pinkall
and Polthier 93]. Bobenko and Springborn [Bobenko and Springborn 07]
evaluate Equation (3.11) on an intrinsic Delaunay triangulation of the sim-
plicial surface, which makes the evaluation independent of the specific tes-
sellation of the mesh. Zayer and co-workers [Zayer et al. 05b] replace the
cotangent weights with the positive mean value coordinates [Floater 03]
and integrate over circle areas instead of Voronoi areas. While this leads
to a less accurate discretization of the Laplace-Beltrami, negative weights
are avoided. A systematic study of convergence conditions for discrete
geometry properties is given in [Hildebrandt et al. 06].

An alternative approach to estimating local surface properties uses a
local higher-order reconstruction of the surface, followed by analytic eval-
uation of the desired properties on the reconstructed surface patch. Local
surface patches, typically bivariate polynomials of low degree, are fitted to
sample points [Cazals and Pouget 03, Petitjean 02, Welch and Witkin 94]
and possibly normals [Goldfeather and Interrante 04] within a local neigh-
borhood.

Rusinkiewicz proposed a scheme that approximates the curvature ten-
sor using finite differences of vertex normals [Rusinkiewicz 04]. A related
approach by Theisel and co-workers [Theisel et al. 04] considers the piece-
wise linear surface together with a piecewise linear normal field.

Grinspun and colleagues provide an extensive overview of different con-
cepts and applications of discrete differential geometry. In particular, they
present an alternative approach to define discrete differential operators
based on discrete exterior calculus [Grinspun et al. 08]. Wardetzky and
colleagues classify the most common discrete Laplace operators according
to a set of desirable properties derived from the smooth setting [Wardet-
zky et al. 07]. They show that the discrete operators cannot simultaneously
satisfy all of the identified properties of symmetry, locality, linear precision,
and positivity. For example, the cotangent formula of Equation (3.11) sat-
isfies the first three properties, but not the fourth, since edge weights can
assume negative values. The choice of discretization thus depends on the
specific application.

i
i

i
i

i
i

i
i

SMOOTHING

Building on the concepts of differential geometry and the discrete counter-
parts introduced in Chapter 3, in this chapter we present mesh smoothing.
On an abstract level, mesh smoothing is concerned with the design and
computation of smooth functions f : S → IRd on a triangle mesh. Due
to this very general formulation, mesh smoothing is a fundamental tool
in geometry processing. The function f can flexibly be chosen to describe,
for instance, vertex positions, texture coordinates, or vertex displacements,
such that the techniques introduced in this chapter can be used for mesh
parameterization (Chapter 5), isotropic remeshing (Chapter 6), hole filling
(Chapter 8), and mesh deformation (Chapter 9).

We will discuss two aspects of mesh smoothing: denoising and fairing.
Denoising is used to remove high-frequency noise from the function f . In
most cases, f denotes the vertex positions, which might be corrupted by
high frequency noise due to a physical scanning process (see Figure 4.1).
Removing the noise (the high frequencies) and keeping the overall shape
(the low frequencies) requires generalizing the concepts of frequencies and
low-pass filters to functions living on discrete triangle meshes. We will
present the “mesh version” of Fourier transform and diffusion filters in
Sections 4.1 and 4.2, respectively.

Mesh fairing, discussed in Section 4.3, does not just slightly smooth the
function f in order to remove the high frequency noise. It also smooths
the function as much as possible in order to obtain, e.g., an as-smooth-
as-possible surface patch or an as-smooth-as-possible shape deformation.
“As smooth as possible” means that certain fairness energies have to be

49

i
i

i
i

i
i

i
i

50 4. Smoothing

Figure 4.1. A 3D laser scan of a statue’s face on the left is corrupted by typical

measurement noise, which can be removed by low-pass filtering of the surface

geometry. On the right, the top row shows a close-up of the original mesh and

a color-coded visualization of its mean curvature. The bottom row depicts the

denoising result around the eye region.

minimized, typically involving curvatures or higher-order derivatives. We
will show that mesh fairing directly computes the limit surfaces of iterative
denoising processes, which illustrates the connection between these two
approaches.

4.1 Fourier Transform and Manifold Harmonics
The Fourier transform is the classic tool for analyzing a signal’s frequency
spectrum. It allows for efficient implementations of low-pass filters and
more general convolution filters. We will first consider low-pass filtering of
simple univariate functions f(x) based on the Fourier transform, and then
generalize these concepts to signal processing on triangle meshes.

4.1.1 1D Fourier Transform

The Fourier transform maps a univariate function f : IR → C from its
representation f(x) in the spatial domain to its representation F (ω) in the
frequency domain. This transformation and its inverse can be written as

F (ω) =

∫ ∞
−∞

f(x) e−2πiωx dx, (4.1)

f(x) =

∫ ∞
−∞

F (ω) e2πiωx dω. (4.2)

i
i

i
i

i
i

i
i

4.1. Fourier Transform and Manifold Harmonics 51

These equations have an intuitive geometric interpretation: the function
f(x) can be considered an element of a certain vector space (integrable
complex-valued functions), which is equipped with the inner product

〈f, g〉 =

∫ ∞
−∞

f(x) g(x) dx,

where (a+ ib) = (a− ib) denotes complex conjugation. The complex expo-
nential functions

eω(x) := e2πiωx = cos(2πωx)− i sin(2πωx)

consist of sine and cosine functions of frequency ω and hence are consid-
ered as complex waves of frequency ω. They build a frequency-related
orthogonal basis of our vector space—the frequency domain.

In this context the Fourier transform is simply a change of basis by
orthogonal projection of the “vector” f onto the “basis vectors” eω:

f(x) =
∞∑

ω=−∞
〈f, eω〉 eω.

The scalar coefficient 〈f, eω〉 is nothing other than F (ω) in Equation (4.1).
It describes how much of the basis function eω is contained in f , i.e., what
amplitude of the frequency ω is contained in the signal f(x). Since the
frequencies ω are real values and not just integers, the sum in the above
equation turns into an integral, which reproduces Equation (4.2).

Since the coordinates F (ω) with respect to the basis eω directly corre-
spond to frequencies, we can implement an ideal low-pass filter by simply
cutting off all frequencies above a user-defined threshold ωmax. This is
equivalent to reconstructing the filtered function f̃ from the lower frequen-
cies |ω| < ωmax only:

f̃(x) =

∫ ωmax

−ωmax

〈f, eω〉 eω dω. (4.3)

4.1.2 Manifold Harmonics

The 1D Fourier framework is now to be generalized to functions f : S → IR
on a (discrete) 2-manifold surface. The Fourier transform of Equation (4.1)
cannot be translated directly to functions on manifolds. The missing link
is provided by the following observation: sine and cosine functions, and
therefore also the complex waves eω, are eigenfunctions of the Laplace
operator, i.e.,

∆
(
e2πiωx

)
=

d2

dx2
e2πiωx = − (2πω)

2
e2πiωx.

i
i

i
i

i
i

i
i

52 4. Smoothing

A function ei is an eigenfunction of the Laplacian with eigenvalue λi if
∆ei = λiei, similar to an eigenvector of a matrix Aei = λiei.

Hence, the basis functions of the 1D Fourier transform are eigenfunc-
tions of the Laplacian. It therefore seems natural to choose eigenfunctions
of the Laplace-Beltrami operator on 2-manifold surfaces as generalized ba-
sis functions. Because we know how to discretize the Laplace-Beltrami,
this will also provide the generalization of the Fourier transform to discrete
triangle meshes.

This idea is also consistent with other frequency-related basis functions
on bivariate surfaces: for a 2D square, the eigenfunctions of the Laplace-
Beltrami operator correspond to the basis functions of the discrete cosine
transform (used by the JPEG format) and, for a sphere, they correspond
to spherical harmonics. Thus, the eigenfunctions of the Laplace-Beltrami
generalize these notions to arbitrary 2-manifold surfaces. Therefore, they
are called manifold harmonics.

For a discretization on a triangle mesh, we replace the continuous func-
tion f(x) by the vector of sample values at the n mesh vertices

f : S → IR −→ (f(v1), . . . , f(vn))
T
. (4.4)

The Laplace-Beltrami operator ∆ then becomes the Laplace-Beltrami ma-
trix L that computes the Laplacian for each vertex:∆f(v1)

...
∆f(vn)

 = L

f(v1)
...

f(vn)

 .

This matrix contains in each row i the weights wij for discretizing the
Laplacian at vertex vi (see Section 3.3 and Section A.1):

∆f(vi) =
∑

vj∈N1(vi)

wij (f(vj)− f(vi)) .

Here we assume that the weights are not normalized by vertex valence or
Voronoi area, but instead are chosen such that the matrix L is symmetric,
e.g., as wij = 1 for the uniform Laplacian, or wij = (cotαi,j + cotβi,j) for
the cotangent discretization (see [Vallet and Lévy 08] for a more detailed
analysis of discretization and symmetrization).

The eigenfunctions eω(x) of the Laplace-Beltrami operator in the con-
tinuous setting now become the eigenvectors e1, . . . , en of the Laplace ma-
trix: an n-dimensional eigenvector ei can be considered a discrete sampling
(ei(v1), . . . , ei(vn))

T
of a continuous eigenfunction ei(x), just as in Equa-

tion (4.4). The kth entry of ei corresponds to the amplitude of the wave ei

i
i

i
i

i
i

i
i

4.1. Fourier Transform and Manifold Harmonics 53

Figure 4.2. Some elements of manifold harmonic basis functions. The color values

can be thought of as the amplitude of a standing wave on the mesh geometry.

(Image taken from [Vallet and Lévy 08]. Model courtesy of Pisa Visual Comput-

ing Lab.)

at vertex vk; the frequency of the wave is determined by the correspond-
ing eigenvalue λi. The eigenvectors of L are therefore called the natural
vibrations of the triangle mesh, and the eigenvalues the natural frequen-
cies [Taubin 95,Taubin 00]. Some basis functions of this so-called manifold
harmonic basis [Vallet and Lévy 08] are shown in Figure 4.2, with color
values denoting the per-vertex amplitudes.

Since the matrix L is symmetric and positive semi-definite (see Sec-
tion A.1), its eigenvectors build an orthogonal basis of IRn, such that we
can exactly represent each vector f = (f1, . . . , fn)T in this basis:

f =
n∑
i=1

〈ei, f〉 ei,

with 〈ei, f〉 = eTi f . The discrete analog of the low-pass filter of Equa-
tion (4.3) is to reconstruct the filtered function f̃ from the low-frequency
basis functions only, i.e., from the first m < n eigenvectors:

f̃ =
m∑
i=1

〈ei, f〉 ei.

Figure 4.3. Reconstructions obtained using an increasing number of manifold har-

monic basis functions. (Image taken from [Vallet and Lévy 08]. Model courtesy

of Pisa Visual Computing Lab.)

i
i

i
i

i
i

i
i

54 4. Smoothing

Figure 4.4. Once the manifold harmonic basis and transform have been computed,

general convolution filtering with a user-defined transfer function can be per-

formed: low-pass filter (left), high-pass filter (center), and enhancement (right).

(Image taken from [Vallet and Lévy 08]. Model courtesy of Pisa Visual Comput-

ing Lab.)

A filtering or smoothing of the mesh geometry can now be achieved
by replacing f in the above equation by the n-dimensional vectors of all
x, y, and z vertex coordinates. Figure 4.3 shows meshes reconstructed
from an increasing number of manifold harmonic bases, thereby containing
more and more geometric details. Finally, as with the Fourier transform,
it is easy to perform general convolution filtering by individually damping
or boosting frequencies F (ω) based on a user-defined transfer function, as
shown in Figure 4.4.

The manifold harmonics provide a natural generalization of the Fourier
transform to continuous and discrete 2-manifold surfaces of arbitrary ge-
ometry and topology. They allow for ideal low-pass filtering using exact
cut-off frequencies ωmax and also for flexible convolution filtering. Unfor-
tunately, this approach is too expensive for many applications, since the
required eigenvector decomposition of the potentially very large Laplace
matrix L is numerically difficult to compute [Vallet and Lévy 08].

A cheaper and therefore more practical approach is diffusion flow, dis-
cussed in the next section. It corresponds to a damping of high frequencies
by multiplying them with a Gaussian kernel instead of strictly cutting off
all frequencies above a threshold ωmax. Since the inverse Fourier transform
of a Gaussian in the frequency domain yields a Gaussian in the spatial
domain, the Fourier transform is not necessary in this approach and the
smoothing can be computed directly in the spatial domain, i.e., on the
triangle mesh [Taubin 95].

4.2 Diffusion Flow
Diffusion flow is a mathematically well-understood model for the time-
dependent process of smoothing a given signal f(x, t). Many physical pro-

i
i

i
i

i
i

i
i

4.2. Diffusion Flow 55

cesses can be described by diffusion flow (e.g., heat diffusion and Brownian
motion). Diffusion flow is modeled by the diffusion equation

∂f(x, t)

∂t
= λ∆f(x, t). (4.5)

This equation is a second-order linear partial differential equation (PDE),
which states that the function f changes over time by a scalar diffusion
coefficient λ times its spatial Laplacian ∆f . As an example, if f(x, t)
denotes the temperature at time t of a material point x, the equation
describes the temporal heat diffusion in an object, and is therefore also
called the heat equation.

We can employ the diffusion equation to smooth an arbitrary function
f : S → IR on a manifold surface S, simply by replacing the regular Laplace
operator by the manifold Laplace-Beltrami. Since Equation (4.5) is a con-
tinuous time-dependent PDE, we have to discretize it both in space and in
time.

For the spatial discretization we again replace the function f by its
sample values at the mesh vertices (f(v1, t), . . . , f(vn, t))

T
and compute

the discrete Laplace-Beltrami using either the uniform or cotangent dis-
cretizations (Section 3.3). This yields an equation for the evolution of the
function value of each vertex,

∂

∂t
f(vi, t) = λ∆f(vi, t), i = 1, . . . , n, (4.6)

which can be written in matrix notation as ∂f(t)/∂t = λLf(t) using the
Laplace matrix discussed in Section A.1.

For the temporal discretization we divide the time axis into regular
intervals of size h, yielding time steps {t, t+ h, t+ 2h, . . . }. Approximating
the time derivative by finite differences

∂f(t)

∂t
≈ f(t+ h)− f(t)

h

and solving for f(t+ h) yields the explicit Euler integration:

f(t+ h) = f(t) + h
∂f(t)

∂t
= f(t) + hλLf(t).

Note that for numerically robust integration a sufficiently small time step
h has to be chosen. In order to guarantee unconditional robustness even
for large time steps, implicit time integration should be used [Desbrun
et al. 99]. Evaluating the Laplace ∆f at the next time step (t+ h) instead
of the current time t leads to the implicit Euler integration:

f(t+ h) = f(t) + hλLf(t+ h) ⇔ (Id− hλL) f(t+ h) = f(t).

i
i

i
i

i
i

i
i

56 4. Smoothing

Note that now a sparse (n×n) linear system has to be solved for the func-
tion values f(t+h). The appendix gives more details on the construction of
the linear system and possible solution methods. Even with highly efficient
solvers, implicit integration is considerably more complex than explicit in-
tegration, but in turn guarantees numerical stability.

In order to smooth the mesh geometry x instead of an arbitrary func-
tion f , we simply apply the above update rules to the vertex positions
(x1, . . . ,xn)T . The explicit per-vertex update of the resulting so-called
Laplacian smoothing is

xi ← xi + hλ∆xi.

Since the Laplace-Beltrami of vertex positions corresponds to the mean
curvature normal (∆x = −2Hn, Equation (3.7)), all vertices move in the
normal direction by an amount determined by the mean curvature H. The
above flow equation is therefore is also called the mean curvature flow [Des-
brun et al. 99]. Some examples are depicted in Figure 4.1 and Figure 4.5.

However, the movement in the normal direction is only (approximately)
true for the cotangent Laplacian. It does not hold for the uniform Lapla-
cian (see Equation (3.10)), since the latter does not take the mesh geom-
etry into account and therefore is a rather inaccurate discretization of the
true Laplace-Beltrami. Laplacian smoothing with the uniform Laplacian
tries to move each vertex to the barycenter of its one-ring neighbors. This
smooths the mesh geometry and at the same time also leads to a tangential
relaxation of the triangulation (see Figure 4.6). Depending on the applica-
tion, this can be a desired feature (e.g., in isotropic remeshing, Chapter 6)
or a disadvantage.

Finally, note that higher-order Laplacian flows ∂f/∂t = λ∆kf can also
be used where discretizations of higher-order Laplacians are computed

Figure 4.5. Curvature flow smoothing of the bunny mesh (left), showing the

result after ten iterations (center) and 100 iterations (right). The color coding

shows the mean curvature. (Model courtesy of the Stanford Computer Graphics

Laboratory.)

i
i

i
i

i
i

i
i

4.3. Fairing 57

Figure 4.6. Smoothing the object on the left (ten iterations) using the uni-

form Laplacian also regularizes the triangulation (center), whereas the cotangent

Laplacian preserves the triangle shapes (right).

recursively as ∆kf = ∆
(
∆k−1f

)
(see Section A.1). Higher-order flows are

more expensive to compute since they depend on a larger stencil of vertices,
but they provide better low-pass filtering properties [Desbrun et al. 99]. In
practice, bi-Laplacian smoothing (k = 2) is a good trade-off between com-
putational efficiency and smoothing quality. When the smoothing is applied
only locally, the bi-Laplacian smoothing leads to a C1 smooth blend be-
tween the smoothed and the fixed region, whereas the Laplacian smoothing
achieves C0 boundary smoothness only.

4.3 Fairing
The primary application of diffusion flow is to remove high frequency noise
from a signal while preserving its low frequencies. In contrast, the goal of
surface fairing is to compute shapes that are as smooth as possible. How
to actually measure smoothness or fairness obviously depends on the appli-
cation, but in general fair surfaces should follow the principle of simplest
shape: the surface should be free of any unnecessary details or oscilla-
tions [Moreton and Séquin 92,Welch and Witkin 92].

This can be modeled by a suitable energy that penalizes unaesthetic
behavior of the surface. A minimization of this fairness energy—subject
to user-defined constraints—eventually yields the desired shape. Example
applications include the construction of smooth blend surfaces and hole
filling by smooth patches, as illustrated in Figure 4.7.

Let us do the following derivations for a smooth parametric surface
x : Ω → S and discuss the case of discrete triangle meshes afterward. A
frequently used fairness functional is the membrane energy

EM(x) =

∫∫
Ω

√
det(I) dudv, (4.7)

which measures the area of the surface S (see Equation (3.3)). This energy
is to be minimized under user-defined constraints, which typically fix the

i
i

i
i

i
i

i
i

58 4. Smoothing

positions x(u, v) on the surface boundary ∂Ω. The resulting surface of min-
imal area corresponds to a clamped soap bubble and is called a membrane
surface or minimal surface.

Unfortunately, the energy of Equation (4.7) is highly nonlinear, con-
taining the square root of the determinant of the (already nonlinear) first
fundamental form. This makes the efficient and robust minimization of this
energy a numerically very difficult task. We therefore linearize the mem-
brane energy by replacing the first fundamental form by first-order partial
derivatives, leading to the Dirichlet energy

ẼM(x) =

∫∫
Ω

‖xu‖2 + ‖xv‖2 dudv, (4.8)

where we use the shorthand notation xu = ∂x/∂u and xv = ∂x/∂v. Since
partial derivation is a linear operator, this energy is quadratic in x.

In order to minimize the above linearized energy we employ calculus of
variations [Gelfand and Fomin 00, Kobbelt 97], which we introduce on a
1D version of Equation (4.8). We are looking for a function f : [a, b] → IR
that minimizes the 1D membrane energy

E(f) =

∫ b

a

(fx)
2

dx,

subject to boundary constraints that fix f(a) and f(b). Let us assume
that f actually is the minimizer of E(f). If we then pick an arbitrary
function u(x) with u(a) = u(b) = 0, we get E(f) < E(f + u). If we
furthermore consider E(f + λu) as a function of the scalar parameter λ,
then this function has a minimum at λ = 0. Consequently, its derivative
with respect to λ has to vanish at λ = 0:

∂E(f + λu)

∂λ

∣∣∣∣
λ=0

=

∫ b

a

2fxux = 0.

Figure 4.7. Applications of surface fairing include constructing smooth blends

between given surface parts (left) and filling holes with smooth patches (right).

i
i

i
i

i
i

i
i

4.3. Fairing 59

Integrating by parts and exploiting u(a) = u(b) = 0 transforms this into

−
∫ b
a
fxxu = 0. Note that this means that

∫ b
a
fxxu has to vanish for any

arbitrary u with u(a) = u(b) = 0. This, however, is only possible if

fxx = ∆f = 0.

This is the so-called Euler-Lagrange equation of the minimization problem
E(f)→ min. Intuitively it states that at the minimum f the first derivative
of E(f) with respect to f has to vanish. Since E(f) is a functional (a
function of a function), the resulting equation is a PDE. Based on this
observation, we can solve the Euler-Lagrange PDE to find the minimizer f
instead of numerically minimizing E(f).

The same mechanism can be applied to the minimization of Equa-
tion (4.8), but it requires using more complex boundary constraints and
exploiting the divergence theorem instead of partial integration. As the
result we get the Euler-Lagrange equation

ẼM(x)→ min ⇔ ∆x(u, v) = 0 for (u, v) ∈ Ω,

again subject to boundary constraints on ∂Ω.
We can finally transfer this continuous formulation to discrete triangle

meshes by (1) replacing the continuous coordinate function x(u, v) with the

vector of vertex coordinates x = (x1, . . . ,xn)
T

, and (2) using the discrete
Laplace-Beltrami operator. This leads to a linear Laplace system

Lx = 0

that is solved for the optimal vertex positions x (see the Appendix for
details on the numerical solution). Figure 4.8 (left) shows an example of a
discrete membrane surface.

Figure 4.8. The blue region is determined by minimizing a fairness functional:

membrane surface (∆x = 0, left), thin-plate surface (∆2x = 0, center), and

minimum variation surface (∆3x = 0, right). The order k of the Euler-Lagrange

equation ∆kx = 0 determines the maximum smoothness Ck−1 at the boundary.

(Image taken from [Botsch and Kobbelt 04a]. c©2004 ACM, Inc. Included here

by permission.)

i
i

i
i

i
i

i
i

60 4. Smoothing

If the goal is to minimize curvature instead of surface area, we start
from the nonlinear thin-plate energy

ETP(x) =

∫∫
Ω

κ2
1 + κ2

2 dudv,

where κ1 and κ2 denote the principal curvatures. Linearization replaces
curvatures by second derivatives, leading to

ẼTP(x) =

∫∫
Ω

‖xuu‖2 + 2 ‖xuv‖2 + ‖xvv‖2 dudv.

The corresponding Euler-Lagrange equation is ∆2x(u, v) = 0 in Ω, with
suitable C1 boundary constraints prescribing positions x(u, v) and normals
n(u, v) on ∂Ω. Translated to a discrete triangle mesh, we get the linear
bi-Laplacian system

L2x = 0.

In the discrete case, it is typically easier to fix the positions of two rings
of boundary vertices instead of prescribing positions and normals for one
ring of boundary vertices [Kobbelt et al. 98b]. Both kinds of boundary
constraints lead to (approximate) C1 boundary smoothness, as shown in
Figure 4.8 (center).

Even higher-order fairness can be achieved by minimizing not curvature,
but the variation of curvature∫∫

Ω

(
∂κ1

∂t1

)2

+

(
∂κ2

∂t2

)2

dudv, (4.9)

where κ1, κ2 again denote principal curvatures and t1, t2 the correspond-
ing principal curvature directions. The discrete approximation of these
so-called minimum variation surfaces [Moreton and Séquin 92] can be com-
puted by the sixth-order PDE ∆3x = 0 (see Figure 4.8 (right)).

We have seen that we can compute membrane surfaces, thin-plate sur-
faces, and minimum variation surfaces by solving linear Laplacian systems
Lkx = 0 of order 1, 2, and 3, respectively. Figure 4.9 shows the influence
of different discretizations of the Laplace-Beltrami operator for the mini-
mization of the thin-plate energy. The uniform Laplacian yields artifacts in
regions of varying high vertex density, whereas the cotangent discretization
gives the expected result.

There is an interesting connection between surface fairing and diffu-
sion flow: for the fair surfaces discussed above, the kth-order Laplacian
∆kx vanishes on the whole surface (by construction). Since the kth-order
Laplacian is also the update vector of the kth-order Laplacian flow, these
surfaces are steady-states of the flow ∂x/∂t = ∆kx. This confirms that fair

i
i

i
i

i
i

i
i

4.4. Summary and Further Reading 61

Figure 4.9. Comparison of different Laplace-Beltrami discretizations for solving

∆2x = 0: irregular input triangle mesh (left), uniform Laplacian (center), and

cotangent Laplacian (right). The small images show the respective mean curva-

tures. (Model courtesy of Cyberware. Image taken from [Botsch and Sorkine 08].

c©2008 IEEE.)

surfaces are indeed as smooth as possible. Furthermore, one explicit time
step of the kth-order Laplacian flow is equivalent to one (damped) Jacobi
iteration for solving the linear system ∆kx = 0 (see the Appendix). Com-
puting one implicit time step with infinite step size h = ∞ leads directly
to ∆kx = 0. As a consequence, Laplacian flows converge to fair surfaces.

Finally, note that the exact same framework can also be used to con-
struct fair general functions f : S → IRd, which simply amounts to re-
placing the coordinate function x with f . We will see these concepts
again when computing parameterizations of minimal distortion (∆u = 0,
see Chapter 5), deformations that minimize stretching and bending
(ks∆d + kb∆

2d = 0, see Chapter 9), and smooth patches for hole filling
(∆2x = 0, see Section 8).

4.4 Summary and Further Reading
In this chapter we introduced three different but closely related approaches
for smoothing 2-manifold surfaces and triangle surfaces. Manifold harmon-
ics provide an elegant generalization of the Fourier transform to surface
meshes but are computationally too expensive for most applications. Dif-
fusion flow and higher-order Laplacian flows are easy to implement and
constitute an efficient tool for removing high frequency noise. Surface fair-
ing computes as-smooth-as-possible surfaces, which are limit surfaces of
their corresponding smoothing flows.

We restricted our discussion to isotropic and linear smoothing tech-
niques since those are easier to understand and sufficient in most situations.

i
i

i
i

i
i

i
i

62 4. Smoothing

For alternative techniques we refer the reader to the more sophisticated ap-
proaches mentioned below.

Anisotropic diffusion flow. Diffusion flow, as discussed so far, is an isotropic
smoothing scheme since it diffuses high frequency noise equally in all direc-
tions. However, this process inevitably also blurs geometric features, such
as sharp edges. In contrast, anisotropic diffusion tries to preserve features
by adjusting the direction of diffusion, such that smoothing happens along,
but not across features. To this end, the isotropic Laplacian ∆f = div∇f
is extended by a data-dependent diffusion tensor D(x), yielding the ani-
sotropic diffusion flow equation ∂f/∂t = div D∇f [Perona and Malik 90].
Examples of anisotropic surface smoothing can be found in [Bajaj and
Xu 03,Clarenz et al. 00,Desbrun et al. 00,Hildebrandt and Polthier 04].

Bilateral filtering. Bilateral filtering of images [Tomasi and Manduchi 98]
preserves features by considering both the image domain (as for classic fil-
tering) and its range (color values): each pixel becomes a weighted average
of pixels with similar color values in its spatial neighborhood. Bilateral
filtering was adapted to surface denoising by [Fleishman et al. 03, Jones
et al. 03], who took spatial distances (image domain) as well as local vari-
ation of normal vectors (range domain) into account.

Nonlinear smoothing. For surface fairing we replaced nonlinear intrinsic
properties (e.g., fundamental forms and principal curvatures) with first-
and second-order partial derivatives, which eventually led to a simple linear
system to be solved for the fair surface. Nonlinear smoothing approaches
solve the true nonlinear minimization problem, which is numerically more
difficult but provides surfaces of higher quality since they are less dependent
on the initial triangulation or parameterization [Moreton and Séquin 92].
For instance, Schneider at al. [Schneider and Kobbelt 01, Schneider and
Kobbelt 00] solve the nonlinear equation ∆H = 0, and Bobenko and
Schröder minimize the discrete Willmore flow [Bobenko and Schröder 05].
Eigensatz et al. apply a bilateral filter directly on the discrete mean curva-
ture function and reconstruct a triangle mesh that best approximates the
filtered curvature values [Eigensatz et al. 08].

i
i

i
i

i
i

i
i

PARAMETERIZATION

Different representations are used to encode the geometry of three-dimen-
sional objects (see Chapter 1). The choice of a representation depends
on the acquisition process upstream and on the application downstream.
However, the representations that are the easiest to reconstruct are in most
cases not optimal for the applications. The notion of parameterization at-
taches a “geometric coordinate system” to the object (see Chapter 3). This
chapter introduces methods that compute such a parametric representation
for a given polygonal mesh. This facilitates converting from one represen-
tation to another. For instance, it is possible to convert a mesh model
into a piecewise bicubic spline surface, which is the type of representation
used in computer-aided design (CAD) packages. In a certain sense, this re-
trieves an “equation” of the geometry, or constructs an abstraction of the
geometry: once the geometry is abstracted, re-instancing it into alternative
representations becomes easier.

As an initial motivation, we start by listing some important applications
of mesh parameterization. We then present methods based on barycentric
mapping that fix the booundary on a convex polygon. Then we study
conformal mapping methods that preserve angles and that do not require
fixing the bounary. We also review methods based on notions from differen-
tial geometry presented in Chapter 3, (the anisotropy ellipse and distortion
analysis). Note that this chapter is limited to parameterization methods
for objects with disk topology. Parameterization methods for objects with
more general topology (global parameterization methods) are not covered.

63

i
i

i
i

i
i

i
i

64 5. Parameterization

Figure 5.1. Texture mapping as one application of parameterization (least squares

conformal maps as implemented in the open-source modeler Blender).

5.1 General Goals

Computing a parameterization of an object means attaching a coordinate
system to it. Such a coordinate system has many possible applications.
One of the main applications of mesh parameterization is texture mapping.
Figure 5.1 shows an example of a parameterization implemented in the
Blender1 open-source modeler. The parameterization is used to put the
surface into one-to-one correspondence with an image, stored in the 2D
domain. It is possible to map an existing image onto the 3D model, or to
define the parameter space image by directly painting the model.

With the advent of programmable graphics hardware, texture mapping
can now be used to map more complex attributes onto surfaces. The ex-
ample shown in Figure 5.2 illustrates a technique referred to as normal
mapping (see, e.g., [Sander et al. 01]). The initial object is replaced with
a significantly decimated version (see Chapter 7). Its visual appearance is
nevertheless preserved accurately by encoding the original, high-resolution
normal vectors in a texture and using a fragment shader to compute the
lighting while preserving its overall visual appearance. Since details can
be stored more compactly in a texture image than by using a large num-
ber of triangles, normal-mapping is an important technique for real-time
rendering.

Another class of applications concerns re-meshing algorithms (see Chap-
ter 6). Finally, the coordinate system defined by the parameterization facil-
itates converting from a mesh representation into an alternative one. This
is of paramount importance for modeling and simulation tasks, which use
representations that are completely different from the dense triangulated
meshes constructed by 3D scanners and their companion reconstruction

1http://www.blender.org/

http://www.blender.org/

i
i

i
i

i
i

i
i

5.1. General Goals 65

Figure 5.2. Appearance-preserving simplification as another application of pa-

rameterization: The initial object (left) is decimated to 1.5% of the original size

(center). High-resolution geometric details are encoded in a normal map (right)

and mapped to the simplified model, thereby preserving the original appearance.

(Model courtesy of Cyberware. Image taken from [Hormann et al. 07]. c©2007

ACM, Inc. Included here by permission.)

software. More specifically, these applications require parametric represen-
tations (see Chapter 1). For instance, Figure 5.3 shows a mesh transformed
into a parametric representation, using a parameterization. This fills the
gap between acquisition and CAD/finite element simulations.

To summarize: formally, a parameterization of a 3D surface is a func-
tion putting this surface in one-to-one correspondence with a 2D domain.
This notion plays an important role in geometry processing since it makes

Figure 5.3. On a mesh (left), a parameterization defines a coordinate system

(center) that can be used to convert the input mesh into a parametric surface

(right). (Image taken from [Hormann et al. 07]. c©2007 ACM, Inc. Included here

by permission.)

i
i

i
i

i
i

i
i

66 5. Parameterization

it possible to transform complex 3D modeling problems into a 2D space
where they are simpler to solve. The next section discretizes the notion of
parameterization into the context of a piecewise linear triangle mesh.

5.2 Parameterization of a Triangulated Surface

Triangulated surfaces—defined as in Chapter 2 by vertices v1, . . . , vn ∈ V,
positions p1, . . . ,pn (or x1, . . . ,xn), and a set F of triangular faces—are
naturally parameterized using piecewise linear functions, whose pieces cor-
respond to the triangles of the surface. Thus, it is possible to represent
the parameterization by the set of all (ui, vi) coordinates associated with
each vertex (xi, yi, zi). Figure 5.4 shows an example of a parameterized
triangulated surface in 3D space and in (u, v) parameter space.

Note that in the context of differential geometry (Chapter 3), we con-
sider an existing parameterization, whereas this chapter considers the prob-
lem of constructing a parameterization for an existing surface. For this

Figure 5.4. A parameterized triangulated surface in 3D space (left) and in (u, v)

parameter space (right). A parameterization of a triangulated surface can be

defined as a piecewise linear function, determined by the coordinates (ui, vi) at

each vertex (xi, yi, zi). (Image taken from [Hormann et al. 07]. c©2007 ACM,

Inc. Included here by permission.)

i
i

i
i

i
i

i
i

5.3. Barycentric Mapping 67

reason, in contrast with the conventions of differential geometry, it is more
natural to consider that we map the 3D space (known) into the 2D pa-
rameter space (unknown), shown on the left and on the right, respectively,
in Figure 5.4. We will see more fundamental implications of this “swap-
ping” when we explain the formulation and behavior of methods based on
distortion analysis.

At a given point (u, v) of the parameter space Ω, the parameterization
x is given by

x(u, v) = αpi + βpj + γpk,

where (i, j, k) denotes the index triplet such that the triangle [(ui, vi),
(uj , vj), (uk, vk)] in parameter space contains the point (u, v). The triplet
(α, β, γ) denotes the barycentric coordinates at point (u, v) in the triangle.
See also Equations (1.3) and (1.4).

In summary, constructing a parameterization of a triangulated surface
means finding a set of coordinates (ui, vi) associated to each vertex i. More-
over, these coordinates need to be such that the image of the surface in
parameter space does not self-intersect. This means that the intersection
of any two triangles in parameter space is either a common edge, a com-
mon vertex, or empty. In the following we discuss different solutions for
assigning (u, v) coordinates to the vertices.

5.3 Barycentric Mapping

Barycentric map is one of the most widely used methods for constructing
a parameterization of a triangulated surface. This method is based on
Tutte’s barycentric mapping theorem [Tutte 60], from graph theory, which
states:

Given a triangulated surface homeomorphic to a disk, if the
(u, v) coordinates at the boundary vertices lie on a convex poly-
gon, and if the coordinates of the internal vertices are a convex
combination of their neighbors, then the (u, v) coordinates form
a valid parameterization (without self-intersections).

Supposing that the vertices are ordered so that indices {1, . . . nint} corre-
spond to interior vertices and indices {nint+1, . . . , n} correspond to bound-
ary vertices, the second condition of the theorem can be written as

∀i ∈ {1, . . . , nint} : −ai,i
(
ui
vi

)
=
∑
j 6=i

ai,j

(
uj
vj

)
,

i
i

i
i

i
i

i
i

68 5. Parameterization

where the coefficients ai,j are such that ∀i ∈ {1, . . . , n}
ai,j > 0 if vi and vj are connected by an edge,

ai,i = −∑
j 6=i

ai,j ,

ai,j = 0 otherwise.

(5.1)

The initial proof by Tutte [Tutte 60] uses sophisticated concepts from
graph theory. A simpler proof was established by Colin de Verdière
[de Verdiere 90]. Finally, a proof based on the notion of discrete one forms
was established by [Gortler et al. 06]. Since it uses simple counting argu-
ments, this latter proof is accessible without requiring the important graph
theory background involved in the other two.

This theorem—which characterizes a family of valid parameterizations—
can be used instead as a method to construct a parameterization [Floater 97].
The idea consists of first fixing the vertices of the boundary on a convex
polygon. Then, the coordinates at the internal vertices are found by solv-
ing Equation (5.1). This means solving two linear systems, Au = ū and
Av = v̄ of dimension nint, where the vectors u and v gather all the u
and v coordinates at the internal vertices, and where the righthand side ū
(respectively v̄) contains the weighted coordinates at the vertices on the
boundary:

∀i ∈ {1, . . . , nint} :

nint∑
j=1

ai,juj = ūi = −
n∑

j=nint+1

ai,juj ,

nint∑
j=1

ai,jvj = v̄i = −
n∑

j=nint+1

ai,jvj .

(5.2)

There are many possibilities for solving Equation (5.2). For large meshes,
the most efficient ones comprise sparse iterative and sparse direct meth-
ods, discussed in the Appendix. For reasonably small meshes (up to 5K
vertices), a simple Gauss-Seidel solver (see also the Appendix) can also be
used. In practice, this means iteratively moving all vertices to the barycen-
ter of their neighbors:

parameterize Tutte Floater()

while more iterations are needed

for i = 1 to nint(
ui

vi

)
← 1

ai,i

∑
j 6=i ai,j

(
uj

vj

)

The iterations are stopped when the (u, v) updates are smaller than a
user-specified threshold or after a given maximum number of iterations.

i
i

i
i

i
i

i
i

5.3. Barycentric Mapping 69

Figure 5.5. Parameterization with Floater’s method. The parametric coordinates

on the boundary of the surface are fixed on a convex polygon, and the interior

coordinates are obtained by solving a linear system. (Image taken from [Hormann

et al. 07]. c©2007 ACM, Inc. Included here by permission.)

The matrix A has a property that is sufficient to ensure that the Gauss-
Seidel iteration converges to the solution (A is a M-matrix, see [Golub and
Loan 89]). Figure 5.5 shows an example of a parameterization computed
by this method (using weights ai,j detailed further).

A possible valid choice for the coefficients ai,j is given by ai,j = 1 if
i and j are connected by an edge, and ai,i = −|Ni|, where |Ni| denotes
the number of one-ring neighbors of vertex i (i.e., its valence). However,
these weights do not take the mesh geometry into account (such as edge
lengths or triangle angles), and therefore introduce distortions that must be
avoided by most applications. For this reason, the next section introduces
a way of choosing these weights so as to minimize some distortions.

5.3.1 Discrete Laplacian

The Laplacian, or Laplace operator, is a generalization of the second-order
derivative for multivariate functions. In flat 2D space, this operator is
defined by

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

The Laplacian measures the regularity (or irregularity) of a function. For
instance, for a linear function the Laplacian is equal to zero. Therefore,
minimizing the Laplacian of u and v results in smooth parametric coor-
dinates; in other words, this also minimizes the distortion of the parame-
terization. The Laplacian can be generalized to curved surfaces, and the

i
i

i
i

i
i

i
i

70 5. Parameterization

Figure 5.6. Angles and areas used by the discrete cotangent Laplacian (left) and

the mean value coordinates (right).

generalized form is called the Laplace-Beltrami operator. In Chapter 3,
Equation (3.11), a discrete version of this operator was derived, such that

ai,j =
1

2Ai
(cotαi,j + cotβi,j) ,

ai,i = −
∑
j 6=i

ai,j ,

where the angles αi,j and βi,j are shown in Figure 5.6 (left), and where
Ai corresponds to the Voronoi area of vertex vi. The so-defined discrete
Laplacian is a matrix (ai,j) whose nonzero pattern corresponds to the con-
nectivity of the mesh and satisfies ai,i = −∑j 6=i ai,j . It is therefore possible
to use the discrete Laplacian to define the coefficients ai,j used in Floater’s
method, as done in [Eck et al. 95]. We elaborate further on the link between
the discrete Laplacian and parametric distortion in Section 5.4.3.

As already mentioned in Chapter 3, for meshes with obtuse angles, the
coefficients of the discrete Laplacian may become negative. This violates
the requirements of Tutte’s theorem such that the validity of the mapping
can no longer be guaranteed. It is possible to remove obtuse angles by
subdividing the initial mesh [Rivara 84]. Another possibility is to use a
different definition of weights, introduced by [Floater 03], based on the
mean value theorem (instead of Stokes theorem for cotangent weights):

ai,j =
1

‖xi − xj‖

(
tan

(
δi,j
2

)
+ tan

(γi,j
2

))
, ai,i = −

∑
j 6=i

ai,j ,

where δi,j and γi,j are the angles shown in Figure 5.6 (right). The so-defined
mean value weights are always positive and therefore provably generate
one-to-one mappings.

i
i

i
i

i
i

i
i

5.4. Conformal Mapping 71

Figure 5.7. A mesh cut in a way that makes it homeomorphic to a disk, using the

seamster algorithm [Sheffer and Hart 02] (left). Tutte-Floater parameterization

obtained by fixing the boundary on a square (center). Parameterization obtained

with a free-boundary parameterization [Sheffer and de Sturler 01] (right). (Image

taken from [Hormann et al. 07]. c©2007 ACM, Inc. Included here by permission.)

Therefore, Tutte’s theorem combined with mean value weights provides
a provably correct way of constructing a valid parameterization for a disk-
like surface. However, for some surfaces the necessity of fixing the boundary
on a convex polygon may be problematic (see Figure 5.7), for the following
reasons: (1) in general, it is difficult to find a “natural” way of fixing the
boundary on a convex polygon, and (2) for some surfaces, the shape of the
boundary is far from being convex. As a consequence, the obtained param-
eterization shows high distortions. Even if one can imagine different ways of
improving the result, the so-obtained parameterization will probably not be
as good as the one shown in Figure 5.7 (right), which better matches what
a tanner would expect for such a mesh. The next section studies methods
devised to construct parameterizations with free boundaries, based on the
notion of conformal mapping.

5.4 Conformal Mapping

Conformal mapping is related to the formalism of complex analysis. Con-
formal mapping relies on the conformality condition, which defines a cri-
terion with sufficient rigidity to offer good extrapolation capabilities that
can compute natural boundaries. Readers interested in this formalism are
referred to [Needham 94].

The anisotropy ellipse, introduced in Section 3.2.2, plays a central role
in the definition of (non-distorted) parameterization methods. We now

i
i

i
i

i
i

i
i

72 5. Parameterization

Figure 5.8. A conformal parameterization transforms a small circle into a small

circle, i.e., it is locally a similarity transform. (Image taken from [Hormann

et al. 07]. c©2007 ACM, Inc. Included here by permission.)

focus on a particular family of parameterization, called conformal maps,
for which the anisotropy ellipse is a circle for all points of the surface. As
shown in Figure 5.8, this also means that the two gradient vectors xu and
xv are orthogonal and have the same norm. The condition can also be writ-
ten as xv = n× xu, where n denotes the normal vector. Remarkably, if a
parameterization is conformal, this is also the case for the inverse function
(since the Jacobian matrix of the inverse is equal to the inverse of the Ja-
cobian matrix). To understand that, one can also say that if the iso-u and
iso-v curves are orthogonal, it is also the case for their normal vectors in
the tangent plane. Finally, conformality also means that the Jacobian ma-
trix is composed of rotation and scaling only (i.e., a similarity transform).
Therefore, conformal mappings locally correspond to similarities. We now
review various methods that compute a conformal parameterization.

5.4.1 Gradient in a Triangle

Conformality can be expressed as a relation between the gradients of pa-
rameterization. Therefore, to port the definition of conformal maps into the
setting of piecewise linear triangulated surfaces, one can use the expression
of the gradients as given in Section 3.3.

However, we need to stress again that our setting is slightly different
from the one in Chapter 3. In our case, the 3D surface is given, and our
goal is to construct the parameterization. In this setting, it seems more
natural to characterize the inverse of the parameterization, i.e., the func-
tion that goes from the 3D surface S (known) to the parameter space
Ω (unknown). This function is also piecewise linear. In this configura-
tion, to define the gradients it is possible to provide each triangle with an

i
i

i
i

i
i

i
i

5.4. Conformal Mapping 73

Figure 5.9. Local X, Y basis in a triangle.

orthonormal basis X,Y , as shown in Figure 5.9 (we can use one of the
vertices xi of the triangle as the origin). In this basis, we can study the
inverse of the parameterization—that is to say, the function that maps a
point (X,Y) of the triangle to a point (u, v) in the parameter space. The
gradients of this function are given by

∇u =

[
∂u/∂X

∂u/∂Y

]
=

1
2AT

[
Yj − Yk Yk − Yi Yi − Yj

Xk −Xj Xi −Xk Xj −Xi

]
︸ ︷︷ ︸

=MT

ui

uj

uk

 ,

(5.3)
where matrix MT is constant over the triangle T , and where AT denotes
the area of T . Note that these gradients are different (but strongly related
to) the gradients of the S → Ω function, manipulated in Section 3.2.2:
The gradient of u (respectively v) intersects the iso-u lines (respectively
the iso-v lines) at a right angle (instead of being tangent to them), and its
norm is the inverse of the one computed in Section 3.3. Since the inverse
of a conformal map is also a conformal map, for a triangulated surface the
conformality condition can be written as

∇v = n×∇u.

5.4.2 Least Squares Conformal Maps

In contrast to the exposition of the initial paper [Lévy et al. 02], we present
the least squares conformal maps (LSCM) method in terms of simple ge-
ometric relations between the gradients computed in the previous subsec-
tion. We then elaborate on the complex analysis formalism and establish
the relation with other methods.

The LSCM method simply expresses the conformality condition of the
function that maps the surface to the parameter space. We now consider
one of the triangles of the surface, provided with an orthonormal basis

i
i

i
i

i
i

i
i

74 5. Parameterization

(X,Y) of its supporting plane (see Section 5.4.1). In this context, confor-
mality can be written as

∇v = (∇u)⊥ =

[
0 −1
1 0

]
∇u, (5.4)

where (·)⊥ denotes the counterclockwise rotation of 90 degrees around n.
Using Equation (5.3) for the gradient in a triangle, Equation (5.4),

which characterizes piecewise linear conformal maps, becomes

MT

vivj
vk

− [0 −1
1 0

]
MT

uiuj
uk

 =

(
0
0

)
.

In the continuous setting, Riemann’s theorem states that any surface
admits a conformal parameterization (see, e.g., [Berger 07]). However, in
our specific case of piecewise linear functions, only the developable sur-
faces admit a conformal parameterization. For a general (non-developable)
surface, LSCM minimizes an energy ELSCM that corresponds to the “non-
conformality” of the application and is denoted by the conformal energy :

ELSCM =
∑

T=(i,j,k)

AT

∥∥∥∥∥∥MT

vivj
vk

− [0 −1
1 0

]
MT

uiuj
uk

∥∥∥∥∥∥
2

.

Note that ELSCM is invariant with respect to arbitrary translations and
rotations applied in parameter-space. As a consequence, ELSCM does not
have a unique minimizer. To have a well-defined optimization problem, it
is required to reduce the degrees of freedom by fixing the (u, v) coordinates
of at least two vertices.

We have considered conformal maps from the point of view of the gra-
dients. The next section, which may be skipped in a first reading, exhibits
relations between conformal maps and harmonic functions. This also shows
some connections with Floater’s barycentric mapping method and its gen-
eralizations.

5.4.3 Conformal Maps and Harmonic Maps

Conformal maps play a particular role in complex analysis and Rieman-
nian geometry. The following system of equations, which is known as the
Cauchy-Riemann equations, characterizes conformal maps:

∂v

∂x
= −∂u

∂y
,

∂v

∂y
=

∂u

∂x
.

i
i

i
i

i
i

i
i

5.4. Conformal Mapping 75

They play a central role in complex analysis since they characterize differ-
entiable complex functions (also called analytic functions).

Another interesting property of complex differentiable functions is that
their first-order differentiability makes them differentiable at any order.
Differentiating the Cauchy-Riemann equations once more with respect to
u and v reveals interesting relations with the Laplacian (see Section 5.3.1):

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0,

∆v =
∂2v

∂x2
+
∂2v

∂y2
= 0.

In other words, the real part and the imaginary part of a conformal map
are two harmonic functions (i.e., two functions with zero Laplacian). This
justifies the idea of using the discrete Laplacian to define Floater’s weights,
mentioned in the previous section. This is the point of view adopted by
Desbrun et al. to develop their conformal parameterization method [Des-
brun et al. 02], equivalent to LSCM. Thus, Desbrun et al. compute two
harmonic functions while letting the boundary evolve. On the boundary,
a set of constraints enforce the conformality of the parameterization and
introduce a coupling term between the u- and the v-coordinates.

Another way of considering both approaches, mentioned by Pinkall and
Polthier [Pinkall and Polthier 93], is given by Plateau’s problem [Plateau 73,
Meeks 81]. Given a closed curve, this problem concerns the existence
of a surface with minimum area, such that its boundary matches the
closed curve. To minimize the area of a surface, Douglas [Douglas 31]
and Rado [Rado 30], and later Courant [Courant 50], considered Dirich-
let’s energy (i.e., the integral of the squared norm of the gradients, see
Equation (4.8)) easier to manipulate. A discretization of this energy was
proposed by Pinkall and Polthier [Pinkall and Polthier 93], with the aim
of giving a practical solution to Plateau’s problem in the discrete case.
Dirichlet’s energy differs from the area of the surface. The difference is a
term that depends on the parameterization, called the conformal energy,
which is zero if the parameterization is conformal. The relation between
these three quantities is explained below:∫

Ω

√
det(I)dA︸ ︷︷ ︸

area of the surface

=
1

2

∫
Ω

‖xu‖2 + ‖xv‖2 dA︸ ︷︷ ︸
Dirichlet’s energy

− 1

2

∫
Ω

∥∥xv − (xu)⊥
∥∥2

dA︸ ︷︷ ︸
conformal energy

,

where I is the first fundamental form. This relation is easy to prove by
expanding the integrated terms. Therefore, LSCM minimizes the conformal
energy, and Desbrun et al.’s method minimizes Dirichlet’s energy. Since the

i
i

i
i

i
i

i
i

76 5. Parameterization

difference between these two quantities corresponds to the (constant) area
of the surface, both methods are equivalent.

The conformal mapping methods mentioned above are based on rela-
tions between the gradients of the parameterization. We also refer the
reader to [Zayer et al. 05c], which provides another way of “setting the
boundary free” by separating computations into several steps involving
simple (linear) computations. The notion of the derivative and its con-
nection with geometry (or differential geometry) plays a central role in
the conformal mapping methods mentioned above. For this reason, these
methods can be referred to as analytical methods. In the next section, we
focus on geometric methods, which consider the shape of the triangles.

5.4.4 Geometric Methods for Conformal Mapping

Analytical methods are reasonably easy to implement since they mean min-
imizing a quadratic form. For this reason they are well used in both the
academic and industrial worlds. However, the necessity of pinning two ver-
tices may generate results that are unbalanced in terms of distortions (see
Figure 5.10) if the input surface has high Gaussian curvature.

Figure 5.10. For surfaces that have a high Gaussian curvature, conformal methods

may generate highly distorted results, different from what the user might expect

(left). The ABF method and its variants better balance the distortions and give

better results (right). (Image taken from [Hormann et al. 07]. c©2007 ACM, Inc.

Included here by permission.)

i
i

i
i

i
i

i
i

5.4. Conformal Mapping 77

We now introduce geometric methods, which do not suffer from these
problems. We will review the angle-based flattening (ABF) method. Note
that one may also classify circle packings [Bobenko and Hoffmann 01] and
circle patterns [Bobenko et al. 06] in this category, but these methods are
not covered here.

The ABF method, developed by Sheffer et al. [Sheffer and de Sturler 01],
is based on the following observation: the parameter space is a two-dimen-
sional triangulation, uniquely defined by all the angles at the corners of the
triangles (modulo a similarity transformation in parameter space). This
simple remark leads to the reformulation of the parameterization problem—
finding (ui, vi) coordinates—in terms of angles, that is, finding the angles
αTi , where αTi denotes the angle at the corner of triangle T incident to
vertex i.

The energy minimized by ABF is given by

EABF(α) =
∑
T∈F

3∑
k=1

(
αTk − βTk
βTk

)2

,

where the sum is over all triangles T , and the energy measures the relative
deviation of the unknown 2D angles αTk from the “optimal” angles βTk ,
measured on the 3D mesh.

To ensure that the 2D angles define a valid triangulation, a set of con-
straints needs to be satisfied. These can be incorporated into the energy
minimization using Lagrange multipliers:

I The three triangle angles have to sum to π:

∀T ∈ F : αT1 + αT2 + αT3 = π.

I For each internal vertex the incident angles have to sum to 2π (since
it is a planar 2D configuration):

∀v ∈ Vint :
∑

(T,k)∈v∗
αTk = 2π,

where Vint denotes the set of internal vertices, and v∗ denotes the set
of angles incident to vertex v.

I The reconstruction constraints ensure that the relations of edge lengths
and angles around a vertex are consistent:

∀v ∈ Vint :
∏

(T,k)∈v∗
sinαTk⊕1 =

∏
(T,k)∈v∗

sinαTk	1.

The indices k ⊕ 1 and k 	 1 denote the next and previous angle in
the triangle, respectively. To understand this constraint, note that

i
i

i
i

i
i

i
i

78 5. Parameterization

the product sinαTk⊕1 ·sinαTk	1 corresponds to the product of the ratio
between the lengths of two consecutive edges around vertex k. If they
do not match, it is then possible to “turn around” vertex k without
“landing” on the starting point.

Sheffer and de Sturler [Sheffer and de Sturler 01] compute a stationary
point of the Lagrangian of the constrained quadratic optimization prob-
lem by using Newton’s method. An improvement of the numerical solution
mechanism has been proposed [Sheffer et al. 05]. To speed up computa-
tions, Zayer et al. propose a linearized approximation that solves for the
approximation error [Zayer et al. 07]. The dual formulation leads to a
least-norm problem, which means solving a single linear system.

5.5 Methods Based on Distortion Analysis
For texture mapping applications, it is important to minimize distortions.
In particular, the distortion analysis formalism introduced in Section 3.2.2
and 5.4.1 allows us to characterize how a signal stored in a texture is
distorted when mapped onto the surface. After setting up the formalism, we
will start from the simpler methods and then elaborate on signal-specialized
parameterizations, best suited to texture mapping.

Before going further, we need to warn the reader again about a possible
source of confusion in the literature:

I Half of the methods study the function that goes from the surface S
to the parameter space Ω (as in Section 5.3). This is justified by the
fact that the (u, v) coordinates are unknown. Therefore, it is more
natural to go from the known world (the surface) to the unknown
world (the parameter space);

I The other half of the methods use the inverse convention and study
the function that goes from parameter space Ω to the surface S (as in
Chapter 3). This is justified by the fact that it makes the formalism
compatible with classical differential geometry books [do Carmo 76]
that use this convention.

Let us first reconsider the continuous distortion analysis of Section 3.2.2
and identify some common types of distortion of the Ω→ S mapping:

I When mapping two tangent directions w̄1, w̄2 at a point u ∈ Ω to the
surface S, the angle of their images w1,w2 can be computed through
their (normalized) inner product

wT
1 w2√

wT
1 w1 ·

√
wT

2 w2

=
w̄T

1 I(u) w̄2√
w̄T

1 I(u) w̄1 ·
√

w̄T
2 I(u) w̄2

.

i
i

i
i

i
i

i
i

5.5. Methods Based on Distortion Analysis 79

Hence, the angle is preserved if the first fundamental form is a multi-
ple of the identity, i.e., I(u) = η(u) Id, or, equivalently, if the singular
values of I are equal: σ1 = σ2. If this holds for all points u ∈ Ω, we
get an angle-preserving or conformal parameterization, which was
already discussed in Section 5.4. Elementary circles are mapped to
elementary circles, but their radius might change.

I Since the area of a mapped patch x(U), U ⊂ Ω, is computed as∫
U

√
det(I)dA, the parameterization is area-preserving or equiareal if

det I = 1, or equivalently σ1σ2 = 1, for all points u ∈ Ω. Elementary
circles are mapped to elementary ellipses of the same area.

I Finally, a parameterization is length-preserving or isometric if it is
both conformal and equiareal. In this case the first fundamental form
is the identity, i.e., σ1 = σ2 = 1. Elementary circles are mapped to
elementary circles of the same radius.

While isometric parameterizations are ideal in the sense that they do
not distort angles and areas, only surfaces of a specific class, called
developable surfaces, admit an isometric parameterization. These sur-
faces have zero Gaussian curvature everywhere, which is a consequence
of the first fundamental form being the identity and of the Gaussian cur-
vature depending only on the first fundamental form (Gauss’ Theorema
Egregium).

In the remainder of this section, we use the S → Ω convention, and all
the metric properties JT , IT , σ1, σ2 are with respect to this function (this is
the inverse direction compared to Chapter 3). Note that the metric proper-
ties are constant on each triangle T . Based on these metric properties, we
will review several methods and express them in a common formalism. For
each method, we will take care of identifying whether the S → Ω function
or the Ω→ S function is used in the initial reference.

5.5.1 Metric Properties of Piecewise Linear Surfaces

We now compute the metric properties characterizing the function that
maps from local triangle coordinates (X,Y) into parameter space (u, v).
Using the expression of the gradient given in Equation (5.3), we compute
the Jacobian

JT =

[
∂u/∂X ∂v/∂X

∂u/∂Y ∂v/∂Y

]
=
[
uX ,uY

]
,

i
i

i
i

i
i

i
i

80 5. Parameterization

Figure 5.11. To avoid triangle flips, each vertex p is constrained to remain in the

kernel of the polygon defined by its neighbors qi (left). The kernel of a polygon—

orange—is defined by the intersection of the half-planes defined by the support

lines of its edges—dashed (right).

which is constant over each triangle T . From the Jacobian, we compute
the fundamental form IT (also constant in triangle T):

IT = JTTJT =

[
E F
F G

]
=

[
uTXuX uTXuY

uTXuY uTY uY

]
.

The lengths σ1 and σ2 of the axes of the anisotropy ellipse (see also
Section 3.2.2) are given as

σ1 =

√
1/2(E +G) +

√
(E −G)2 + 4F 2,

σ2 =

√
1/2(E +G)−

√
(E −G)2 + 4F 2.

Before evoking these methods, we give two more precisions:

I To avoid triangle flips, some of the methods constrain each vertex p to
remain in the kernel of the polygon defined by its neighbors qi. This
notion is illustrated in Figure 5.11. To compute the kernel of a poly-
gon, it is, for instance, possible to apply Sutherland and Hogdman’s
re-entrant polygon clipping algorithm to the polygon (clipped by it-
self). The algorithm is described in most general computer graphics
books [Foley et al. 90].

I Since they are based on the eigenvalues of the first fundamental form,
the objective functions involved in distortion analysis are often non-
linear and therefore difficult to minimize in an efficient way. To accel-
erate the computations, a commonly used technique consists of rep-
resenting the surface in a multi-resolution manner, based on Hoppe’s
progressive mesh data structure [Hoppe 96]. The algorithm starts

i
i

i
i

i
i

i
i

5.5. Methods Based on Distortion Analysis 81

by optimizing a simplified version of the object, then introduces the
additional vertices and optimizes them by iterative refinements.

Now that we have seen the general notions related to distortion anal-
ysis and the particular aspects that concern the optimization of objective
functions involved in distortion analysis, we can review several classical
methods that belong to this category.

5.5.2 Green-Lagrange Deformation Tensor

To minimize the distortions of a parameterization, one of the first methods
that was developed consists of minimizing a matrix norm of the Green-
Lagrange deformation tensor L [Maillot et al. 93]. This notion comes from
mechanics, and it measures the deformation of a material. Clearly, if the
metric tensor I is equal to the identity matrix Id, then an elementary
circle is transformed into an elementary circle of the same radius (see Sec-
tion 3.2.2), and the parameterization is said to be isometric. As men-
tioned above, only developable surfaces admit an isometric parameteriza-
tion. In the general case, for a given (possibly non-developable) surface
with a parameterization, the Green-Lagrange deformation tensor is given
by L = I − Id and measures the “non-isometry” of the parameterization.
However, minimizing a matrix norm of L is extremely difficult since the
function is highly nonlinear, with many local minima.

5.5.3 MIPS

The MIPS (most isometric parameterization of surfaces) method [Hormann
and Greiner 00] was the first mesh parameterization method that computes
a natural boundary. This method is based on the minimization of the ratio
between σ1 and σ2, the two lengths of the axes of the anisotropy ellipse.
This corresponds to the 2-norm of the Jacobian matrix:

E2(JT) = ‖JT ‖2
∥∥J−1

T

∥∥
2

= σ1/σ2.

Since minimizing this energy is a difficult numerical problem, Hormann
and Greiner have replaced the 2-norm ‖·‖2 by the Frobenius norm ‖·‖F ,
i.e., the square root of the sum of the squared singular values:

EMIPS(JT) = ‖JT ‖F
∥∥J−1

T

∥∥
F

=
trace(IT)

det(JT)
.

As can be seen in this equation, cancelation of terms yields a simpler ex-
pression in the end. The final expression corresponds to the ratio between
the trace of the first fundamental form and the determinant of the Jacobian
matrix. As indicated in the original article, this value can also be inter-
preted as the Dirichlet energy per parameter-space area: the term trace(IT)

i
i

i
i

i
i

i
i

82 5. Parameterization

corresponds to the Dirichlet energy, and the Jacobian det(JT) corresponds
to the ratio between a triangle’s area in 3D and in parameter space (more
on Dirichlet energy in Section 5.4.3 about conformal mappings). A similar
approach is described in [Degener et al. 03], with a more efficient implemen-
tation of the solver for the so-defined (highly nonlinear) energy functional.

5.5.4 Signal-Specialized Parameterization

Motivated by texture mapping applications, Sander et al. studied the way a
signal stored in parameter space is distorted when it is texture-mapped onto
the surface (by applying the parameterization) [Sander et al. 01]. For this
reason, their formalism uses the function Ω→ S that maps the parameter
space onto the surface (the same convention is used in Chapter 3). To relate
this method with the convention adopted in this chapter, that is to say the
metric properties of the S → Ω function, one can check that this simply
means replacing σ1 with 1/σ2 (and σ2 with 1/σ1) in the computations.

A possible way of characterizing the distortions of a texture is to con-
sider a point and a direction in parameter space and analyze how the
texture is deformed along that direction. Sander et al. call this value the
stretch. This exactly corresponds to the notion of directional derivative,
introduced in Section 3.2.2. For a triangle T , they defined an energy that
corresponds to the average value of the stretch for all directions:

Estretch(T) =
√

((1/σ1)2 + (1/σ2)2) /2.

The local energies of each triangle T are combined into a global energy

Estretch(S) =

√∑
T ATEstretch(T)∑

T AT
,

where AT again denotes the area of the triangle T .
Figure 5.12 shows some results computed with this approach. This

formalism is particularly well suited to texture mapping applications since
it minimizes the distortions that are responsible for the visual artifacts that
this type of application wants to avoid. Moreover, a simple modification
of this method allows the contents of the texture to be taken into account,
therefore defining a signal-adapted parameterization [Sander et al. 02].

5.6 Summary and Further Reading
In this chapter we gave an introduction to the notion of mesh parameter-
ization and derived the fundamental tools of distortion analysis, based on

i
i

i
i

i
i

i
i

5.6. Summary and Further Reading 83

Figure 5.12. Some results computed by stretch L2 minimization. (Parameterized

models courtesy of Pedro Sander and Alla Sheffer. Image taken from [Hormann

et al. 07]. c©2007 ACM, Inc. Included here by permission.)

the notion of metric tensor. We then built on these foundations the classi-
cal fixed boundary barycentric methods, then the free-boundary quadratic
methods, and finally the nonlinear methods. These methods can be used
by many applications, including texture mapping, reverse engineering, and
conversion between different representations. Implementations are avail-
able in the publicly available packages CGAL,2 OpenMesh,3 OpenNL,4

Graphiten,5 and Meshlab.6

In this chapter we limited ourselves to methods that compute a pa-
rameterization for objects with disk topology. In particular, we did not
cover global parameterization methods. The reader is referred to [Gu and
Yau 03, Gu and Yau 04, Steiner and Fischer 05, Kälberer et al. 05, Ray
et al. 06,Tong et al. 06] for more details.

For further reading, we mention that the fundamental aspects of mesh
parameterization concern differential geometry, and more specifically Rie-
mannian geometry. The reader is referred to the extensive survey in
[Berger 07]. Riemannian geometry has strong connections with complex
analysis, and these connections are very well explained in [Needham 94].
We also refer the reader to parameterization methods based on the relation
between curvature and metric [Ben-Chen et al. 08, Yang et al. 08, Spring-
born et al. 08].

Finally, we also recommend the survey on mesh parameterization
[Floater and Hormann 05] and the detailed course notes [Hormann et al. 07].

2http://www.cgal.org
3http://www.openmesh.org
4http://alice.loria.fr/index.php/software.html
5http://alice.loria.fr/index.php/software.html
6http://www.meshlab.org

http://www.cgal.org
http://www.openmesh.org
http://alice.loria.fr/index.php/software.html
http://alice.loria.fr/index.php/software.html
http://www.meshlab.org

i
i

i
i

i
i

i
i

REMESHING

Remeshing is a key technique for mesh quality improvement in many in-
dustrial applications such as numerical simulation and geometric modeling
(e.g., shape editing, animation, morphing). As such, it has received consid-
erable attention in recent years, and a wealth of remeshing algorithms have
been developed. In this chapter we focus on surface remeshing and do not
consider volumetric remeshing. The first goal of surface remeshing is to
reduce the complexity of an input surface mesh, subject to certain quality
criteria. This process is commonly referred to as mesh simplification, a
topic covered in Chapter 7. The second goal of remeshing is to improve the
quality of a mesh, such that it can be used as input for various downstream
applications. Different applications imply different quality criteria and re-
quirements. For more complete coverage of the topic, we refer the reader
to a survey [Alliez et al. 07], which proposes this definition for remeshing:
“Given a 3D mesh, compute another mesh, whose elements satisfy some
quality requirements, while approximating the input acceptably.” Here the
term approximation can be understood with respect to locations as well as
to normals or higher-order differential properties.

In contrast to general mesh repair (see Chapter 8), the input of remesh-
ing algorithms is usually assumed to already be a manifold triangle mesh
or part of it. The term mesh quality thus refers to non-topological proper-
ties, such as sampling density, regularity, size, orientation, alignment, and
shape of the mesh elements. This chapter deals with these latter aspects of
remeshing and presents various methods that achieve this goal. We begin

85

i
i

i
i

i
i

i
i

86 6. Remeshing

our discussion by structuring the different types of remeshing algorithms
and by clarifying some concepts commonly used in the remeshing litera-
ture. Beginning with Section 6.4, we discuss several remeshing methods,
focusing on the key paradigms behind each of them.

6.1 Local Structure
The local structure of a mesh is described by the type, shape, orientation,
and distribution of the mesh elements.

I Element type. The most common target element types are triangles
and quadrangles. Triangle meshes are usually easier to produce,
while in quadrangular remeshing one often has to content oneself
with results that are only quad-dominant. Note that, in principle,
any quadrangle mesh can be trivially converted into a triangle mesh
by inserting a diagonal into each quadrangle. Converting a triangle
mesh into a quadrangle mesh can be performed either by barycentric
subdivision (splitting each triangle into three quadrangles by insert-
ing its barycenter and linking it to edge midpoints) or by splitting
each triangle at its barycenter into three new triangles (one-to-three
split) and discarding the original mesh edges.

I Element shape. Elements can be classified as being either isotropic or
anisotropic. The shape of isotropic elements is locally uniform in all
directions. Ideally, a triangle/quadrangle is isotropic if it is close to
equilateral/square (see Figure 6.1).

For triangles this roundness can be measured by the ratio of the cir-
cumcircle radius to the length of the shortest edge (see [Shewchuk 97]).
Isotropic elements are favored in numerical applications (FEM or
geometry processing), as the local uniform shape of their elements
often leads to a better conditioning of the resulting systems (see
[Shewchuk 02] for a more detailed discussion). The shape of ani-
sotropic elements locally varies according to the orientation on the

Figure 6.1. Isotropy: low (left) versus high (right). (Image taken from [Botsch

et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

6.2. Global Structure 87

surface. When carefully aligned and oriented (see “element alignment
and orientation” below), anisotropic meshes are preferred for shape
approximation because they usually need fewer elements than their
isotropic pendants to achieve the same approximation quality. Aniso-
tropic elements are commonly oriented with the principal curvature
directions of the surface (see Chapter 3). Furthermore, anisotropic
elements better express the structure of geometric primitives (cylin-
ders, cones, etc.) inherent in many technical models.

I Element density. In a uniform distribution, the mesh elements are
evenly spread across the entire model. In a nonuniform or adaptive
distribution, the number of elements varies, e.g., smaller elements
are assigned to areas with high curvature. When carefully designed,
adaptive meshes need significantly fewer elements to achieve an ap-
proximation quality that is comparable to that of uniform meshes.

I Element alignment and orientation. Converting a mesh approximating
a piecewise smooth surface into a new mesh corresponds to a re-
sampling process. Hence, sharp features may be affected by alias
artifacts. In order to prevent this, elements should align to sharp
features so that they properly represent tangent discontinuities. Fur-
thermore, the orientation of anisotropic elements plays a crucial role
in faithful shape approximation [Nadler 86].

6.2 Global Structure
A vertex in a triangle mesh is called regular if its valence (i.e., its number
of neighboring vertices) is 6 for interior vertices or 4 for boundary vertices.
In quadrangle meshes, the regular valences are 4 and 3, respectively. Ver-
tices that are not regular are called irregular or extraordinary. The global
structure of a mesh can be classified as being irregular, semiregular, highly
regular, or regular (see Figure 6.2):

I Irregular meshes do not exhibit any kind of regularities in their con-
nectivity.

I Semiregular meshes are produced by regular subdivision of a coarse
initial mesh. Thus, the number of extraordinary vertices in a semireg-
ular mesh is small and constant [Eck et al. 95, Guskov et al. 00, Lee
et al. 98,Kobbelt et al. 99a] under uniform refinement.

I In highly regular meshes most vertices are regular. In contrast to
semiregular meshes, highly regular meshes need not be the result of a

i
i

i
i

i
i

i
i

88 6. Remeshing

Figure 6.2. Meshes: Irregular (left), semiregular (center), and regular (right).

(Model courtesy of Cyberware.)

subdivision process [Szymczak et al. 02,Surazhsky and Gotsman 03,
Alliez et al. 02,Surazhsky et al. 03].

I In a regular mesh all vertices are regular. A regular mesh can com-
pactly be represented as a 2D array that can be used for efficient
rendering (a so-called geometry image) [Gu et al. 02,Sander et al. 03,
Losasso et al. 03].

Besides this topological characterization, the suitability of a remeshing
algorithm usually depends on its ability to capture the global structure of
the input geometry by aligning groups of elements to the dominant geomet-
ric features. Since this corresponds to the alignment of entire submeshes,
e.g., to global curvature lines of geometric primitives, it is strongly related
to mesh segmentation techniques [Marinov and Kobbelt 06].

Fully regular meshes can be generated only for a very limited num-
ber of input models, namely those that topologically are (part of) a torus.
All other models have to be cut into one or more topological disks before
processing (and then the global regularity is broken at the seams). Fur-
thermore, special care has to be taken to correctly identify and handle
the seams that result from cutting. Semiregular meshes are, in particular,
suitable for multiresolution analysis and modeling [Zorin et al. 97,Guskov
et al. 00]. They define a natural parameterization of a model over a coarse
base mesh. Highly regular meshes require different techniques for multi-
resolution analysis, and they are well suited to numerical simulations. In
particular, mesh compression algorithms can take advantage of the mostly
uniform valence distribution and produce a very efficient connectivity en-
coding [Touma and Gotsman 98,Alliez and Desbrun 01,Kälberer et al. 05].

i
i

i
i

i
i

i
i

6.3. Correspondences 89

6.3 Correspondences

All remeshing algorithms compute point locations on or near the original
surface. Most algorithms furthermore iteratively relocate mesh vertices in
order to improve the quality of the mesh. Thus, a key issue in all remeshing
algorithms is to compute or to maintain correspondences between points
p on the generated mesh and their counterparts φ(p) on the input mesh.
There are a number of approaches to address this problem:

I Global parameterization. The input model is globally parameterized
onto a 2D domain (see Chapter 5). Sample points can then be easily
distributed and relocated in the 2D domain and later be lifted to
three dimensions [Alliez et al. 03b,Alliez et al. 03a].

I Local parameterization. The algorithm maintains a parameterization of
a local geodesic neighborhood around φ(p). When a sample leaves
this neighborhood, a new neighborhood has to be computed [Surazh-
sky et al. 03].

I Projection. The sample point is projected onto the nearest element
(point, edge, or triangle) of the input model [Botsch and Kobbelt 04b].

Global parameterization is, in general, expensive and may suffer from
parametric distortion or discontinuities when the mesh needs to be cut into
a topological disk. Naive direct projection may produce local and global
fold-overs if the points are too far away from the surface. However, in prac-
tice the projection operator can be stabilized by constraining the movement
of the sample points to their tangent planes. Although no theoretical guar-
antees can be provided, this makes sure that the samples do not move too
far away from the surface, such that the projection can be safely evaluated.
The local parameterization approach is stable and produces high-quality
results. However, it requires expensive bookkeeping to track, cache, and
re-parameterize the local neighborhoods.

6.4 Voronoi Diagrams and Delaunay
Triangulations

Voronoi diagrams and Delaunay triangulations are important geometric
data structures for meshing and remeshing. We now provide definitions
for Voronoi diagrams and Delaunay triangulations in arbitrary dimensions,
although they will later be used only in two and three dimensions.

i
i

i
i

i
i

i
i

90 6. Remeshing

Figure 6.3. A 2D Voronoi diagram of a point set (left), 2D Delaunay triangulation

of the same point set (center), and both superimposed (right).

Let P = {p1, . . . ,pn} be a set of points (so-called sites) in IRd. We
associate to each site pi its Voronoi region V (pi) such that

V (pi) = {x ∈ IRd : ‖x− pi‖ ≤
∥∥x− pj

∥∥ ,∀j 6= i}.

The collection of the nonempty Voronoi regions and their faces, together
with their incidence relations, constitute a cell complex called the Voronoi
diagram of P. See Figure 6.3 (left) for an example in two dimensions. The
Voronoi diagram of P is a partition of IRd because any point of IRd belongs
to at least one Voronoi region. The locus of points that are equidistant to
two sites pi and pj is called a bisector, and all bisectors are affine subspaces

of IRd (lines in two dimensions, planes in three dimensions). A Voronoi
cell of a site pi is also defined as the intersection of closed half-spaces
bounded by bisectors. This implies that all Voronoi cells are convex since
the intersection of convex sets remains convex. Note that some Voronoi
cells may be unbounded with unbounded bisectors. This happens when
a site pi is on the boundary of the convex hull of P. Voronoi cells have
faces of different dimensions. In two dimensions, a face of dimension k is the
intersection of 3−k Voronoi cells. A Voronoi vertex is generally equidistant
from three points, and a Voronoi edge is equidistant from two points. A
point set P ⊂ IRd is generic or non-degenerate if the affine hull of any set of
k points with 1 ≤ k ≤ d is homeomorphic to IRk−1 and no d+ 2 points are
cospherical [Dey 06]. We refer the reader to [Okabe et al. 92, Boissonnat
and Yvinec 98] for more details about Voronoi diagrams.

The dual structure to the Voronoi diagram is called the Delaunay trian-
gulation; see Figure 6.3 (center). More specifically, the Delaunay triangu-
lation of a set of sites P is a simplicial complex such that k+ 1 points in P
form a Delaunay simplex if their Voronoi cells have nonempty intersection.
In two dimensions, each Delaunay triangle (p,q, r) is dual to a Voronoi
vertex where V (p), V (q), and V (r) meet; each Delaunay edge (p,q) is
dual to a Voronoi edge where V (p) and V (q) meet; and each Delaunay

i
i

i
i

i
i

i
i

6.4. Voronoi Diagrams and Delaunay Triangulations 91

vertex p is dual to its Voronoi face V (p). The Delaunay triangulation of a
point set P covers the convex hull of P.

The Delaunay triangulation is shown to enjoy several local and global
properties due to its duality with the Voronoi diagram. One local property
is the so-called empty sphere property. A triangulation T of a point set P
such that any d-simplex of T has a circumsphere that does not enclose any
point of P is a Delaunay triangulation of P. Conversely, any k-simplex
with vertices in P that can be circumscribed by a hypersphere that does
not enclose any point of P is a face of the Delaunay triangulation of P.
In two dimensions, one global property is related to the smallest triangle
angle: the Delaunay triangulation of a point set P is the triangulation
of P that maximizes the smallest angle. Another even stronger global
property is the following: the triangulation of P whose angular vector (the
set of all triangle angles) is maximal for the lexicographic order is the
Delaunay triangulation of P. The latter two properties explain the success
of the Delaunay triangulation for mesh generation, as small angles cause
numerical problems in finite elements methods.

Another key notion used in Delaunay-based surface meshing algorithms
is the restricted Delaunay triangulation. Let X denote a subset of IRd; P
a point set of IRd; and Del(P) the Delaunay triangulation of P. We call
the Delaunay triangulation restricted to X the sub-complex of Del(P),
denoted DelX(P), whose dual Voronoi faces intersect X. Figure 6.4 illus-
trates the Delaunay triangulation of a 2D point set restricted to a planar

Figure 6.4. Delaunay triangulation of a point set restricted to a planar closed

curve. The edges of the restricted Delaunay triangulation are depicted with solid

blue lines. The Voronoi edges intersecting the curve are depicted with solid

red lines.

i
i

i
i

i
i

i
i

92 6. Remeshing

closed curve. The 3D Delaunay triangulation restricted to a surface S is
the set of Delaunay facets (triangles) whose dual Voronoi edges intersect S.
The notion of restricted Delaunay triangulation was introduced by Chew
for meshing surfaces [Chew 93] and was later formalized [Edelsbrunner
and Shah 94] and used for many reconstruction and mesh generation algo-
rithms [Dey 06]. A key property of the Delaunay triangulation restricted
to a smooth closed surface S, denoted DelS(P), is its approximation prop-
erty (both in terms of geometry and topology) when P is sufficiently dense.
More details are provided in [Boissonnat and Oudot 05].

6.5 Triangle-Based Remeshing
In an isotropic mesh all triangles are well shaped, i.e., ideally equilateral.
One may further require a globally uniform vertex density or allow a smooth
change in the triangle sizes, i.e., a smooth gradation. There are a number of
algorithms for isotropic remeshing of triangle meshes (see [Alliez et al. 07]).
In this section we describe three different paradigms commonly employed
for isotropic surface remeshing; then we detail three representative algo-
rithms for these paradigms.

Existing algorithms could be roughly classified as being greedy, vari-
ational, or incremental. Greedy algorithms commonly perform one local
change at a time, such as vertex insertion, until the initially stated goal
is satisfied. Variational techniques cast the initial problem as one of mini-
mizing an energy functional such that low levels of this energy correspond
to good solutions for this problem (reaching a global optimum is in general
elusive). A solver for this energy commonly performs global relaxation,
i.e., vertex relocations and re-triangulations until convergence. Finally, an
algorithm is said to be incremental when it combines both refinement and
decimation, possibly interleaved with a relaxation procedure (see [Bossen
and Heckbert 96]).

6.5.1 Greedy Remeshing

The greedy surface meshing algorithm in [Boissonnat and Oudot 05] is
flexible enough to be used for isotropic remeshing of smooth surfaces. The
core principle behind this algorithm relies on refining and filtering a 3D
Delaunay triangulation. At each refinement step one point taken on the
input surface is inserted into the triangulation. The point location is chosen
among the intersections of the input surface S with the Voronoi edges of the
triangulation. In other words, the edges of the Voronoi diagram are used to
probe the input surface along the refinement process. The filtering process
consists of updating the Delaunay triangulation restricted to S (denoted

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 93

Figure 6.5. Medial axis of the complement of a planar curve. Lines parallel to the

curve are depicted with thin lines. The circle bounds a medial ball.

DelS(P)), i.e., selecting the Delaunay facets whose dual Voronoi edges in-
tersect S. Before providing the pseudocode of the refinement algorithm we
define several required concepts.

Surface Delaunay ball. A surface Delaunay ball is a ball centered at the
input surface S that circumscribes a facet f of DelS(P). As there can
be several surface Delaunay balls associated with a given Delaunay facet,
we denote by Bf = B(cf , rf) a surface Delaunay ball circumscribing f ,
centered at cf and of radius rf .

Medial axis. Denote by O an open set of IRd. The medial axis M(O) of
O is the closure of the set of points with at least two closest points on
the boundary of O. A ball centered on the medial axis, whose interior is
contained in O and whose bounding sphere intersects the boundary of O
is called a medial ball ; see Figure 6.5 for a planar example. The reach (or
local feature size) at a point x ∈ O, denoted ρ(x), is the distance from x
to the medial axis of O. For the present application we consider the case
where O is the complement of a surface S of IR3.

The key idea behind the refinement algorithm is to refine DelS(P) until
all surface Delaunay balls have radius lower than a fraction of the local
reach. Guaranteeing the algorithm termination requires bounding the reach
away from zero, i.e., restricting ourselves to the class of C1,1 surfaces.
C1,1 surfaces are a bit more general than C2 (smooth) surfaces, as they
admit one normal at each point and a Lipschitz normal field. Because
the input surface S is already provided as a surface mesh in the present
application, this condition is not fulfilled and hence we have to consider it
as an approximation of a C1,1 surface.

Algorithm. The algorithm maintains the set P, the Delaunay triangulation
Del(P), and its restriction DelS(P) to S as well as the list L of “bad” facets
of DelS(P). A bad facet f herein means that its surface Delaunay ball

i
i

i
i

i
i

i
i

94 6. Remeshing

Bf = B(cf , rf) satisfies rf > ψ(cf), where ψ is defined over S and satisfies
ψ(x) ≥ ψinf > 0 ∀x ∈ S. The initial point set P is constructed by taking
at least three points sufficiently close on each connected component of S
and runs the following refinement algorithm:

refine()

while L is not empty

pop one bad facet f from L
cf = dual(f) ∩ S
insert cf to P
update Del(P)
update DelS(P)
update L, i.e.,

remove facets of L that are no longer facets of DelS(P)
add new bad facets of DelS(P) to L

Under assumptions on ψ, i.e., ψ ≤ ε·ρ, where ε = 0.2 and ρ = reach, the
algorithm summarized above is shown to terminate after a finite number
of refinement steps. Upon termination, the output of the algorithm (i.e.,
the piecewise linear interpolation derived from the restricted Delaunay tri-
angulation) is shown to enjoy both approximation guarantees, in terms of
topology and geometry, and also quality guarantees, in terms of the shape
of the mesh elements. More precisely, the restricted Delaunay triangula-
tion is homeomorphic to the input surface S and approximates it in terms
of its Hausdorff distance, normals, curvature, and area. All angles of the
triangles are bounded, which provides us with a mesh quality amenable to
reliable mesh processing operations and faithful simulations.

The elementary operation of the meshing process reduces to the inser-
tion of a new vertex into the 3D Delaunay triangulation that interpolates
the input surface. The only assumption made is that the input surface
representation is amenable to simple geometric computations, namely its

Figure 6.6. Isotropic remeshing by Delaunay refinement and filtering. The input

mesh (left) is the output of an interpolatory surface reconstruction algorithm.

(Model courtesy of [Dey et al. 05].)

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 95

intersection with a line. In other words, the shape to be discretized is only
known through an oracle that provides answers to intersection predicates.
The current implementations [Dey et al. 05, Boissonnat and Oudot 05] of
the Delaunay-based refinement techniques commonly use octree data struc-
tures to accelerate the line-triangle queries (see Chapter 1). Figure 6.6
illustrates the remeshing of a surface triangle mesh that is the output of
an interpolatory surface reconstruction algorithm.

Figure 6.7 illustrates Delaunay-based remeshing of a 2M triangle sur-
face mesh. On this example the mesh refinement procedure is seeded by
inserting into the 3D Delaunay triangulation 20 randomly chosen points
from the input mesh vertices.

The main advantages of this greedy algorithm are its guaranteed prop-
erties. Moreover, the output triangle surface mesh is guaranteed not to
self-intersect by construction because it is extracted from a 3D Delaunay
triangulation. The latter property is often neglected by other remeshing
techniques. It is also quite robust as it does not resort to any local or global
parameterization technique and constructs a 3D tetrahedral mesh instead.

Figure 6.7. Remeshing by Delaunay refinement and filtering. The input (left)

is an irregular surface triangle mesh obtained by surface reconstruction followed

by simplification. The output (right) is an isotropic surface triangle mesh where

all triangle angles are greater than 25 degrees. (Model courtesy of Pisa Visual

Computing Lab.)

i
i

i
i

i
i

i
i

96 6. Remeshing

The following questions may arise: Can we construct a mesh of higher
quality? With fewer vertices while satisfying the same set of constraints?
Some of these questions are addressed by variational techniques.

6.5.2 Variational Remeshing

When high-quality meshes are sought after, it may be desirable to resort
to an optimization procedure. Two questions now arise: Which criterion
should we optimize? By exploiting which degrees of freedom? The opti-
mized criterion can be directly related to the shape and size of the triangles,
but we will describe next how other criteria achieve satisfactory results as
well. As the number of degrees of freedom are both continuous and discrete
(vertex positions and mesh connectivity), there is a need for narrowing the
space of possible triangulations.

Mesh optimization, also commonly referred to as mesh smoothing in
the meshing community, has addressed parts of these questions, although
some work remains to be done in order to specialize these techniques to
remeshing of surfaces. We refer the reader to a comprehensive survey of
mesh optimization techniques [Eppstein 01].

Designing a variational algorithm requires defining an energy to mini-
mize and a solver for this energy. Ideally, the solver is fast and robust and
converges to a global optimum. In practice, however, the space of possible
solutions is so vast that reaching a global optimum is elusive—even more
so when the notion of “best possible mesh” is not well defined. The zoo of
criteria used for the optimization (see, e.g., [Amenta et al. 99]) reveals the
difficulty of choosing one criterion to optimize: should we optimize over
the triangle angles, the edge lengths, or the compactness of the triangles?
Although one optimization technique has been specifically designed for op-
timizing the shape of the triangles [Chen 04], a class of mesh smoothing
techniques rely on the observation that isotropic 2D point samplings lead
to well-shaped triangles [Eppstein 01]. Note that in three dimensions this
observation does not hold anymore since sliver tetrahedra can occur. A
sliver is an almost flat tetrahedron with its four vertices evenly distributed
along the equator of its circumsphere. Isotropic remeshing can therefore
be cast into the problem of isotropic point sampling, which amounts to
distributing a set of points on the input mesh in as even a manner as
possible.

One approach to evenly distributing a set of points in two dimensions
is to construct a centroidal Voronoi tessellation [Du et al. 99]. Given a
density function defined over a bounded domain Ω, a centroidal Voronoi
tessellation (denoted CVT) of Ω is a class of Voronoi tessellations where
each site coincides with the centroid (i.e., center of mass) of its Voronoi

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 97

Figure 6.8. From left to right: ordinary Voronoi tessellation (sites are depicted in

black; Voronoi cell centroids in red); Voronoi tessellation after one Lloyd iteration;

Voronoi tessellation after three Lloyd iterations; Centroidal Voronoi tessellation

obtained after convergence of the Lloyd iteration. Each site coincides with the

center of mass of its Voronoi cell.

region. The centroid ci of a Voronoi region Vi is calculated as

ci =

∫
Vi

x · ρ(x) dx∫
Vi
ρ(x) dx

, (6.1)

where ρ(x) is the density function, defined to control the size of the Voronoi
cells. This structure turns out to have a surprisingly broad range of appli-
cations for numerical analysis, location optimization, optimal repartition
of resources, cell growth, vector quantization, etc. This follows from the
mathematical importance of its relationship with the energy function,

E(p1, . . . ,pn, V1, . . . , Vn) =
n∑
i=1

∫
Vi

ρ(x) ‖x− pi‖2 dx,

with sites pi and corresponding regions Vi ⊂ Ω. We can show that the
energy function is minimized when the pi are the mass centroids ci of their
corresponding regions Vi. Moreover, for a fixed set of sites p1, . . . ,pn, the
energy function is minimized if {V1, . . . , Vn} is a Voronoi tessellation.

One way to build a centroidal Voronoi tessellation is to use Lloyd’s
relaxation method. The Lloyd algorithm is a deterministic, fixed-point it-
eration [Lloyd 82]. Given a density function and an initial set of n sites, it
consists of the following three steps (see Figure 6.8):

1. Construct the Voronoi tessellation corresponding to the sites pi.

2. Compute the centroids ci of the Voronoi regions Vi using Equa-
tion (6.1), and move the sites pi to their respective centroids ci.

3. Repeat steps 1 and 2 until satisfactory convergence is achieved.

i
i

i
i

i
i

i
i

98 6. Remeshing

Figure 6.9. Isotropic remeshing of the head of Michelangelo’s David. A planar

conformal parameterization is computed (top). Isotropic sampling, then Lloyd

relaxation, is applied in the parameter space in order to obtain a non-uniform

centroidal Voronoi tessellation, with which the mesh is uniformly remeshed (bot-

tom). (Image taken from [Alliez et al. 03b]. c©2003 IEEE. Model courtesy of the

Stanford Computer Graphics Library.)

Alliez et al. [Alliez et al. 03b] propose a surface remeshing technique
based on Lloyd relaxation. It uses a global conformal planar parameteriza-
tion (see Chapter 5) and applies relaxation in the parameter space using a
density function designed so as to compensate for the area distortion due
to flattening (see Figure 6.9). Nonuniform isotropic meshes can also be ob-
tained by incorporating into the density function the desired mesh sizing.
Sharp features such as creases and corners are preserved by applying the
Lloyd iteration over a bounded Voronoi diagram, i.e., the pseudo-dual of a
constrained Delaunay triangulation (see Figure 6.10).

The remeshing algorithm is summarized by the following pseudocode:

isotropic remeshing(input surface triangle mesh M)

conformal paramerization of M
compute density function

perform in parameter space

random sampling in accordance to the density function

repeat until convergence

Voronoi diagram

relocate sites to Voronoi cell centroids

lift 2D Delaunay triangulation to 3D

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 99

Figure 6.10. Uniform remeshing of the fandisk model with 10k vertices (the

bottom of the original mesh has been removed so as to obtain a topological

disk): initial sampling (top left); sampling obtained after 20 iterations of Lloyd

relaxation (top right); closeup over the centroidal Voronoi tessellation after Lloyd

convergence (bottom left); global view of the remeshed model (bottom center);

and closeups around sharp features (bottom right). (Image taken from [Alliez

et al. 03b]. c©2003 IEEE.)

Figure 6.11. Isotropic remeshing using overlapping parameterizations. (Model

courtesy of the Stanford Computer Graphics Laboratory.)

i
i

i
i

i
i

i
i

100 6. Remeshing

To alleviate the numerical issues for high distortion, as well as the arti-
ficial cuts required for closed or models with nontrivial topology, Surazhsky
et al. [Surazhsky et al. 03] apply the Lloyd relaxation procedure on a set
of local overlapping parameterizations (see Figure 6.11).

6.5.3 Incremental Remeshing

In this section we present an efficient remeshing algorithm that produces
isotropic triangle meshes. The algorithm was presented in [Botsch and
Kobbelt 04b] and is a simplified version of [Vorsatz et al. 03] and an ex-
tension of [Kobbelt et al. 00]. It produces results that are comparable to
the ones by the original algorithm, but it has the advantage of being sim-
pler to implement and of being robust. In particular, it does not need any
parameterization nor the involved computation of (geodesic) Voronoi cells
as, e.g., [Surazhsky et al. 03].

The algorithm takes as input a target edge length and repeatedly splits
long edges, collapses short edges, and relocates vertices until all edges are
approximately of the desired target edge length (see Figure 6.12). The
algorithm runs the following loop:

remesh(target edge length)

low = 4/5 * target edge length

high = 4/3 * target edge length

for i = 0 to 10 do

split long edges(high)

collapse short edges(low,high)

equalize valences()

tangential relaxation()

project to surface()

Notice that the proper thresholds 4
5 and 4

3 are essential to converge to
a uniform edge length [Botsch and Kobbelt 04b]. The values are derived
from considerations to make sure that after a split or collapse function,
the edge lengths are closer to the target lengths than before. A hysteresis
behavior is induced by the interleaved tangential smoothing operator.

The split long edges(high) function visits all edges of the current mesh.
If an edge is longer than the given threshold high, the edge is split at its
midpoint and the two adjacent triangles are bisected (2-4 split).

split long edges(high)

while exists edge e with length(e) > high do

split e at midpoint(e)

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 101

Figure 6.12. Local remeshing operators. (Image taken from [Botsch 05].)

The collapse short edges(low, high) function collapses and thus
removes all edges that are shorter than a threshold low. Here one has
to take care of a subtle problem: by collapsing along chains of short edges,
the algorithm may create new edges that are arbitrarily long and thus
undo the work that was done in split long edges(high). This issue is
resolved by testing before each collapse whether the collapse would pro-
duce an edge that is longer than high. If so, the collapse is not
executed.

collapse short edges(low, high)

while exists edge e with length(e) < low do

let e = (a,b) and let a[1],...,a[n] be the one-ring of a

collapse ok = true

for i = 1 to n do

if length(b,a[i]) > high then

collapse ok = false

if collapse ok then

collapse a into b along e

The equalize valences() function equalizes the vertex valences by flip-
ping edges. The target valence target val(v) is 6 and 4 for interior and
boundary vertices, respectively. The algorithm tentatively flips each edge
e and checks whether the deviation to the target valences decreases. If not,
the edge is flipped back.

i
i

i
i

i
i

i
i

102 6. Remeshing

equalize valences()

for each edge e do

let a, b, c, d be the vertices of the two triangles adjacent to e

deviation pre = abs(valence(a)-target val(a))

+ abs(valence(b)-target val(b))

+ abs(valence(c)-target val(c))

+ abs(valence(d)-target val(d))

flip(e)

deviation post = abs(valence(a)-target val(a))

+ abs(valence(b)-target val(b))

+ abs(valence(c)-target val(c))

+ abs(valence(d)-target val(d))

if deviation pre ≤ deviation post do

flip(e)

The tangential relaxation() function applies an iterative smoothing
filter to the mesh. Here, the vertex movement has to be constrained to the
vertex tangent plane in order to stabilize the following projection operator.
Let p be an arbitrary vertex in the current mesh, let n be its normal, and
let q be the position of the vertex as calculated by a smoothing algorithm
with uniform Laplacian weights (see Chapter 4):

q =
1

|N1(p)|
∑

pj∈N1(p)

pj .

The new position p′ of p is then computed by projecting q onto p’s
tangent plane:

p′ = q + nnT (p− q).

Again, this can be implemented as follows:

tangential relaxation()

for each vertex v do

q[v] = the barycenter of v’s neighbor vertices

for each vertex v do

let p[v] and n[v] be the position and normal of v, respectively

p[v] = q[v] + dot(n[v],(p[v] − q[v])) * n[v]

Finally, the project to surface() function maps the vertices back to
the surface.

Feature preservation. A few rules are added to make sure that the remesh-
ing algorithm preserves the features of the input model (see Figure 6.13).
We assume that the feature edges and vertices have already been marked
in the input model, e.g., by automatic feature detection algorithms or by
manual specification [Vorsatz et al. 03,Botsch 05].

i
i

i
i

i
i

i
i

6.5. Triangle-Based Remeshing 103

Figure 6.13. Isotropic, feature-sensitive remeshing (right) of a CAD model (left).

I Corner vertices with more than two or exactly one incident feature
edge have to be preserved and are excluded from all topological and
geometric operations.

I Feature vertices may only be collapsed along their incident feature
edges.

I Splitting a feature edge creates two new feature edges and a feature
vertex.

I Feature edges are never flipped.

I Tangential smoothing of feature vertices is restricted to univariate
smoothing along the corresponding feature lines.

As shown by Figures 6.13 and 6.14, the algorithm above produces quite
good results. It is also possible to incorporate additional regularization

Figure 6.14. Isotropic remeshing: Max Planck model at full resolution (two left-

most images), uniform mesh (center), and adaptive mesh (right).

i
i

i
i

i
i

i
i

104 6. Remeshing

terms by adjusting the weights that are used in the smoothing phase. This
allows one to achieve a uniform triangle area distribution or to implement
an adaptive remeshing algorithm that produces finer elements in regions of
high curvature.

6.6 Quad-dominant Remeshing
Partitioning a surface into quadrangle tiles is a common requirement in
computer graphics, computer-aided geometric design, and reverse engineer-
ing. Such quad tilings are amenable to a variety of subsequent applications
due to their tensor-product nature, such as B-spline fitting, simulation, tex-
ture atlasing, and rendering with highly detailed modulation maps. Quad
meshes are also useful in modeling as they aptly capture the symmetries of
natural or man-made geometry.

In an anisotropic mesh the elements should orient to the principal
curvature directions, i.e., they are elongated along the minimum curva-
ture direction and shortened along the maximum curvature direction (see
Chapter 3). Anisotropic triangle meshes of a given target complexity can
easily be produced by incrementally decimating the input model down to
a desired target complexity (see also Chapter 7). No matter whether one
uses quadric error metrics, (one-sided) Hausdorff distance, or the normal
deviation to rank the priorities of removal operations, the result will always
be an anisotropic triangle mesh that naturally orients to the principal cur-
vature directions. The meshes that are produced by this method satisfy the
definition of being anisotropic, but unfortunately they do not convey the
orthogonal structure of the curvature lines. To produce such a structure,
it is usually better to first compute a quadrangle mesh.

Automatically converting a triangulated surface (issued, e.g., from a
3D scanner) into a quad mesh is a notoriously difficult task. Stringent
topological conditions make quadrangulating a surface a rather constrained
and global problem compared to triangulating it. Further hurdles are added
by application-dependent meshing requirements such as edge orthogonality,
sizing, mesh regularity, and orientation and alignment of the elements with
the geometry.

Several paradigms have been proposed for generating quadrangle
meshes:

I Quadrangulation. A number of techniques have been proposed to quad-
rangulate point sets. A subset of these techniques allows generating
all-convex quadrangles by adding Steiner points [Bremner et al. 01]
and well-shaped quadrangles using circle packing [Bern and Epp-
stein 00]. Quadrangle meshing thus amounts to carefully placing
a set of points, which are then automatically quadrangulated. In the

i
i

i
i

i
i

i
i

6.6. Quad-dominant Remeshing 105

context of surface remeshing, the main issue with this paradigm is
the lack of control over the orientation and alignment of the edges as
well as over the mesh regularity.

I Conversion. One way to generate quadrangle meshes is to first gener-
ate a triangle or polygon mesh, then convert it to a quadrangle mesh.
Examples of such approaches commonly proceed by pairwise triangle
merging and 4-8 subdivision, or by bisection of hex-dominant meshes
followed by barycentric subdivision [Boier-Martin et al. 04]. As for
quadrangulation of point sets, this approach provides the user with
little control over the orientation and alignment of the mesh edges.

I Curve-based sampling. One way to control the edge alignment and
orientation of the mesh edges is to place a set of curves that are
everywhere tangent to direction fields. The vertices of the final mesh
are obtained by intersecting the networks of curves. When using
lines of curvatures, the output meshes are quad-dominant, although
not pure quadrangle meshes as T-junctions can appear due to the
greedy process used for tracing the lines of curvatures. Another curve-
based approach consists of placing a set of minimum-bending curves
[Marinov and Kobbelt 06].

I Contouring. When pure quadrangle meshes are sought after (with-
out T-junctions), a robust approach consists of computing two scalar
functions and extracting a quadrangle surface tiling by contouring
these functions along well-chosen isovalues.

We restrict ourselves to the approaches based on curve-based sampling
and refer to Chapter 5 for methods based on contouring, as they are very
close to parameterization techniques.

6.6.1 Lines of Curvatures

The remeshing technique introduced by Alliez et al. generates a quad-
dominant mesh that reflects the symmetries of the input shape by sampling
the input shape with curves instead of the usual points [Alliez et al. 03a]
(see overview in Figure 6.15).

The algorithm comprises three main stages. The first stage recovers
a continuous model from the input triangle mesh by estimating one 3D
curvature tensor per vertex (see Chapter 3). The normal component of
each tensor is then discarded, and a 2D piecewise linear curvature tensor
field is built after computing a discrete conformal parameterization. This
tensor field is then altered by linear convolution with a Gaussian kernel
to obtain smoother principal curvature directions. The singularities of the
tensor field (the umbilics) are also extracted. (See Figure 6.16.)

i
i

i
i

i
i

i
i

106 6. Remeshing

Figure 6.15. Anisotropic remeshing: From an input-triangulated geometry, the

curvature tensor field is estimated, then smoothed, and its umbilics are deduced

(colored dots). Lines of curvatures (following the principal directions) are then

traced on the surface, with local density guided by the principal curvatures, while

usual point-sampling is used near umbilic points (spherical regions). The final

mesh is extracted by subsampling and conforming-edge insertion. The result

is an anisotropic mesh, with elongated quads oriented to the original principal

directions and triangles in isotropic regions. (Image taken from [Alliez et al. 03a].

c©2003 ACM, Inc. Included here by permission.)

The second stage consists of resampling the original mesh in parameter
space by building a network of lines of curvatures (a set of “streamlines”
approximated by polylines) following the principal curvature directions on
anisotropic areas. On isotropic areas the algorithm resorts to common
point sampling (see Figure 6.17). A user-prescribed approximation preci-
sion in conjunction with the estimated curvatures is used to define the local
density of lines of curvatures at each point in parameter space during the
integration of streamlines.

The third stage deduces the vertices of the new mesh by intersecting the
lines of curvatures in anisotropic areas and by selecting a subset of the um-
bilics in isotropic areas (estimated to be spherical). The edges are obtained

i
i

i
i

i
i

i
i

6.6. Quad-dominant Remeshing 107

Figure 6.16. Estimating and smoothing the principal direction fields: Initial min-

imal curvature direction field (left); the color dots indicate umbilics. Minimal

curvature directions after smoothing (center). Another view of the smoothed

direction field (right). (Image taken from [Alliez et al. 03a]. c©2003 ACM, Inc.

Included here by permission.)

Figure 6.17. Point-based sampling versus curve-based sampling. Point-sampling

and Delaunay triangulation are used on near-isotropic areas where principal di-

rections are meaningless (top). Lines of curvatures are sampled on anisotropic

areas to find vertex positions by intersection. These lines are then simplified by

straightening edges, and the faces are deduced (bottom). (Image taken from [Al-

liez et al. 03a]. c©2003 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

108 6. Remeshing

Figure 6.18. Remeshing a dome-like shape. All curvature line segments (red/blue)

and boundary edges (green) are added as constraints to a dense 2D constrained

Delaunay triangulation in parameter space (top). A decimation process trims all

dangling constrained edges, simplifies the chains of constrained edges between

the intersection points, and inserts umbilics into the constrained Delaunay tri-

angulation. What remains is a coarser quad-dominant mesh (bottom). (Image

taken from [Alliez et al. 03a]. c©2003 ACM, Inc. Included here by permission.)

by straightening the lines of curvatures in between the newly extracted ver-
tices in anisotropic areas and are deduced from the Delaunay triangulation
in isotropic areas (see Figure 6.18). The final output is a polygon mesh
with mostly elongated quadrangle elements in anisotropic areas and tri-
angles on isotropic areas. Quads are placed mostly in regions with two
estimated axes of symmetry, while triangles are used to either tile isotropic
areas or to generate conforming convex polygonal elements. On flat areas
the infinite spacing of streamlines will not produce any polygons, except
for the sake of convex decomposition.

Marinov and Kobbelt [Marinov and Kobbelt 04] propose a variant of
Alliez et al.’s algorithm, which differs from the original work in two aspects
(see Figure 6.19):

I Curvature line tracking and meshing are all done in 3D space. There
is no need to compute a global parameterization such that objects of
arbitrary genus can be processed.

I The algorithm is able to compute a quad-dominant, anisotropic mesh
even in flat regions of the model, where there are no reliable curvature
estimates, by extrapolating directional information from neighboring
anisotropic regions.

i
i

i
i

i
i

i
i

6.6. Quad-dominant Remeshing 109

Figure 6.19. Quad-dominant remeshing: The input is a manifold triangle mesh

(left). In regions of low confidence, the curvature lines are not well defined

(center). The algorithm bridges these regions by extrapolation and produces

the result shown (right). (Image taken from [Marinov and Kobbelt 04]. c©2008

IEEE.)

In addition to mere curvature directions, a confidence value for each
face and vertex of the input mesh is estimated as well. The estimate is
based on the coherence of the principal directions at the face’s vertices.
This confidence estimate is then used to propagate the curvature tensors
from regions of high confidence (highly curved regions) into regions of low
confidence (flat regions and noisy regions). Curvature lines are traced di-
rectly on the 3D mesh, i.e., at any time a line sample position is identified
by a tuple (f, (u, v, w)), where f is the index of a triangle and u, v, and
w are the barycentric coordinates of the sample within that triangle. To
advance the current sample point, the face f and its neighborhood are lo-
cally flattened, either by a hinge map (if the curvature line crosses an edge
of f) or by a polar map (if the curvature line crosses one of f ’s vertices);
see Figure 6.20.

When a streamline enters a region of low confidence, the algorithm
switches the tracing mode: instead of integrating along the principal cur-
vatures, the line is simply extrapolated from its last sample points along
a geodesic curve until it enters a region of high confidence again. At this
point the line is then “snapped” to the most similar principal curvature
direction.

Due to the strong visual and structural importance of curvatures,
remeshing algorithms that track these lines produce results that are similar
to those that would have been created by a human designer. However, reli-
ably estimating and tracking the principal curvatures on a discrete triangle
mesh is not that easy, in particular for coarse or noisy meshes. Alliez et
al.’s algorithm outsources most of the computationally hard work to a con-
strained Delaunay triangulation [CGAL 09] by globally paramaterizing the
whole input model. Apart from being hard to compute for large models,

i
i

i
i

i
i

i
i

110 6. Remeshing

Figure 6.20. Examples of a hinge map (left) and a polar map (right). (Image

taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

a global parameterization restricts the inputs to genus-0 manifolds with
a single boundary loop. Higher-genus objects have to be cut open along
each handle. The approach of Marinov et al. is parameterization-free and
hence has no restrictions on the topology of the input model. However,
the extraction of the final mesh might lead to non-manifold configurations
that have to be fixed in a post-processing step.

6.7 Summary and Further Reading
We have provided a brief overview of surface remeshing techniques with a
focus on isotropic triangle meshes and quad-dominant meshes. Isotropic
remeshing is now a well-studied problem, and robust software components
are available for large meshes. Although the variational or incremental
approaches generate the best results, the greedy technique based on De-
launay refinement and filtering provides guarantees over the shape of the
elements as well as over other useful properties, such as the absence of self-
intersection. The latter property is of crucial importance for generating
volumetric meshes for simulation.

Regarding isotropic triangle-based remeshing, the Lloyd-based isotropic
remeshing approach has been extended in several directions: one uses the
geodesic distance on triangle meshes to generate a centroidal geodesic-based
Voronoi diagram [Peyré and Cohen 04]; one is a discrete analog of the Lloyd
relaxation applied onto the input mesh triangles [Valette and Chassery 04];
and another applies a quasi-Newton version of the Lloyd relaxation over
a Voronoi diagram restricted to the input surface mesh [Yan et al. 09].
Regarding quad-dominant remeshing, a recent work [Bommes et al. 09]
uses a mixed-integer solver in order to compute a set of parameterizations
that tile the input surface mesh without any T-junctions.

i
i

i
i

i
i

i
i

SIMPLIFICATION

& APPROXIMATION

Mesh simplification and approximation describes a class of algorithms that
transform a given polygonal mesh into another mesh with fewer faces,
edges, and vertices [Gotsman et al. 02, Luebke et al. 03]. The simplifi-
cation or approximation procedure is usually controlled by user-defined
quality criteria, which favor meshes that preserve specific properties of the
original data as much as possible. Typical criteria include geometric distor-
tion (e.g., Hausdorff distance, normals) or visual appearance (e.g., colors,
features, etc.) [Cignoni et al. 98a].

There are many applications for simplification and approximation al-
gorithms. First, they obviously can be used to adjust the complexity of a
geometric data set. This makes geometry processing a scalable task where
differently complex models can be used on computers with varying comput-
ing performance. Second, since many decimation schemes work iteratively,
i.e., they decimate a mesh by removing one vertex at a time, they usually
can be inverted. Running a decimation scheme backwards means recon-
structing the original data from a decimated version by inserting more and
more detail information. This inverse decimation can be used for adap-
tive refinement and progressive transmission of geometry data [Hoppe 96].
Obviously, in order to make progressive transmission effective, we have to
use decimation operators whose inverses can be encoded compactly (see
Figure 7.3).

There are several conceptual approaches to mesh simplification. In
principle we can think of the complexity reduction as a one-step operation

111

i
i

i
i

i
i

i
i

112 7. Simplification & Approximation

or as an iterative procedure. The vertex positions of the decimated mesh
can be obtained as a subset of the original set of vertex positions, as a
set of weighted averages of original vertex positions, or by resampling the
original piecewise linear surface. In the literature the different approaches
are classified into

I vertex clustering algorithms;

I incremental decimation algorithms;

I resampling algorithms;

I mesh approximation algorithms.

Vertex clustering algorithms are usually very efficient and robust. The com-
putational complexity is typically linear in the number of vertices. How-
ever, the quality of the resulting meshes is not always satisfactory.

Incremental algorithms in most cases lead to higher-quality meshes. The
iterative decimation procedure can take arbitrary user-defined criteria into
account, according to which the next removal operation is chosen. However,
its total computational complexity in the average case is O(n log n) and can
go up to O(n2) in the worst case, especially when a global error threshold
is to be respected.

Resampling algorithms are the most general approach to mesh decimation.
Here, new sample points are more or less freely distributed over the origi-
nal surface mesh. By connecting these samples, a completely new mesh is
constructed. One major motivation for resampling techniques is that they
can force the resulting mesh to have a special connectivity structure, i.e.,
subdivision connectivity (or semi-regular connectivity). By this they can
be used to build multiresolution representations based on subdivision ba-
sis functions [Eck et al. 95]. The most serious disadvantage of resampling,
however, is that aliasing errors can occur if the sampling pattern is not per-
fectly aligned to features in the original geometry. To avoid aliasing effects,
many resampling schemes to some degree require manual pre-segmentation
of the data for reliable feature detection. Resampling techniques are dis-
cussed in detail in Chapter 6.

Mesh approximation algorithms are devised to minimize well-defined error
metrics through various mesh optimization strategies [Hoppe et al. 93,Alliez
et al. 99,Cohen-Steiner et al. 04].

In the following sections we explain in more detail the various ap-
proaches to mesh simplification and approximation. Usually there are many
choices for the different ingredients and sub-procedures in each algorithm,
and we will point out the advantages and disadvantages for each class.

i
i

i
i

i
i

i
i

7.1. Vertex Clustering 113

7.1 Vertex Clustering

The basic idea of vertex clustering is as follows: For a given approximation
tolerance ε we partition the bounding space around the given object into
cells with diameter smaller than the tolerance. For each cell we compute a
representative vertex position, which we assign to all vertices that fall into
this cell. By this clustering step, original faces degenerate if two or three
of their corners lie in the same cell and consequently are mapped to the
same position. The decimated mesh is eventually obtained by removing all
degenerate faces [Rossignac and Borrel 93].

The remaining faces correspond to those original triangles whose corners
all lie in different cells. Stated otherwise, if p is the representative vertex
for the vertices p0, . . . , pn in the cluster P , and q is the representative for
the vertices q0, . . . , qm in the cluster Q, then p and q are connected in
the decimated mesh if and only if at least one pair of vertices (pi,qj) was
connected in the original mesh.

One drawback of vertex clustering is that the resulting mesh might no
longer be 2-manifold, even if the original mesh was. Topological changes
occur when a part of a surface that collapses into a single point is not
homeomorphic to a disk, i.e., when two different sheets of the surface pass
through a single ε-cell. However, this disadvantage can also be considered
as an advantage. Since the scheme is able to change the topology of the
given model, we can very effectively reduce the object complexity. Con-
sider, e.g., applying mesh decimation to a 3D model of a sponge. Here, any
decimation scheme that preserves the surface topology cannot reduce the
mesh complexity significantly since all the small holes have to be preserved.

The computational efficiency of vertex clustering is determined by the
effort it takes to map the mesh vertices to clusters. For simple uniform
spatial grids this can be achieved in linear time with small constants. Then,
for each cell, a representative has to be found that might require involved
computations. But the number of clusters is usually much smaller than the
number of vertices.

Another apparently nice aspect of vertex clustering is that it automat-
ically guarantees a global approximation tolerance by defining the clusters
accordingly. However, in practice it turns out that the actual approxima-
tion error of the decimated mesh is usually much smaller than the radius
of the clusters. This indicates that, for a given error threshold, vertex clus-
tering algorithms do not achieve optimal complexity reduction. Consider,
as an extreme example, a very fine planar mesh. Here, decimation down to
a single triangle without any approximation error would be possible. The
result of vertex clustering instead will always keep one vertex for every
ε-cell.

i
i

i
i

i
i

i
i

114 7. Simplification & Approximation

7.1.1 Computing Cluster Representatives

Different vertex clustering algorithms vary mainly in how they compute
the representative. Simply taking the center of each cell or the straight
average of its associated vertices are obvious choices, but these methods
rarely lead to satisfying results (see Figure 7.1).

A more reasonable choice is based on finding the optimal vertex position
as a least-squares approximation. For this we exploit the fact that for
sufficiently small ε the polygonal surface patch that lies within one ε-cell
is expected to be piecewise flat, i.e., either the associated normal cone has
a small opening angle (totally flat) or the patch can be split into a small
number of sectors for which the normal cone has a small opening angle. The
optimal representative vertex position should have a minimum deviation
from all the (regression) tangent planes that correspond to these sectors.
If these approximate tangent planes do not intersect in a single point, we
need to compute a solution in the least-squares sense.

Consider one triangle ti within the current cell of interest. Let us denote
by Pi = (xi,ni) the supporting plane of this triangle, with xi an arbitrary
vertex on the plane and ni the unit normal vector of ti. With di = nTi xi
the squared distance of a point x from the plane Pi can be computed as

dist2(x, Pi) =
(
nTi x− di

)2
.

Using homogeneous coordinates x̄ = (x, 1) and n̄i = (ni,−di) the above
equation simplifies to

dist2(x, Pi) =
(
n̄Ti x̄

)2
= x̄T n̄in̄

T
i x̄ =: x̄T Qi x̄,

Figure 7.1. Different choices for the representative vertex when decimating a

mesh using clustering: original (left), average (center), and quadric-based (right).

(Image taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by

permission.)

i
i

i
i

i
i

i
i

7.2. Incremental Decimation 115

with a symmetric 4 × 4 matrix Qi = n̄in̄
T
i . The sum of the quadratic

distances to the supporting planes Pi of all triangles ti within a cell C is
given by

E(x) =
∑
ti∈C

x̄TQix̄ = x̄T

(∑
ti∈C

Qi

)
x̄ =: x̄T Q x̄. (7.1)

The error function is a quadratic form, the isocontours of which are ellip-
soids, and consequently the resulting error measure is called the quadric
error metric (QEM). The coefficients of the quadric are stored in the sym-
metric 4× 4 matrix Q, no matter how many triangle planes Pi contribute
to the error [Garland and Heckbert 97,Lindstrom 00].

The optimal position x minimizing the quadric error can be computed
as the solution of the least squares system(∑

i

ni n
T
i

)
︸ ︷︷ ︸

A

x =

(∑
i

ni di

)
︸ ︷︷ ︸

b

, (7.2)

which can be obtained from the matrix Q as

Q =

[
A −b

−bT c

]
.

If the matrix A has full rank, i.e., if the normal vectors of the patch do not
lie in a plane, then Equation (7.2) could be solved directly. However, to
avoid special case handling and to make the solution more robust, a pseudo-
inverse based on singular value decomposition is preferred [Lindstrom 00].

Note that for irregular triangulations, a weighted sum of squared dis-
tances can improve the result, where typically triangle areas |ti| are used
as weights wi. This leads to an error function E(x) =

∑
i wi dist2(x, Pi),

which simply corresponds to a quadric matrix Q =
∑
i wi Qi. Based on the

blocks of this matrix as defined above, the optimal point is again computed
as the solution of Ax = b.

7.2 Incremental Decimation
Incremental algorithms remove one mesh vertex at a time (see Figure 7.2).
In each step, the best candidate for removal is determined based on user-
specified criteria. Those criteria can be either binary (removal is or is not
allowed) or continuous (rate the quality of the mesh after the removal). Bi-
nary criteria usually refer to the global approximation tolerance or to other

i
i

i
i

i
i

i
i

116 7. Simplification & Approximation

Figure 7.2. Decimation of the dragon mesh consisting of 577,512 triangles (top

left) to a simplified version with 10% (top right), 1% (bottom left), and 0.1%

(bottom right) of the original triangle count. (Model courtesy of the Stanford

Computer Graphics Laboratory.)

minimum requirements, e.g., minimum aspect ratio of triangles. Continu-
ous criteria measure the fairness of the mesh with respect to the approx-
imation error or in some other sense such as, e.g., isotropic triangles are
better than anisotropic ones, and small normal jumps between neighboring
triangles are better than large normal jumps.

Every time a removal is executed, the surface geometry in the vicinity
changes. Therefore, the quality criteria must be re-evaluated. During the
iterative procedure, this re-evaluation is computationally the most expen-
sive part. To preserve the order of the candidates, they are usually kept in
a modifiable heap data structure with the best removal operation on top.
Whenever removal candidates have to be re-evaluated, they are deleted
from the heap and re-inserted with their new value. By this procedure,
the complexity of the update step increases only about O(log n) for large
meshes if the criteria evaluation itself has constant complexity.

7.2.1 Topological Operations

There are several different choices for the basic removal operation. The ma-
jor design goal is to keep the operation as simple as possible. In particular,
this means that we do not want to remove large parts of the original mesh
at once but rather want to remove a single vertex at a time. Strong deci-
mation is then achieved by applying many simple decimation steps instead
of a few complicated ones. If mesh consistency, i.e., topological correctness,

i
i

i
i

i
i

i
i

7.2. Incremental Decimation 117

Figure 7.3. Euler operations and inverses for incremental mesh decimation: ver-

tex removal (top), general edge collapse (middle), and halfedge collapse (bottom).

matters, then the decimation operator must be an Euler operator so as to
preserve the Euler characteristic (see Equation (1.5), [Hoppe et al. 93]).

Vertex removal. The first operator one might think of deletes one vertex
plus its adjacent triangles. For a vertex with valence k, this leaves a k-
sided hole. This hole can be fixed by any polygon triangulation algorithm
[Schroeder et al. 92]. Although there are several combinatorial degrees of
freedom, the number of triangles will always be k − 2. Hence, the removal
operation decreases the number of vertices by one, the number of edges by
three, and the number of triangles by two (see Figure 7.3 (top)).

Edge collapse. Another decimation operator takes two adjacent vertices, p
and q, and collapses the edge between them, i.e., both vertices are moved
to the same new point location r [Hoppe 96] (see Figure 7.3 (middle)). By
this operation, two adjacent triangles degenerate and can be removed from
the mesh. In total this operator also removes one vertex, three edges, and
two triangles. The degrees of freedom in this edge collapse operator emerge
from the freedom to choose the new point location r.

i
i

i
i

i
i

i
i

118 7. Simplification & Approximation

Both operators that we discussed so far are not unique. In either case
there is some optimization involved to find the best local triangulation or
the best vertex position. Conceptually this is not well designed since it
mixes the global optimization (which candidate is best according to the
sorting criteria for the heap) with local optimization.

Halfedge collapse. A possible way out is the so-called halfedge collapse
operation: for an ordered pair (p, q) of adjacent vertices, p is moved
to q’s position [Kobbelt et al. 98a] (see Figure 7.3 (bottom)). This can
be considered as a special case of edge collapsing where the new vertex
position r coincides with q. On the other hand, it can also be considered
as a special case of vertex deletion where the triangulation of the k-sided
hole is generated by connecting all neighboring vertices with vertex q.

The halfedge collapse has no degrees of freedom. Notice that p → q
and q → p are treated as independent removal operations that both have
to be evaluated and stored in the candidate heap. Since halfedge collapsing
is a special case of the other two removal operations, one might expect an
inferior quality of the decimated mesh. In fact, halfedge collapsing merely
sub-samples the set of original vertices while the full edge collapse can
act as a low-pass filter where new vertex positions are computed, e.g., by
averaging original vertex positions. However, in practice this effect becomes
noticeable only for extremely strong decimation where the exact location
of individual vertices really matters.

The big advantage of halfedge collapsing is that for moderate deci-
mation, the global optimization (i.e., candidate selection based on user-
specified criteria) is completely separated from the decimation operator
that makes the design of mesh decimation schemes more modular.

Note that an edge collapse or halfedge collapse can lead to a topolog-
ically invalid configuration. Collapsing an edge (p,q) is a valid operation
if and only if the following two criteria hold [Hoppe et al. 93]:

I If both p and q are boundary vertices, then the edge (p,q) has to be
a boundary edge.

I For all vertices r incident to both p and q there has to be a triangle
(p,q, r). In other words, the intersection of the one-rings of p and q
consists of vertices opposite the edge (p,q) only.

Another formulation of these criteria is the so-called link condition [Dey
et al. 99, Edelsbrunner 06], which states under which conditions an edge
collapse preserves the mesh topology. Examples of illegal edge collapses
are shown in Figure 7.4.

i
i

i
i

i
i

i
i

7.2. Incremental Decimation 119

Figure 7.4. Two examples for topologically illegal (half-)edge collapses p → q.

Collapsing two boundary vertices through the interior leads to a non-manifold

pinched vertex (top). The one-rings of p and q intersect in more than two vertices,

which after collapsing results in a duplicate fold-over triangle and a non-manifold

edge (bottom).

Vertex contraction. If the above criteria are satisfied, all of the above re-
moval operations preserve the mesh consistency and consequently the topol-
ogy of the underlying surface. No holes in the original mesh will be closed,
no handles will be removed, and no connected component will be elimi-
nated. If a decimation scheme should be able to also simplify the topology
of the input model, we have to use non-Euler removal operators. The
most common operator in this class is vertex contraction, where two ver-
tices p and q can be contracted into one new vertex r even if they are
not connected by an edge [Garland and Heckbert 97, Schroeder 97]. This
operation reduces the number of vertices by one but keeps the number of
triangles constant. The implementation of mesh decimation based on ver-
tex contraction requires flexible data structures that are able to represent
non-manifold meshes, since the surface patch around vertex r after the
contraction might no longer be homeomorphic to a (half-)disk.

7.2.2 Distance Measures

Guaranteeing an approximation tolerance during decimation is the most
important requirement for most applications. Usually an upper bound ε is
prescribed, and the decimation scheme looks for the mesh with the least
number of triangles that stays within ε to the original mesh. However,
exactly computing the geometric distance between two polygonal mesh
models is computationally expensive [Klein et al. 96,Cignoni et al. 98b], and
hence conservative approximations are used that can be evaluated quickly.

i
i

i
i

i
i

i
i

120 7. Simplification & Approximation

The generic situation during mesh decimation is that each triangle ti in
the decimated mesh is associated with a sub-patch Si of the original mesh.
Distance measures have to be computed between each triangle ti and either
the vertices or faces of Si. Depending on the application, we have to take
the maximum distance or we can average the distance over the patch.

Error accumulation. The simplest of these techniques is error accumulation
[Schroeder et al. 92]. For example, each edge collapse operation modifies
the adjacent triangles ti by shifting one of their corner vertices from p or q
to r. Hence, the distance of r to ti is an upper bound for the approximation
error introduced in this step. Error accumulation means that we store an
error value for each triangle and simply add the new error contribution for
every decimation step. The error accumulation can be done based either
on scalar distance values or on distance vectors. Vector addition takes into
account the effect that approximation error estimates in opposite directions
can cancel each other.

Error quadrics. Another distance measure assigns distance values to the
vertices pj of the decimated mesh. It is based on estimating the sum of
squared distances of pj from all the supporting planes of triangles in the
patches Si that are associated with the triangles ti surrounding pj . This
is, in fact, what the quadric error metric does [Garland and Heckbert 97].

Initially we compute the error quadric Qp for each original vertex p
according to Equation (7.1) by summing over all triangles that are directly
adjacent to p. Then, whenever the edge between two vertices p and q is
collapsed, the error quadric for the new vertex r is accumulated as Qr =
Qp + Qq. The error of collapsing p and q into r is computed according to

Equation (7.1) as Er(r) = r̄TQrr̄. The optimal position for r is given by
the solution of Equation (7.2).

By summing up the quadrics of the edge’s endpoints, the new quadric
Qr represents the sum of squared distances to all planes stored in either Qp

or Qq. Consequently, triangle planes can occur multiple (at most three)
times, which can overestimate the error. Approximating the distance from
a triangle by the distance to a plane can underestimate the true error.
Hence, the quadric error metric gives neither a strict upper nor a strict
lower bound on the true geometric error.

On the other hand, error quadrics have major advantages regarding
memory consumption and computational efficiency: each vertex x stores a
symmetric 4× 4 matrix Q only, and the error can efficiently be computed
in constant time as x̄TQx̄—no matter how many planes are associated to
vertex x during decimation. Because of this, error quadrics are one of the
most frequently employed techniques in mesh decimation.

i
i

i
i

i
i

i
i

7.2. Incremental Decimation 121

Hausdorff distance. Finally, the most expensive but also the sharpest dis-
tance error estimate is the Hausdorff distance [Klein et al. 96]. This
distance measure is defined to be the maximum minimum distance, i.e., if
we have two sets A and B then H(A,B) is found by computing the mini-
mum distance d(a,B) for each point a ∈ A and then taking the maximum
of those values:

H(A,B) = max
a∈A

min
b∈B
‖a− b‖ .

Notice that, in general, H(A,B) 6= H(B,A) and hence the symmetric Haus-
dorff distance is the maximum of both values.

If we assume that the vertices of the original mesh represent sample
points measured on some original geometry, then the faces have been gen-
erated by some triangulation preprocess and should be considered as piece-
wise linear approximations to the original shape. From this point of view,
the correct error estimate for the decimated mesh would be the one-sided
Hausdorff distance H(A,B) from the original sample points A to the deci-
mated mesh B.

To efficiently compute the Hausdorff distance, we have to keep track of
the assignment of original vertices to the triangles of the decimated mesh.
Whenever an edge collapse operation is performed, the removed vertices
p and q (or p alone in the case of a halfedge collapse) are assigned to
the nearest triangle in a local vicinity. In addition, since the edge collapse
changes the shape of the adjacent triangles, the data points that previously
have been assigned to these triangles must be re-distributed. By this, every
triangle ti of the decimated mesh at any time maintains a list of original
vertices belonging to the currently associated patch Si. The Hausdorff
distance is then evaluated by finding the most distant point in this list.

A special technique for exact distance computation is suggested in
[Cohen et al. 96], where two offset surfaces to the original mesh are com-
puted to bound the space in which the decimated mesh has to stay. The
method of Borouchaki and Frey performs an approximate computation of
the Hausdorff distance [Borouchaki and Frey 05].

7.2.3 Fairness Criteria

The distance measures can be used to decide which removal operations
among the candidates are legal and which are not (because they violate the
global error threshold ε). In an incremental mesh decimation scheme we
have to provide an additional criterion that ranks all the legal removal op-
erations. This criterion determines the ordering of candidates in the heap.

One straightforward solution is to use the distance measure for the
ordering as well. This implies that the decimation algorithm will always
remove that vertex in the next step that increases the approximation error

i
i

i
i

i
i

i
i

122 7. Simplification & Approximation

least. While this is a reasonable heuristic in general, we can use other
criteria to optimize the resulting mesh for special application-dependent
requirements.

For example, we might prefer triangle meshes with faces that are as
close as possible to equilateral. In this case we can measure the quality of
a vertex removal operation, e.g., by the ratio of the circumcircle radius to
the length of the shortest edge [Shewchuk 97] of all incident triangles after
the removal.

If we prefer visually smooth meshes, we can use the maximum or average
normal jump between adjacent triangles after the removal as a sorting
criterion. In order to prevent triangles from flipping over due to a collapse
operation, the angle between the normals of each incident triangle before
and after the collapse should be computed. If this angle is close to 180
degrees, then the collapse should not be performed, e.g., by assigning it a
very high cost in the priority queue.

Other criteria might include color deviation or texture distortion if the
input data does not consist of pure geometry but also has color and tex-
ture attributes attached [Cignoni et al. 99, Cohen et al. 98, Garland and
Heckbert 98].

All these different criteria for sorting vertex removal operations are
called fairness criteria since they rate the quality of the mesh beyond the
mere approximation tolerance. If we keep the fairness criterion separate
from the other modules in an implementation of incremental mesh decima-
tion, we can adapt the algorithm to arbitrary user-defined requirements by
simply exchanging that one procedure. This gives rise to a flexible toolbox
for building custom-tailored mesh decimation schemes [Kobbelt et al. 98a].

7.3 Shape Approximation

Cohen-Steiner et al. [Cohen-Steiner et al. 04] have introduced a variational
shape approximation (VSA) algorithm. VSA is highly sensitive to features
and symmetries and produces anisotropic meshes of high approximation
quality. In VSA the input shape is approximated by a set of proxies. The
approximation error is iteratively decreased by clustering faces into best-
fitting regions. In contrast to some remeshing methods, VSA does not
require a parameterization of the input or local estimates of differential
quantities. VSA techniques can also be used in mesh segmentation.

Let M be a triangle mesh and let R = {R1, . . . ,Rk} be a partition of
M into k regions, i.e., Ri ⊂M and

R1 ∪ · · · ∪ Rk =M.

i
i

i
i

i
i

i
i

7.3. Shape Approximation 123

Furthermore, let P = {P1, . . . , Pk} be a set of proxies. A proxy Pi = (xi,ni)
is simply a plane in space through the point xi with normal direction ni.
Cohen-Steiner et al. consider two metrics that measure a generalized dis-
tance of a region Ri to its proxy Pi. The standard L2 metric is defined as

L2(Ri, Pi) =

∫
x∈Ri

(
nTi x− nTi xi

)2
dA,

where the integrand is just the squared orthogonal distance of x from the
plane Pi. They also introduce a new shape metric L2,1 that is based on a
measure of the normal field:

L2,1(Ri, Pi) =

∫
x∈Ri

‖n(x)− ni‖2 dA.

The goal of variational shape approximation is then the following: given
a number k and an error metric E (i.e., either E = L2 or E = L2,1), find
a set R = {R1, . . . ,Rk} of regions and a set P = {P1, . . . , Pk} of proxies
such that the global distortion

E(R,P) =
k∑
i=1

E(Ri, Pi) (7.3)

is minimized. We can then extract a mesh of the original input from the
proxies.

In the following sections we describe and compare two algorithms for
computing an (approximate) minimum of Equation (7.3). The first algo-
rithm is due to Cohen-Steiner et al. and uses Lloyd clustering to produce
the regions Ri. The second method is a greedy approximation to VSA with
additional injectivity guarantees.

7.3.1 Variational Shape Approximation

Cohen-Steiner et al. [Cohen-Steiner et al. 04] use a method to minimize
Equation (7.3) that is inspired by Lloyd’s clustering algorithm, which has
been used for mesh segmentation in [Sander et al. 03]. The algorithm
iteratively alternates between a geometry partitioning phase and a proxy
fitting phase. In the geometry partitioning phase, the algorithm computes
a set of regions that best fit a given set of proxies. In the proxy fitting
phase, the partitioning is kept fixed and the proxies are adjusted.

Geometry partitioning. In the geometry partitioning phase, the algorithm
modifies the set R of regions to achieve a lower approximation error (Equa-
tion (7.3)) while keeping the proxies P fixed. It does so by selecting a num-
ber of seed triangles and greedily growing new regions Ri around them.

i
i

i
i

i
i

i
i

124 7. Simplification & Approximation

First, the algorithm picks the triangle ti from each region Ri that is
most similar to its associated proxy Pi. This is done through iterating once
over all triangles t in Ri and finding the one that minimizes E(t, Pi).

After initializing Ri = {ti}, the algorithm simultaneously grows the
sets Ri. A priority queue contains candidate pairs (t, Pi) of triangles and
proxies. The priority of a triangle-proxy pair (t, Pi) is naturally given as
E(t, Pi). For each seed triangle ti, its neighboring triangles r are found and
the pairs (r, Pi) are inserted into the queue. The algorithm then iteratively
pops pairs (t, Pi) from the queue, checks whether t has already been con-
quered by the region growing process, and if not assigns t to Ri. Again,
the unconquered neighbor triangles r of t are selected, and the pairs (r, Pi)
are inserted to the queue. This process is iterated until the queue is empty
and all triangles are assigned to a region. Note that a given triangle can
appear up to three times simultaneously in the queue. Instead of checking
whether a triangle is already in the queue, the algorithm keeps a status bit
conquered for each triangle and checks this bit before assigning a triangle to
a region. The following pseudocode summarizes the geometry partitioning
procedure:

partition(R = {R1, . . . ,Rk},P = {P1, . . . , Pk})

// find the seed triangles and initialize the priority queue

queue = ∅
for i = 1 to k do

select the triangle t ∈ Ri that minimizes E(t, Pi)
Ri = {t}
set t to conquered

for all neighbors r of t do

insert (r, Pi) into queue

// grow the regions

while the queue is not empty do

get (t, Pi) from the queue that minimizes E(t, Pi)
if t is not conquered then

set t to conquered

Ri = Ri ∪ {t}
for all neighbors r of t do

if r is not conquered then

insert (r, Pi) into queue

The algorithm is initialized by randomly picking k triangles t1, . . . , tk
on the input model, setting Ri = {ti}, and initializing Pi = (xi,ni), where
xi is an arbitrary point on ti and ni is ti’s normal. Then, regions are grown
as in the geometry partitioning phase.

Proxy fitting. In the proxy fitting phase, the partition R is kept fixed while
the proxies Pi = (xi,ni) are adjusted in order to minimize Equation (7.3).

i
i

i
i

i
i

i
i

7.3. Shape Approximation 125

Figure 7.5. Variational shape approximation applied to the fandisk model.

For the L2 metric, the best proxy is the least-squares fitting plane. It can be
found using integral principal component analysis [Cohen-Steiner et al. 04].
When using the L2,1 metric, the proxy normal ni is just the area-weighted
average of the triangle normals. The base point xi is irrelevant for L2,1,
but it is set to the barycenter of Ri for remeshing purposes.

Mesh extraction. From an optimal partitioning R = {R1, . . . ,Rk} and cor-
responding proxies P = {P1, . . . , Pk}, one can now extract an anisotropic
remesh as follows: First, all vertices in the original mesh that are adja-
cent to three or more different regions are identified. These vertices are
projected onto each proxy, and their average position is computed. These
so-called anchor vertices are then connected by tracing the boundaries of
the regions R. The resulting faces are triangulated by performing a “dis-
crete” analog of the Delaunay triangulation over the input triangle mesh
(see the example in Figure 7.5).

7.3.2 Greedy Shape Approximation

In [Marinov and Kobbelt 05], a greedy algorithm to compute an approx-
imate minimum of Equation (7.3) is proposed (see Figure 7.6). Its main
advantages are that

I the algorithm naturally generates a multiresolution hierarchy of shape
approximations (Figure 7.6),

I the output is guaranteed to be free of fold-overs and degenerate faces.

On the downside, due to its greedy approach, it is more likely that the
algorithm will get stuck in a local minimum (although this is rarely observed
in practice). Furthermore, its implementation is involved and requires the
robust computation of Delaunay triangulations.

Setup. In addition to the partition R = {R1, . . . ,Rk} and the proxies
P = {P1, . . . , Pk}, the algorithm maintains a set of polygonal faces F =

i
i

i
i

i
i

i
i

126 7. Simplification & Approximation

Figure 7.6. A multiresolution hierarchy of differently detailed meshes that was

created by greedy shape approximation. (Image taken from [Marinov and

Kobbelt 05].)

{f1, . . . , fk}. Each face fi can be an arbitrary connected polygon, i.e., it
has an outer boundary and possibly a number of inner boundaries around
interior holes. At the beginning of the algorithm, we initialize the sets R,
P, and F as follows:

I Ri = {ti}, i.e., each triangle makes up a region on its own.

I The proxy of Ri is set to Pi = (xi,ni), where xi is an arbitrary point
on ti and ni is ti’s normal.

I fi = ti, in particular the projection of fi onto Pi is injective.

Algorithm invariant. The goal of the algorithm is to guarantee a valid shape
approximation that is free of fold-overs and degenerate faces. This is
achieved by maintaining the following invariant at all times during the
run of the algorithm:

Injectivity constraint: The projection of fi onto Pi is injective.

Note that the initial settings for the setsR, P, and F satisfy this constraint.
Due to the injectivity constraint, one is able to extract a valid triangle

mesh at all times during the run of the algorithm. To produce a triangu-
lation Di of a face fi, one simply projects fi onto Pi (which is a plane),
performs a (planar) constrained Delaunay triangulation there, and lifts the
triangles of the Delaunay triangulation back to fi.

Greedy optimization. The partitioning is now greedily optimized in a loop
that stops when a predefined maximum error or a predefined number of
regions is reached. In each iteration one selects (subject to the injectivity
constraint) two regions Ri and Rj and merges them into a new region
R′ = Ri ∪Rj . (The order in which the merging is performed is described
in the next paragraph.) Then, a new proxy P ′ = (x′,n′) is computed as
an area-weighted average of Pi and Pj for

n′ =
aini + ajnj
‖aini + ajnj‖

and x′ =
aixi + ajxj
ai + aj

,

i
i

i
i

i
i

i
i

7.4. Out-of-Core Methods 127

where ai = area(Ri). Finally, a new face f ′ is computed by identifying
and removing the common boundary edges of fi and fj . The algorithm
then checks for valence-2 vertices: If it finds an interior valence-2 vertex,
it is immediately removed. Boundary valence-2 vertices are only removed
if their distance from the proxy is smaller than a user-defined threshold.

Note again that all the operations described above (merging of faces, re-
moval of valence-2 vertices) are performed only if the injectivity constraint
is not violated by the operation.

Merge priorities. For each adjacent pair Ri and Rj of regions, we could
compute the shape measure E(R′, P ′) as described in Equation (7.3) and
order the region pairs by increasing shape error. In order to speed up the
algorithm, the exact L2 measure is approximated by

L2(f ′) = L2(Di, P ′) + L2(Dj , P ′).

Since Di usually contains much fewer triangles than Ri, this will signifi-
cantly speed up the algorithm. The L2,1 error is replaced by

L2,1(f ′) = ai ‖ni − n′‖2 + aj ‖nj − n′‖2 ,

where ai = area(Ri) as before. The two error measures are combined into
a single, scale-independent measure,

E(f ′) =
(
1 + L2(f ′)

)
·
(
1 + L2,1(f ′)

)
,

which does not require any user-defined weight parameters.
Cohen-Steiner’s algorithm generally produces high-quality results with

low approximation error. However, the mesh extraction step might produce
degenerate triangles and fold-overs. The extensions presented by Marinov
produce a hierarchy of reconstructions that are guaranteed to be free of
fold-overs. However, due to the greedy approach, Marinov’s algorithm is
more likely to get stuck in a local optimum. To achieve acceptable running
times, they furthermore have to resort to an approximation of the true L2

or L2,1 errors.

7.4 Out-of-Core Methods
Mesh simplification is frequently applied to very large data sets that are
too complex to fit into main memory. To avoid severe performance degra-
dation due to virtual memory swapping, out-of-core algorithms have been
proposed that allow an efficient decimation of polygonal meshes without
requiring the entire data set to be present in main memory. The challenge

i
i

i
i

i
i

i
i

128 7. Simplification & Approximation

here is to design suitable data structures that avoid random access to parts
of the mesh during the simplification.

Lindstrom presented an approach based on vertex clustering combined
with quadric error metrics for computing the cluster representatives [Lind-
strom 00] (see Section 7.1). This algorithm requires only limited connectiv-
ity information and processes meshes stored as a triangle soup, where each
triangle is represented as a triplet of vertex coordinates. Using a single
pass over the mesh data, an in-core representation of the simplified mesh is
build incrementally. A dynamic hash table is used for fast localization, and
quadrics associated with a cluster are aggregated until all triangles have
been processed. The final simplified mesh is then produced by comput-
ing a representative from the per-cluster quadrics and the corresponding
connectivity information as described above.

Lindstrom and Silva improved on this approach by removing the re-
quirement for the output model to fit into main memory using a multi-pass
approach [Lindstrom and Silva 01]. Their method requires only a constant
amount of memory that is independent of the size of the input and output
data. This improvement is achieved by a careful (slower, but cheaper) use
of disk space, which typically leads to performance overheads between a
factor of two and five, as compared to [Lindstrom 00]. To avoid storing
the list of occupied clusters and associated quadrics in main memory, the
required information from each triangle to compute the quadrics is stored
to disk. This file is then sorted according to the grid locations using an
external sort algorithm. Finally, quadrics and final vertex positions are
computed in a single linear sweep over the sorted file. The authors also
apply a scheme similar to the one proposed in [Garland and Heckbert 97]
to better preserve boundary edges.

Wu and Kobbelt proposed a streaming approach to out-of-core mesh
decimation based on edge collapse operations in connection with a quadric
error metric [Wu and Kobbelt 04]. Their method uses a fixed-size active
working set and is independent of the input and output model complex-
ity. In contrast to the previous two approaches for out-of-core decimation,
their method allows prescribing the size of the output mesh exactly and
supports explicit control over the topology during the simplification. The
basic idea is to sequentially stream the mesh data and incrementally apply
decimation operations on an active working set that is kept in main mem-
ory. Assuming that the geometry stream is approximately pre-sorted, e.g.,
by one coordinate, the spatial coherency then guarantees that the working
set can be small as compared to the total model size (see Figure 7.7). For
decimation they apply randomized multiple-choice optimization, which has
been shown to produce results of similar quality as those produced by the
common greedy optimization. The idea is to select a small random set of
candidate edges for contraction and only collapse the edge with smallest

i
i

i
i

i
i

i
i

7.4. Out-of-Core Methods 129

Figure 7.7. This snapshot of a stream decimation shows the as-yet-unprocessed

part of the input data (left), the current in-core portion (middle), and the already

decimated output (right). The data in the original file happened to be pre-sorted

from right to left. (Image taken from [Wu and Kobbelt 04].)

quadric error. This significantly reduces computation costs, since no global
heap data structure has to be maintained during the simplification pro-
cess. In order to avoid inconsistencies during the simplification, edges can
only be collapsed if they are not part of the boundary between the active
working set and the parts of the mesh that are held out-of-core. Since
no global connectivity information is available, this boundary cannot be
distinguished from the actual mesh boundary of the input model. Thus,
the latter can only be simplified after the entire mesh has been processed,
which can be problematic for meshes with large boundaries.

Isenburg et al. introduced mesh processing sequences, which represent a
mesh as a fixed interleaved sequence of indexed vertices and triangles [Isen-
burg et al. 03]. Processing sequences can be used to improve the out-of-core
decimation algorithms described above. Both memory efficiency and mesh
quality are improved for the vertex clustering method of [Lindstrom 00],
while increased coherency and explicit boundary information help to reduce
the size of the active working set in [Wu and Kobbelt 04].

Shaffer and Garland propose a scheme that combines an out-of-core ver-
tex clustering step with an in-core iterative decimation step [Shaffer and
Garland 01]. The central observation, which is also the rationale behind
the randomized multiple choice optimization, is that the exact ordering of
edge collapses is only relevant for very coarse approximations. Thus, the
decimation process can be simplified by combining many edge collapse op-
erations into single vertex clustering operations to obtain an intermediate
mesh, which then serves as input for the standard greedy decimation (Sec-
tion 7.2). Shaffer and Garland use quadric error metrics for both types of
decimation and couple the two simplification steps by passing the quadrics
computed during clustering to the subsequent iterative edge collapse pass.
This coupling achieves significant improvements when compared to simply
applying the two operations in succession.

i
i

i
i

i
i

i
i

130 7. Simplification & Approximation

7.5 Summary and Further Reading
We have presented an overview of the main paradigms used for the simplifi-
cation and approximation of surface meshes. Incremental mesh decimation
using repeated edge collapses is the most popular algorithm and is widely
used in applications. This approach has been extended in many variants,
such as efficient view-dependent simplification [Hu et al.], maximum error
tolerances (Hausdorff distance) [Botsch et al. 04,Borouchaki and Frey 05],
and intersection-free simplification [Gumhold et al. 03].

In [Wu and Kobbelt 05] the variational shape approximation approach
is taken a step further by allowing for proxies other than simple planes,
e.g., spheres, cylinders, and rolling-ball blends. Apart from requiring fewer
primitives to achieve a certain fitting approximation, this method can also
recover to some extent the semantic structure of the input model. In [Julius
et al. 05] a similar idea is used to decompose the input mesh into nearly
developable segments. Another extension of this algorithm to handling
general quadric proxies has been elaborated in [Yan et al. 06].

i
i

i
i

i
i

i
i

MODEL REPAIR

Model repair is the process of removing artifacts from a geometric model
in order to generate an output model suitable for further processing by
downstream applications that require certain quality guarantees for their
input. The specification of what kind of “models” are considered, what
exactly constitutes an “artifact,” and what is meant by “suitable for further
processing” depends on the particular application scenario: generally, there
is not one single algorithm that is applicable in all situations.

Model repair is necessary in a wide range of geometry processing
applications. For example, consider the design cycle encountered in au-
tomotive CAD/CAM. Car models are typically manually designed in CAD
systems that use trimmed NURBS surfaces as the underlying data structure
for representing freeform surface geometry. However, numerical fluid sim-
ulations for shape analysis and optimization cannot handle such NURBS
patches directly but rather need a watertight, manifold triangle mesh as
input. Thus, there is a need for an intermediate stage that converts the
NURBS model into a triangle mesh. Unfortunately, this conversion process
is prone to producing meshing artifacts that cannot be handled by simula-
tion packages. Thus, the converted model has to be repaired—usually in a
tedious manual post-process, which often takes longer than the simulation
itself.

This chapter has two purposes: to give a practical overview of the
kinds of artifacts that typically occur in geometric models (Section 8.1) and
to introduce the most common algorithmic approaches to removing these

131

i
i

i
i

i
i

i
i

132 8. Model Repair

artifacts (Section 8.2). From a top-level view we distinguish model repair
schemes that explicitly identify and resolve artifacts from those that rely
on an intermediate volumetric representation, which automatically enforces
topological consistency. In Section 8.3 we review the various characteris-
tics of input models that emerge from different data sources in practical
applications. We describe the specific artifacts and problems of each type
and explain their origins. We also reference algorithms that are designed
to process such meshes.

Finally, in Sections 8.4 and 8.5, we present in more detail some of the
standard model repair algorithms. Some of these algorithms are relatively
straightforward while others are more involved such that we can only dis-
cuss their basic mechanisms. We give a short description of how each
algorithm works and to which types of model it is applicable. This pro-
vides a deeper understanding of the often subtle problems that occur in
model repair and offers ways to address these problems.

8.1 Types of Artifacts: The “Freak Show”
The chart in Figure 8.1 shows the most common types of artifacts that
occur in typical input models. Note that this collection is by no means
complete and, in particular, in CAD models one often encounters further
artifacts like self-intersecting (trimming) curves, feature points that do not
lie on their defining geometric primitive, and so on. While some of these
artifacts (e.g., complex edges) have a precise definition, others, like the
distinction between small-scale and large-scale overlaps, are described in-
tuitively rather than by strict definitions. Particularly tricky are (self-)
intersections since they do not affect the proper mesh connectivity and are
sometimes hard to detect. Non-topological artifacts such as badly shaped
triangles are usually removed by remeshing techniques (see Chapter 6).

8.2 Types of Repair Algorithms
Most model repair algorithms can roughly be classified as being either
surface-oriented or volumetric. Understanding these concepts already helps
one to evaluate the strengths and weaknesses of a given algorithm and the
quality that can be expected of its output.

Surface-oriented algorithms operate directly on the input data and try to
explicitly identify and resolve artifacts on the surface. For example, gaps
could be removed by snapping boundary elements (vertices and edges) onto
each other or by stitching triangle strips in between the gap. Holes can be

i
i

i
i

i
i

i
i

8.2. Types of Repair Algorithms 133

Figure 8.1. The freak show. (Image taken from [Botsch et al. 06b]. c©2006 ACM,

Inc. Included here by permission.)

i
i

i
i

i
i

i
i

134 8. Model Repair

closed by filling in a triangulated patch that is optimal with respect to some
surface quality functional. Intersections could be located and resolved by
explicitly splitting edges and triangles.

Surface-oriented repair algorithms only minimally perturb the input
model and are able to preserve the polygonal mesh structure in areas that
are not in the direct vicinity of artifacts. In particular, geometric structure
that might be encoded in the connectivity of the input (e.g., curvature
lines) or material properties that are associated with triangles or vertices
are usually well preserved. Furthermore, these algorithms introduce only a
small number of additional triangles.

To guarantee a valid output, surface-oriented repair algorithms usually
require that the input model already satisfy certain quality requirements
(error tolerances). Often enough these requirements cannot be guaranteed
nor even be checked automatically, so these algorithms are rarely fully
automatic but instead need user interaction and manual post-processing.
Furthermore, due to numerical inaccuracies, certain types of artifacts (like
intersections or large overlaps) cannot be resolved robustly. Other artifacts,
like gaps between two separate solids that are geometrically close to each
other, cannot even be identified.

Volumetric algorithms convert the input model into an intermediate vol-
umetric representation from which the output model is then extracted.
Here, a volumetric representation can be any kind of partitioning of the
embedding space into cells such that each cell can be classified as being
inside, outside, or intersected by the surface. Examples of volumetric rep-
resentations that have been used in model repair include regular Cartesian
grids, adaptive octrees, kd-trees, BSP-trees, and Delaunay triangulations
(see also Section 1.4). By their very nature, volumetric representations
do not allow for artifacts like intersections, holes, gaps, overlaps, or in-
consistent normal orientations. Depending on the type of extraction al-
gorithm, one can often also guarantee the absence of complex edges and
singular vertices. Spurious handles, however, might still be present in the
reconstruction.

Volumetric algorithms are typically fully automatic and produce guar-
anteed watertight models (see Section 1.5.2). Depending on the type of
volume, they can often be implemented very robustly. In particular, the
combinatorial neighborhood relation between cells allows one to reliably
extract a consistent topology of the repaired model. Furthermore, well-
known morphological operators can be used to robustly remove handles
from the volume.

On the downside, the conversion to and from a volume leads to a resam-
pling of the model. It often introduces aliasing artifacts and loss of model
features, and it destroys any structure that might have been present in the

i
i

i
i

i
i

i
i

8.3. Types of Input 135

connectivity of the input model. The number of triangles in the output of
a volumetric algorithm is usually much higher than that of the input model
and thus has to be decimated in a post-processing step. Also, the quality
of the output triangles often degrades and has to be improved afterwards.
Finally, volumetric representations are quite memory-intensive so it is hard
to run them at very high resolutions.

8.3 Types of Input

In this section we list the most common types of input models that occur in
practice. For each type we describe its typical artifacts (see also Section 8.1)
and give references to algorithms that can be used to remove them.

Registered range scans are a set of patches (usually triangle meshes)
that represent overlapping parts of the surface S of a
scanned object. While large overlaps are a distinct advan-
tage in registering the scans, they pose severe problems
when these patches are to be fused into a single consistent
triangle mesh. The main geometric problem in this setup
is the potentially very large overlap of the scans such that
a point x on S is often described by multiple patches
that, due to measurement inaccuracies, do not necessar-
ily agree on x’s position. Furthermore, each patch has
its own connectivity that is usually not compatible to the
connectivity of the other patches. This is in particular a

problem for surface-oriented repair algorithms. (Image taken from [Botsch
et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

There are only a few surface-oriented algorithms for fusing range images
(e.g., Turk et al.’s mesh zippering algorithm [Turk and Levoy 94]). The
most well-known volumetric method is that of Curless and Levoy [Curless
and Levoy 96].

Fused range scans are manifold meshes with boundaries (i.e., gaps, holes
and islands). Either these artifacts are due to obstructions in the line
of sight of the scanner or they result from bad surface properties of the
scanned model, such as transparency or glossiness. The goal is to identify
and fill these holes (see Section 8.4.2). In the simplest case, the filling
is a patch that minimizes some bending energy and connects smoothly
to the boundary of the hole. Advanced algorithms either synthesize new
geometric detail that resembles the detail present in a local neighborhood
of the hole or they transplant geometry from other parts of the model

i
i

i
i

i
i

i
i

136 8. Model Repair

in order to increase the realism of the reconstruction [Sharf et al. 04].
The main obstacles in hole filling are the incorporation of islands into the

reconstruction and the avoidance of geometric self-
intersections. (Image taken from [Botsch et al. 06b].
c©2006 ACM, Inc. Included here by permission.)

Kliencsek proposes an algorithm based on dynamic pro-
gramming for finding minimum-weight triangulations of
planar polygons [Klincsek 80]. This algorithm is a key
ingredient in a number of other model repair algorithms.
Liepa proposes a surface-oriented method to smoothly fill
holes such that the vertex densities around the hole are
interpolated [Liepa 03]. Podolak et al. cast hole filling
as a graph-cut problem and present an algorithm that is
guaranteed to produce non-intersecting patches [Podolak
and Rusinkiewicz 05]. Davis et al. propose a volumetric
method that diffuses a signed distance function into empty
regions of the volume [Davis et al. 02]. Pauly et al. use a
database of geometric priors from which they select shapes
to fill in regions of missing data [Pauly et al. 05].

Triangle soups are mere sets of triangles with little or no connectivity infor-
mation. They most often arise in CAD models that are manually created

in a boundary representation where
users typically assemble predefined el-
ements (taken from a library) with-
out bothering about consistency con-
straints. Due to the manual layout,
these models typically are made of
only a few thousands triangles, but
they may contain all kinds of ar-
tifacts.Thus, triangle soups are well
suited for visualization but cannot be
used in most geometry-processing ap-

plications. (Image taken from [Botsch et al. 06b]. c©2006 ACM, Inc. In-
cluded here by permission.)

Intersecting triangles are one of the most common types of artifacts
in triangle soups because the detection and in particular the resolution
of intersecting geometry during interactive modeling would be much too
time-consuming and numerically unstable. Complex edges and singular
vertices are often intentionally created to avoid the duplication of vertices
and the subsequent need to keep these duplicate vertices consistent. Other
artifacts include inconsistent normal orientations, small gaps, and excess
interior geometry.

i
i

i
i

i
i

i
i

8.3. Types of Input 137

Surface-oriented methods can efficiently remove some of these artifacts
in simple cases [Guéziec et al. 01] (see Section 8.4.3) but methods that
are able to automatically and robustly repair general triangle soups are
not known. However, there are a number of volumetric methods that can
be applied to triangle soups: Murali et al. produce a BSP tree from the
triangle soup and automatically compute for each leaf a solidity [Murali and
Funkhouser 97] (see Section 8.5.3). Nooruddin et al. use ray-casting and
filtering to convert the triangle soup into a volumetric representation from
which they then extract a consistent, watertight model [Nooruddin and
Turk 03] (see Section 8.5.1). Shen et al. create an implicit representation by
generalizing the moving least-squares approach from point sets to triangle
soups [Shen et al. 04]. Bischoff et al. convert the soup into a binary grid,
use morphological operators to determine inside/outside information, and
then invoke a feature-sensitive extraction algorithm [Bischoff et al. 05] (see
Section 8.5.2). Greß and Klein use a kd-tree to improve the geometric
fidelity of the volumetric reconstruction [Greß and Klein 03].

Triangulated NURBS patches typically are a set of connected triangle mesh
patches that contain gaps and small
overlaps along the boundaries of
the patches. These artifacts arise
when triangulating two or more
trimmed NURBS patches that join
at a common boundary curve. Usu-
ally, each patch is triangulated sep-
arately; thus the common boundary
is sampled differently from each side.
Other artifacts present in such mod-
els include intersecting patches and

inconsistent normal orientations. Triangulated NURBS patches are usu-
ally repaired using surface-oriented methods. These methods first try to
establish a consistent orientation of the input patches. Then they identify
corresponding parts of the boundary and snap these parts onto each other.
Thus, any structure that might be present in the triangulation (isolines,
curvature lines, etc.) is preserved. (Image taken from [Botsch et al. 06b].
c©2006 ACM, Inc. Included here by permission.)

Barequet and Sharir use a geometric hashing technique to identify and
bridge boundary parts that have a similar shape [Barequet and Sharir 95].
Barequet and Kumar describe an algorithm that identifies geometrically
close edges and snaps them onto each other [Barequet and Kumar 97].
Borodin et al. generalize the vertex-contraction operator to a vertex-edge
contraction operator and thus are able to progressively close gaps [Borodin
et al. 02] (see Section 8.4.4). Bischoff and Kobbelt use a volumetric repair

i
i

i
i

i
i

i
i

138 8. Model Repair

method locally around the artifacts and stitch the resulting patches into the
remaining mesh [Bischoff and Kobbelt 05]. Borodin et al. propose an al-
gorithm to consistently orient the normals that takes visibility information
into account [Borodin et al. 04].

Contoured meshes are meshes that have been extracted from a volumet-
ric dataset by Marching Cubes [Lorensen and
Cline 87], Dual Contouring [Ju et al. 02], or other
polygon mesh extraction algorithms. Provided
that the correct triangulation look-up tables are
used, contoured meshes are always guaranteed to
be watertight and manifold (Section 1.5.2). How-
ever, these meshes often contain other topological
artifacts, such as small spurious handles. (Image
taken from [Botsch et al. 06b]. c©2006 ACM, Inc.
Included here by permission.)

Volumetric data arises most often in medical imaging (CT, MRI, etc.),
as an intermediate representation when fusing registered range scans, or
in constructive solid geometry (CSG). In a volumetric dataset, each point
in space is usually assigned a scalar value with negative values indicating
points that lie inside of the object and positive values indicating points
that lie outside of the object. Hence the surface itself corresponds to the
zero-contour of the scalar field. In a discrete voxel representation, each
voxel can be classified as being either inside, outside, or on the surface
depending on the sign of the scalar field.

Unfortunately, due to the finite resolution of the underlying grid, voxels
are often classified incorrectly, leading to the so-called partial volume effect.
The term refers to topological artifacts in the reconstruction, such as small
handles or disconnected components, that are not consistent with the model
that should be represented by the volume. A well-known failure case is
MRI datasets of the human brain. From anatomy it is well known that
the cortex of the brain is homeomorphic to a sphere, but all too often a
model of higher genus is extracted because anatomically separate features
lie closer together than the size of a voxel. Hence sub-voxel precision is
required to identify separate features [Bischoff and Kobbelt 03].

While disconnected components and small holes can easily be detected
and removed from the main part of the model, handles are more prob-
lematic. Due to the simple connectivity of the underlying Cartesian grid,
it is usually easier to remove them from the volume dataset before ap-
plying the contouring algorithm or to identify and resolve them during
reconstruction [Wood et al. 04]. Guskov and Wood present one of the few
surface-oriented algorithms to remove handles from an input mesh [Guskov
and Wood 01] (see Section 8.4.5).

i
i

i
i

i
i

i
i

8.4. Surface-Oriented Algorithms 139

Badly meshed manifolds contain degenerate elements such as triangles with
zero area, caps (one inner angle close
to π), needles (one edge length close to
zero), and triangle flips (normal jump
between adjacent faces close to π).
These meshes sometimes result from
the tessellation of CAD models or are
the output of Marching Cubes–like
algorithms—in particular if they are
enhanced by feature-preserving tech-
niques. Although badly meshed mani-
folds are in principle manifold and even

often watertight, the degenerate shapes of the elements prevent further
processing (e.g., in finite element mesh generators), and lead to instabili-
ties in numerical simulations. The improvement of such meshes is called
remeshing, and we discuss this issue in depth in Chapter 6. (Image taken
from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

8.4 Surface-Oriented Algorithms
In this section we describe some of the most common surface-oriented repair
algorithms. These algorithms work directly on the input mesh and try to
remove artifacts by explicitly modifying the geometry and the connectivity
of the input.

8.4.1 Consistent Normal Orientation

Consistently orienting the normals of an input model is part of most surface-
oriented repair algorithms and can even improve the performance of volu-
metric algorithms. Usually the orientation of the normals is propagated
along a minimum spanning tree between neighboring patches either in
a preprocessing step or implicitly during traversal of the input [Hoppe
et al. 92].

Borodin et al. describe a more sophisticated algorithm that additionally
takes visibility information into account [Borodin et al. 04]. The input is a
set of arbitrarily oriented polygons. In a preprocessing phase the polygons
are assembled into larger, manifold patches (possibly with boundaries) as
described in Section 8.4.3. The algorithm then builds up a connectivity
graph of neighboring patches where the label of each edge encodes the
normal coherence of the two patches. Furthermore, for each side of every
patch, a visibility coefficient is computed that describes how much of the
patch is visible when viewed from the outside. Finally, a globally consistent

i
i

i
i

i
i

i
i

140 8. Model Repair

orientation is computed by a greedy optimization algorithm: if the coher-
ence of two patches is high, normal consistency is favored over front-face
visibility and vice versa for low coherence.

8.4.2 Surface-Based Hole Filling

In this section we describe an algorithm for computing a smooth triangula-
tion of a hole. The algorithm was proposed by Liepa [Liepa 03] and builds
on work of Klincsek [Klincsek 80] and of Barequet and Sharir [Barequet
and Sharir 95]. It is a basic building block of many other repair algorithms.

The goal is to produce a triangle mesh with a prescribed boundary poly-
gon p0, . . . ,pn−1 that fits into a hole of the mesh to be repaired. The new
patch should be optimized with respect to some surface quality functional.
In the context of mesh repair, this quality functional typically measures
the fairness of the triangulation (e.g., its area, the variation of the triangle
normals, or the curvature distribution; see also Section 4.3).

Let φ(i, j, k) be a quality function that is defined on the set of all tri-
angles (pi,pj ,pk) that could possibly be generated during construction of
the triangulation, and let wi,j be the optimal total quality score that can
be achieved in triangulating the subpolygon pi, . . . ,pj , 0 ≤ i < j < n.
Then, wi,j can be computed recursively as

wi,j = min
i<m<j

wi,m + wm,j + φ(i,m, j).

In this formulation, the triangulation that minimizes the overall quality
score w0,n−1 can be computed by a dynamic programming algorithm that
caches the intermediate values wi,j (see Figure 8.2).

Liepa suggests a quality functional φ that is designed to take into ac-
count the dihedral angles between neighboring triangles as well as the tri-
angle’s area. It produces tuples

φ(i, j, k) = (α,A),

Figure 8.2. Example of producing a triangulation of a polygonal hole. (Image

taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

8.4. Surface-Oriented Algorithms 141

where α is the maximum of the dihedral angles to the neighbors of (pi,pj ,
pk) and A is its area. Note that this quality functional in particular pe-
nalizes foldovers. When comparing different values of φ, a low normal
variation is favored over a low area:

(α1, A1) < (α2, A2) : ⇔ (α1 < α2) ∨ (α1 = α2 ∧A1 < A2).

Note that when evaluating φ one has to take into account that the neigh-
boring triangles can either belong to the mesh that surrounds the hole or
to the patch that is currently being created. A triangulation of a hole that
is produced using this weight function is shown in Figure 8.3.

To produce a smooth hole filling, Liepa suggests producing a tangent-
continuous fill-in of minimal thin plate energy: First, the holes are identified
and filled by a coarse triangulation as described above. These patches are
then refined such that their vertex densities and average edge lengths match
those of the mesh surrounding the holes (see Chapter 6). Finally, the patch
is smoothed so as to blend with the geometry of the surrounding mesh (see
Chapter 4).

This algorithm reliably fills holes in models with smooth patches. The
density of the vertices matches that of the surrounding surface (see Fig-
ure 8.4). The complexity of building the initial triangulation is O(n3),
which is acceptable for most holes that occur in practice. However, the
algorithm does not check or avoid geometric self-intersections and does not
detect or incorporate islands into the filling patch.

Figure 8.3. A hole triangulation that minimizes normal variation and total area.

(Image taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by

permission.)

i
i

i
i

i
i

i
i

142 8. Model Repair

Figure 8.4. Liepa’s hole-filling algorithm. Note that the vertex density of the fill-

in matches that of the surrounding mesh. (Image taken from [Botsch et al. 06b].

c©2006 ACM, Inc. Included here by permission.)

8.4.3 Conversion to Manifolds

Guéziec et al. propose a method to remove complex edges and singular
vertices from non-manifold input models [Guéziec et al. 01]. The output is
guaranteed to be a clean manifold triangle mesh, possibly with boundaries.
As the algorithm operates solely on the connectivity of the input model,
it does not suffer from numerical robustness issues. In a preprocessing
phase all complex edges and singular vertices are identified by counting the
number of adjacent faces. The input is then cut along these complex edges
into separate manifold patches. Finally, pairs of matching edges (i.e., edges
that have geometrically the same endpoints) are identified and merged, if
possible, in a topologically consistent manner.

The scope of this algorithm is limited to the removal of complex edges
and singular vertices. This, however, is done efficiently and robustly.

8.4.4 Gap Closing

A number of surface-oriented algorithms have been proposed to close the
gaps and small overlaps that are typical for triangulated NURBS models.

Barequet and Sharir proposed one of the first algorithms to fill gaps and
remove small overlaps [Barequet and Sharir 95]. The algorithm identifies
matching parts of the boundaries by a geometric hashing technique and
fills the gaps by patching them with triangle strips or by the technique
presented in Section 8.4.2.

i
i

i
i

i
i

i
i

8.4. Surface-Oriented Algorithms 143

Barequet and Kumar propose an algorithm to repair CAD models that
identifies and merges pairs of boundary edges [Barequet and Kumar 97].
For each pair of boundary edges, the area between the two edges normalized
by the edge lengths is computed. This score measures the geometric error
that would be introduced by merging the two edges. Pairs of boundary
edges are then iteratively merged in order of increasing score.

Borodin et al. propose an algorithm that snaps boundary vertices to
nearby boundary edges [Borodin et al. 02]. The algorithm is based on a
standard mesh-decimation technique, but it generalizes the vertex-vertex
contraction operator into a vertex-edge contraction operator that merges
boundary vertices v and boundary edges e. Let c be the closest point to
v on e. If c is an interior point of e, c is inserted into e by splitting the
adjacent triangle in two. Finally, v and c are merged. The cost of a vertex-
edge collapse is defined as the distance of v to c. The algorithm maintains
a priority queue of vertex/edge pairs and snaps them in order of increasing
distance.

The semantics of these surface-oriented algorithms are well defined,
and they are usually easy to implement. If the input data is well behaved
and the user parameters are chosen in accordance with the error that was
accepted during triangulation, they manage to produce satisfying results.
However, there are no guarantees on the quality of the output. Due to
the simple heuristics, many artifacts remain unresolved. Therefore, these
algorithms are usually run in an interactive loop that allows the user to
override the decisions made by the algorithms or to interactively steer the
algorithms towards the expected result.

8.4.5 Topology Simplification

Guskov and Wood proposed an algorithm that detects and resolves all
handles up to a given size ε in a manifold triangle mesh [Guskov and
Wood 01]. Handles are removed by cutting the input along a non-separating
closed path and sealing the two resulting holes by triangle patches (see
Figure 8.5).

Given a seed triangle s, the algorithm conquers a geodesic region Rε(s)
around s in the order that is given by Dijkstra’s algorithm on the dual graph
of the input mesh M. Note that Dijkstra’s algorithm not only computes
the length of a shortest path from each triangle t to the seed s but also
produces a parent relation p(t) such that the sequence t, p(t), p2(t), . . . , s
traces a shortest path from t back to the seed s.

The boundary of Rε(s) consists of one or more boundary loops. When-
ever a boundary loop touches itself along an edge, it is split into two new
loops and the algorithm proceeds. However, when two different loops touch
along a common edge e1,2, a handle is detected. Let t1 and t2 be the two

i
i

i
i

i
i

i
i

144 8. Model Repair

Figure 8.5. The Happy Buddha model (far left) contains more than 100 spurious

handles. From left to right: a close-up of a handle; a non-separating closed cycle

along a handle; the handle was removed by cutting along the non-separating cycle

and filling the two resulting holes with triangle patches. (Model courtesy of the

Stanford Computer Graphics Laboratory. Image taken from [Botsch et al. 06b].

c©2006 ACM, Inc. Included here by permission.)

triangles that are adjacent to the common edge e1,2 and let pn1(t1) =
pn2(t2) be a common ancestor of t1 and t2. Then the closed path

pn1(t1), . . . , p(t1), t1, t2, p(t2), . . . , pn2(t2)

is a cycle of adjacent triangles that traces around the handle. The input
model is cut along this triangle strip and the two boundary loops that
are created by this cut are sealed (e.g., by the method presented in Sec-
tion 8.4.2).

To detect all handles of the input mesh M, one has to perform the
region growing for every triangle s ∈ M. Guskov and Wood describe a
method to considerably reduce the necessary number of seed triangles and
thus are able to significantly speed up the algorithm [Guskov and Wood 01].

The proposed method reliably detects small handles up to a user-
prescribed size and removes them effectively. However, the algorithm is
slow, does not detect long, thin handles, and cannot guarantee that no
geometric self-intersections are created after a handle is removed.

8.5 Volumetric Repair Algorithms

This section presents more recent repair algorithms that use an intermedi-
ate volumetric representation to implicitly remove the artifacts of a model.
This volumetric representation might be as simple as a regular Cartesian
voxel grid or as complex as a hierarchical binary space partition.

i
i

i
i

i
i

i
i

8.5. Volumetric Repair Algorithms 145

8.5.1 Volumetric Repair on Regular Grids

Nooruddin and Turk proposed one of the first volumetric techniques to re-
pair arbitrary models that contain gaps, overlaps, and intersections
[Nooruddin and Turk 03]. Additionally, they employed morphological op-
erators to resolve topological artifacts like holes and handles.

First, the model is converted into a Cartesian voxel grid: a set of pro-
jection directions {di} is produced (e.g., by subdividing an octahedron or
icosahedron). Then the model is projected along these directions onto an
orthogonal planar grid. For each grid point x, the algorithm records the
first and last intersection points of the ray x + λdi with the input model.
A voxel is classified by such a ray as inside if it lies between these two
extremal depth samples; otherwise, it is classified as outside. The final
classification of each voxel is derived from the majority vote of all the rays
passing through that voxel. The Marching Cubes algorithm is then applied
to extract the surface between inside and outside voxels.

In an optional second step, thin handles and holes are removed from
the volume by applying morphological operators that are also known from
image processing [Haralick et al. 87]. The dilation operator Dε computes
the distance from each outside voxel to the inside component. All voxels
that are within a distance of ε to the inside are also set to be inside. Thus,
the dilation operator closes small handles and bridges small gaps. The
erosion operator Eε works exactly the other way around and removes thin
bridges and handles. Usually, dilation and erosion are used in conjunction,
Eε ◦Dε, to avoid expansion or shrinkage of the model.

The classification of inside and outside voxels in this algorithm is rather
heuristic and often not reliable. Furthermore, the algorithm is not feature-
sensitive.

8.5.2 Volumetric Repair on Adaptive Grids

Bischoff et al. propose an improved volumetric technique to repair arbitrary
triangle soups [Bischoff et al. 05] (see Figure 8.6). The user provides an
error tolerance ε and a maximum diameter ρ up to which gaps should be
closed. The algorithm first creates an adaptive octree representation of
the input model where each cell stores the triangles intersecting with it.
From these triangles a feature-sensitive sample point can be computed for
each cell. Then, a sequence of morphological operations is applied to the
octree to determine the topology of the model. Finally, the connectivity
and geometry of the reconstruction are derived from the octree structure
and samples, respectively.

Let us assume that the triangle soup is scaled to fit into the root cell
of the octree. We set the maximum depth of the octree cells such that
the diameter of the finest-level cells is smaller than ε. Each cell stores

i
i

i
i

i
i

i
i

146 8. Model Repair

Figure 8.6. Repaired version (green) of a triangle soup model (blue). The re-

construction is a watertight mesh that is refined near the model features (left).

The volumetric approach reliably detects and removes excess interior geometry

from the input (right). (Image taken from [Bischoff et al. 05]. c©2005 ACM, Inc.

Included here by permission.)

references to the triangles that intersect with it, and initially all triangles
are associated with the root cell. Then, cells that are not yet on maximum
depth are recursively split if they either contain a boundary edge or if
the triangles within the cell deviate too much from a common regression
plane. Whenever a cell is split, its triangles are distributed to its children.
The result is a memory-efficient octree with large cells in planar or empty
regions and fine cells along the features and boundaries of the input model
(see Figure 8.7).

In the second phase, each leaf cell of the octree is classified as being
either inside or outside. First, all cells that contain a boundary of the model
are dilated by n := ρ/ε layers of voxels such that all gaps of diameter ≤ ρ
are closed. A flood fill algorithm then propagates the outside label from
the boundary of the octree into its interior. Finally, the outside component
is dilated again by n layers to avoid an expansion of the model.

A Dual Contouring algorithm then reconstructs the interface between
the outside and the inside cells by connecting sample points. These sample
points are the minimizers of the squared distances to their supporting tri-

i
i

i
i

i
i

i
i

8.5. Volumetric Repair Algorithms 147

Figure 8.7. From left to right: Adaptive octree (boundary cells are marked red).

Dilated boundary (green) and outside component (orange). Outside component

dilated back into the boundary cells. Final reconstruction. (Image taken from

[Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

angle planes; thus, features like edges and corners are well preserved (see
also Chapter 7 on quadric error metrics). If no such planes are available
(e.g., because the cell was one of the dilated boundary cells), the corre-
sponding sample point position is determined by a smoothing operator in
a post-processing step (Chapter 4).

As this algorithm is based on a volumetric representation, it produces
guaranteed manifold output (see Figure 8.6). Features are also well pre-
served. However, despite the adaptive octree, the resolution of the recon-
struction is limited.

8.5.3 Volumetric Repair with BSP Trees

A unique method for converting triangle soups to manifold surfaces is pre-
sented by Murali and Funkhouser [Murali and Funkhouser 97]. The poly-
gon soup is first converted into a BSP tree, where the supporting planes
of the input polygons serve as splitting planes for the space partition (Fig-
ure 8.8 (left)). The leaves of the tree thus correspond to closed convex spa-
tial regions Ci. For each Ci a solidity coefficient si ∈ [−1, 1] is computed
(Figure 8.8 (center)). Negative solidity coefficients designate empty regions
while positive coefficients designate solid regions.

All unbounded cells naturally lie outside the object and thus are as-
signed a solidity value of −1. Let Ci be a bounded cell, and let N (i) be the
indices of all its face neighbors. Thus, for each j ∈ N (i), the intersection
Pij = Ci ∩ Cj is a planar polygon that might be partially covered by the
input geometry. For each j ∈ N (i), let tij be the transparent area, oij the
opaque area, and ai,j the total area of Pij . The solidity si is then related
to the solidities sj of its face neighbors by

si =
1

Ai

∑
j∈N (i)

(tij − oij)sj , (8.1)

i
i

i
i

i
i

i
i

148 8. Model Repair

Figure 8.8. A BSP tree (left), its solidity coefficients (center), and reconstruction

(right). (Image taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here

by permission.)

where Ai =
∑
j ai,j is the total area of the boundary of Ci. Note the two

extreme cases: If Pij is fully transparent, tij − oij = ai,j > 0 (i.e., the
correlation of si and sj is positive), indicating that both cells should be
solid or both cells should be empty. If, on the other hand, Pij is fully
opaque, tij − oij = −ai,j < 0, and the negative correlation indicates that
one cell should be solid and the other empty. Collecting all Equations (8.1)
leads to a sparse linear system

M (s1, . . . , sn)
T

= b,

which can be solved efficiently using a sparse solver (see the appendix). It
can be shown that M is always invertible and that the solidity coefficients
of the solution in fact lie in the range [−1, 1].

Finally, the surface of the solid cells is extracted by enumerating all
neighboring pairs of leaf cells (Ci, Cj). If one of them is empty and the
other is solid, the corresponding (triangulated) boundary polygon Pij is
added to the reconstruction (see Figure 8.8 (right)).

This method does not need (but also cannot incorporate) any user pa-
rameters to automatically produce watertight models. The output might
contain complex edges and singular vertices, but these can be removed us-
ing the algorithm presented in Section 8.4.3. Unfortunately, a robust and
efficient computation of the combinatorial structure of the BSP is hard to
accomplish.

8.5.4 Volumetric Repair on the Dual Grid

Ju proposes a volumetric algorithm to repair arbitrary triangle soups [Ju 04].
While the boundary loops are explicitly traced and filled, the overall scheme
is volumetric.

The algorithm first approximates the input model (Figure 8.9 (far left))
by a subset F of the faces of a Cartesian grid (Figure 8.9 (second from

i
i

i
i

i
i

i
i

8.5. Volumetric Repair Algorithms 149

left)). For memory efficiency, these faces are stored in an adaptive octree.
Additionally, a sample point (and possibly a normal) from the input model
are associated with each face to allow for a more accurate reconstruction.
The boundary ∂F of F is defined as the subset of the grid edges that
are incident to an odd number of faces in F . A simple counting argument
reveals that if G is another face set, such that ∂G = ∂F , then ∂(F	G) = ∅.
Here, the symmetric difference (xor) of two sets A and B is defined as
A	B = (A∪B)\ (A∩B). Another observation is that if ∂F = ∅, then the
grid voxels can be two-colored by inside and outside labels such that two
adjacent voxels have the same label, while two voxels that are separated
by a face of F have different labels.

For each boundary loop Bi of F , the algorithm now constructs a mini-
mal face set Gi such that ∂Gi = Bi. Then, F is replaced by

F ′ = F 	 G1 	 · · · 	 Gn;

thus ∂F ′ = ∅ (Figure 8.9 (second from right)). As voxels at the corners
of the bounding box are known to be outside, they are used as seeds for
propagating the inside/outside information across the grid. The interface
between inside and outside voxels is then extracted using either the March-
ing Cubes [Lorensen and Cline 87] or the Dual Contouring algorithm [Ju
et al. 02] to produce the final reconstruction (Figure 8.9 (far right)).

Ju’s algorithm uses a volumetric representation and thus can be tuned
to produce guaranteed manifold output. The algorithm is quite memory
efficient, i.e., it is insensitive to the size of the input and thus can process
arbitrarily large input meshes in an out-of-core fashion. On the other hand,
the algorithm has problems in handling thin structures. In particular, if
the discrete approximation that is used in the hole-filling step overlaps with
the input geometry, this part of the mesh may disappear or be shattered
into many unconnected pieces. Due to the volumetric representation, the
whole input model is resampled and the output might become extremely
large for fine voxel resolutions.

Figure 8.9. From left to right: input, face set, patches, and reconstruction. (Image

taken from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

150 8. Model Repair

8.6 Summary and Further Reading
In this chapter we have presented several methods for repairing surface
meshes, primarily distinguishing between surface-oriented and volumetric
algorithms. Over the years we have observed an increasing trend towards
volumetric algorithms, which by construction provide a number of guar-
anteed properties in the output—even if they require local resampling of
the input geometry. This is why hybrid methods are receiving more and
more attention. They combine volumetric and surface-oriented approaches
in order to exploit the superior precision that is achieved from processing
polygons directly but at the same time taking advantage of the robust-
ness of volumetric voxel operations and the efficiency of hierarchical space
partitions.

An important special case of the mesh repair problem that we did not
address in this chapter is the removal of geometric self-intersections in 3D
models that are not necessarily reflected by inconsistencies in the topo-
logical connectivity structure of the mesh. Recently, there have been some
powerful algorithms proposed in response to this special case (e.g., [Campen
and Kobbelt 10,Attene 10]).

As knowledge advances in the field, it is tempting to think that model
repair is a necessity that will disappear if and when all other algorithms
along the geometry processing pipeline would be able generate artifact-free
outputs (note that ironically, some algorithms in the literature do not guar-
antee for their output the very properties they require of their input). How-
ever, with more and more data emerging from physical measurements and
coming from heterogeneous sources, the processing of geometric data will
continue to require frequent data format conversions and this will increase
the probability of inconsistencies and flaws due to numerical inaccuracies.
For these reasons, model repair will remain one of the most enduring prob-
lems and it will be critical for further streamlining the geometry processing
pipeline.

In today’s industrial design and development processes compute-intensive
steps like simulation and shape analysis become faster and faster due to
improved (parallel) algorithms and more powerful hardware. However, con-
version and repair steps cannot be accelerated as long as the user has to
control this process manually. Hence, providing automatic conversion and
repair techniques will have maximum impact on the overall process opti-
mization measured in wall clock time, which is what actually matters in
industrial practice. Nonetheless, the inherent ill-posed nature of the model
repair problem explains the parallel development of semiautomatic meth-
ods that provide topology control [Hétroy et al. 08] to the user.

Finally, we recommend for further reading a recent comprehensive sur-
vey by Tao Ju [Ju 09].

i
i

i
i

i
i

i
i

DEFORMATION

In this chapter we introduce techniques for interactively deforming a given
triangle mesh. This topic is challenging, since complex mathematical for-
mulations (1) have to be hidden behind an intuitive user interface and (2)
have to be implemented in a sufficiently efficient and robust manner to al-
low for interactive applications. This chapter gives an overview of different
shape deformation techniques, classifies them into different categories, and
shows their interrelations.

The deformation of a given surface S into the desired surface S ′ is
mathematically described by a displacement function d that associates to
each point p ∈ S a displacement vector d(p). By this it maps the given
surface S to its deformed version S ′:

S ′ := {p + d(p) | p ∈ S} .

For a discrete triangle mesh the displacement function d is piecewise linear,
such that it is fully defined by the displacement vectors di = d(pi) of the
original mesh vertices pi ∈ S.

The user controls the deformation by prescribing displacements d̄i for
a set of so-called handle points pi ∈ H ⊂ S, and by constraining certain
parts F ⊂ S to stay fixed during the deformation (see Figure 9.1):

d(pi) = d̄i, ∀pi ∈ H,
d(pi) = 0, ∀pi ∈ F .

151

i
i

i
i

i
i

i
i

152 9. Deformation

Figure 9.1. A given surface S is deformed into S ′ by a displacement function

d(p). The user controls the deformation by moving a handle region H (yellow)

and keeping the region F (gray) fixed. The unconstrained deformation region R
(blue) should deform in an intuitive, physically-plausible manner.

The main question is how to determine the displacement vectors di for all
the remaining unconstrained vertices pi ∈ R = S \ (H∪F), such that the
resulting shape deformation meets the user’s expectations.

We discuss two classes of shape deformations in this chapter:

I We start with surface-based deformations in Sections 9.1–9.4. Here,
the displacement function d : S → IR3 lives on the original surface S
and is found by computations on the triangle mesh. These methods
offer a high degree of control, since each vertex can be constrained
individually. On the downside, the robustness and efficiency of the
involved computations are strongly affected by the mesh complexity
and the triangle quality of the original surface S.

I Space deformations employ a displacement function d : IR3 → IR3

that warps the whole embedding space IR3 and by this implicitly also
deforms the surface S. The deformation does not require computa-
tions on the triangle mesh S, and therefore such methods are less
affected by the complexity or triangle quality of S. Space deforma-
tions are discussed in Sections 9.5 and 9.6.

All methods that we will describe are linear deformation techniques, i.e.,
they require the solution of a system of linear equations only, typically
in order to minimize some quadratic deformation energy. These methods
have the advantage that linear systems can be solved very efficiently (as
described in the appendix). However, these methods can lead to counterin-
tuitive results for large-scale deformations, as demonstrated in Section 9.7.
Nonlinear deformation techniques overcome these limitations by minimiz-
ing more accurate nonlinear energies, which, however, requires more in-
volved numerical schemes. We will only mention some nonlinear methods
in Section 9.8.

i
i

i
i

i
i

i
i

9.1. Transformation Propagation 153

9.1 Transformation Propagation

A simple and popular approach for shape deformation works by propagat-
ing the user-defined handle transformation within the deformation region
(see Figure 9.2). After specifying the support region R of the deformation
and a handle regionH within it, the handle is transformed using some mod-
eling interface. Its transformation T(x) is propagated and damped within
the support region, leading to a smooth blending between the transformed
handle H′ = T(H) and the fixed region F .

This smooth blend is controlled by a scalar field s : S → [0, 1], which is 1
at the handleH (full deformation), 0 in the fixed region F (no deformation),
and smoothly blends between 1 and 0 within the support region. One
way to construct this scalar field is to compute the distances distF (p) and
distH(p) from p to the fixed part F and the handle region H, respectively,
and to define

s(p) =
distF (p)

distF (p) + distH(p)
. (9.1)

The distances can be either geodesic distances on the surface [Bendels
and Klein 03] or Euclidean distances in space [Pauly et al. 03], where the
first typically gives better results but is more complex to compute [Kimmel
and Sethian 98,Surazhsky et al. 05,Bommes and Kobbelt 07].

As an alternative, the scalar field can also be computed as a harmonic
field on the surface, i.e., ∆s = 0, with Dirichlet constraints 1 and 0 for the

Figure 9.2. After specifying the blue support region and the green handle region

(left), a smooth scalar field is constructed that is 1 at the handle and 0 outside

the support (center). Its isolines are visualized in black and red, where red

is the 1
2
-isoline. This scalar field is used to propagate and damp the handle’s

transformation within the support region (right). (Image taken from [Botsch

et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

154 9. Deformation

regions H and F , respectively:

∆s(pi) = 0, pi ∈ R,
s(pi) = 1, pi ∈ H,
s(pi) = 0, pi ∈ F .

(9.2)

Computing s(pi) from the constraints in Equation (9.2) amounts to solving
a linear Laplacian system (see the appendix).

While this is computationally more expensive than the distance-based
scalar field of Equation (9.1), it is guaranteed to be smooth, whereas the
distance-based fields can have C1-discontinuities. The scalar field s(p)
of either (9.1) or (9.2) can be adjusted further through a transfer function
t : [0, 1]→ [0, 1], which provides more control and flexibility for the blending
process [Pauly et al. 03].

The resulting scalar field is then used to damp the handle transforma-
tion T for each vertex pi ∈ R as

p′i = s(pi) T(pi) + (1− s(pi)) pi.

Alternatively, the damping can be performed separately on the rotation,
scale/shear, and translation components (see, e.g., [Pauly et al. 03]).

This shape deformation approach is simple and efficient to compute and
yields a smooth blending of the transformed handle H and the fixed region
F . However, as shown in Figure 9.3, a problem of this method is that the
distance-based propagation of transformations will typically not result in
the geometrically most intuitive solution. This would require the smooth
interpolation of the handle transformation by the displacement function d,
while otherwise minimizing some physically-motivated deformation ener-
gies, as shown in the next section.

Figure 9.3. A sphere is deformed by lifting a closed handle polygon (left).

Propagating this translation based on geodesic distance causes a dent in the

interior of the handle polygon (center). A more intuitive solution can be achieved

by minimizing physically-motivated deformation energies (right). (Image taken

from [Botsch 05].)

i
i

i
i

i
i

i
i

9.2. Shell-Based Deformation 155

9.2 Shell-Based Deformation
More intuitive surface deformations d with prescribed geometric constraints
d(pi) = d̄i can be modeled by minimizing physically-inspired deformation
energies. The surface is assumed to behave like a physical skin or sheet that
stretches and bends as forces are acting on it. Mathematically, this behav-
ior can be captured by an energy functional that penalizes both stretching
and bending.

Let us for the following derivations assume S and S ′ to be given as
smooth parametric surfaces, i.e., by functions p : Ω→ IR3 and p′ : Ω→ IR3.
Similarly, the displacement function is defined as d : Ω→ IR3.

As introduced in Chapter 3, the first and second fundamental forms,
I(u, v) and II(u, v), can be used to measure geometrically intrinsic (i.e.,
parameterization independent) properties of S, such as lengths, areas, and
curvatures. When the surface S is deformed to S ′, such that its funda-
mental forms change to I′ and II′, the difference of the fundamental forms
can be used as an elastic thin shell energy that measures stretching and
bending [Terzopoulos et al. 87]:

E(S ′) =

∫∫
Ω

ks
∥∥I′(u, v)− I(u, v)

∥∥2

F

+ kb
∥∥II′(u, v)− II(u, v)

∥∥2

F
dudv.

(9.3)

The stiffness parameters ks and kb are used to control the resistance to
stretching and bending, respectively, and ‖·‖F is a (weighted) Frobenius
norm. In a modeling scenario one has to minimize the elastic energy (9.3)
subject to user-defined deformation constraints. As shown in Figure 9.1,
this typically means fixing certain surface parts F and prescribing displace-
ments for the handle region(s) H.

However, minimizing the nonlinear energy (9.3) is computationally too
expensive for interactive applications. It is therefore simplified by replacing
the difference of fundamental forms by partial derivatives of the displace-
ment function d (difference of positions) [Celniker and Gossard 91, Welch
and Witkin 92]. This leads to the following thin-shell energy :

E(d) =

∫∫
Ω

ks

(
‖du(u, v)‖2 + ‖dv(u, v)‖2

)
+ kb

(
‖duu(u, v)‖2 + 2 ‖duv(u, v)‖2 + ‖dvv(u, v)‖2

)
dudv,

(9.4)

where we use the notation du = ∂
∂ud and duv = ∂2

∂u∂vd to denote partial
derivatives. Note that the stretching and bending terms of this energy
are almost the same as the membrane and thin plate energies employed in

i
i

i
i

i
i

i
i

156 9. Deformation

Figure 9.4. A planar surface is deformed by fixing the gray part F , lifting the

yellow handle region H, and minimizing the shell-energy of Equation (9.4) in the

blue region R. The energy consists of stretching and bending terms, and the

examples show the following: pure stretching with ks = 1, kb = 0, (left); pure

bending with ks = 0, kb = 1, (center); and a weighted combination with ks = 1,

kb = 10 (right). (Image taken from [Botsch and Sorkine 08]. c©2008 IEEE.)

Section 4.3 to measure/minimize surface area and surface curvature. The
only difference is that we now use displacements d instead of positions p
and by this minimize the change of area and change of curvature, i.e., we
minimize stretching and bending of the surface (see Figure 9.4).

For the efficient minimization of (9.4), we apply variational calculus
analogously to Section 4.3. This yields the corresponding Euler-Lagrange
equation that characterizes the minimizer of (9.4), again subject to user
constraints:

−ks∆d + kb∆
2d = 0. (9.5)

Hence, in order to minimize the energy (9.4), we simply have to solve
the PDE (9.5). At this point we can switch back from continuous paramet-
ric surfaces to discrete triangle meshes and simply replace the continuous
Laplacian in Equation (9.5) by the discrete cotangent Laplacian (3.11) in-
troduced in Chapter 3. The bi-Laplacian can be defined recursively as the
Laplacian of Laplacians:

∆2di :=
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cotβi,j) (∆dj −∆di) ,

where di = d(pi) = d(vi) denotes the per-vertex displacements. Equa-
tion (9.5) can now be discretized to one condition per vertex:

−ks∆di + kb∆
2di = 0, pi ∈ R,
di = d̄i, pi ∈ H,
di = 0, pi ∈ F .

(9.6)

These conditions can be formulated as a linear system of equations, whose
unknowns are the displacements d1, . . . ,dn of the free vertices R. The

i
i

i
i

i
i

i
i

9.3. Multi-Scale Deformation 157

known displacements for H and F are moved to the right-hand side b:

[
−ksL + kbL

2
]dT1

...

dTn

︸ ︷︷ ︸

x

=

bT1
...

bTn

︸ ︷︷ ︸

b

, (9.7)

with L being the Laplace matrix described in the appendix. Note that x
and b are (n × 3) matrices and that the linear system therefore must be
solved three times—once for each column of x and b, i.e., for the x, y, and
z-coordinates of the unknown displacements d1, . . . ,dn.

Minimizing (9.4) by solving (9.7) allows for C1 continuous surface de-
formations, as can also be observed in Figure 9.4. On a discrete triangle
mesh, the C1 constraints are defined solely by the position/displacements
of the first two rings of fixed vertices F and handle vertices H [Kobbelt
et al. 98b]. The other vertices of F ∪ H have no influence on the solution
and hence do not have to be taken into account in (9.6) and (9.7).

Interactively manipulating the handle region H changes the boundary
constraints d̄i of the optimization, i.e., the right-hand side B of the linear
system (9.7). As a consequence, this system has to be solved each time the
user manipulates the handle region. In the appendix we discuss efficient
linear system solvers that are particularly suited for this so-called multiple-
right-hand-side problem. Also notice that restricting to affine transfor-
mation of the handle region H (which is usually sufficient) allows one to
pre-compute basis functions of the deformation, such that instead of solving
(9.7) in each frame, only the basis functions have to be evaluated [Botsch
and Kobbelt 04a].

Compared to the transformation propagation of Section 9.1, the shell-
based approach is computationally more expensive since a linear system
must be solved for each frame. This, however, can still be performed at
interactive rates using suitable linear solvers. The main advantage of the
shell-based approach is that the resulting deformations are usually much
more intuitive since they are derived from physical principles.

9.3 Multi-Scale Deformation
The shell-based deformation of the previous section yields physically-based,
smooth and fair surface deformations. Interactive performance is achieved
by simplifying the nonlinear shell energy (9.3) such that only a linear system
has to be solved for the deformed surface S ′. However, as a consequence of
this linearization, the method does not correctly handle fine-scale surface
details, as depicted in Figure 9.5. The local rotation of geometric details

i
i

i
i

i
i

i
i

158 9. Deformation

Figure 9.5. From left to right: The right stripH of the bumpy plane is lifted. The

intuitive local rotations of geometric details cannot be achieved by a linearized

deformation alone. A multi-scale approach based on normal displacements cor-

rectly rotates local details, but also distorts them, which can be seen in the

leftmost row of bumps. The more accurate result of a nonlinear technique is

shown. (Image taken from [Botsch and Sorkine 08]. c©2008 IEEE.)

is an inherently nonlinear behavior and therefore cannot be modeled by a
purely linear technique. One way to better preserve geometric details, while
still using a linear deformation approach, is to use multi-scale techniques,
as described in this section.

The main idea of multi-scale deformations is to decompose the object
into two frequency bands using the smoothing and fairing techniques intro-
duced in Chapter 4; the low frequencies correspond to the smooth global
shape, while the high frequencies correspond to the fine-scale details. Our
goal is to deform the low frequencies (global shape) while preserving the
high-frequency details, resulting in the desired multi-scale deformation.
Figure 9.6 shows a simple 2D example of this concept.

The multi-scale deformation process is depicted in Figure 9.7. First a
low-frequency representation of the given surface S is computed by remov-
ing the high frequencies, yielding a smooth base surface B. The geometric
details D = S 	 B, i.e., the fine surface features that have been removed,
represent the high frequencies of S and are stored as detail information.

Figure 9.6. A multi-scale deformation of a sine wave. A frequency decomposition

yields the dashed line as its low frequency component (left). Bending this line

and adding the higher frequencies back onto it results in the desired global shape

deformation (right). (Image taken from [Botsch 05].)

i
i

i
i

i
i

i
i

9.3. Multi-Scale Deformation 159

Figure 9.7. A general multi-scale editing framework consists of three main op-

erators: the decomposition operator, which separates the low and high frequen-

cies; the editing operator, which deforms the low frequency components; and

the reconstruction operator, which adds the details back onto the modified base

surface. Since the lower part of this scheme is hidden in the multi-scale kernel,

only the multi-scale edit in the top row is visible to the designer. (Image taken

from [Botsch and Sorkine 08]. c©2008 IEEE. Model courtesy of Cyberware.)

This allows reconstructing the original surface S by adding the geometric
details back onto the base surface: S = B ⊕ D. The special operators 	
and ⊕ are called the decomposition and the reconstruction operator of the
multi-scale framework, respectively.

This multi-scale surface representation is now enhanced by a deforma-
tion operator that is used to deform the smooth base surface B into a
modified version B′. Adding the geometric details onto the deformed base
surface then results in a multi-scale deformation S ′ = B′ ⊕D.

Notice that, in general, more than one decomposition step can be used
to generate a hierarchy of meshes S = S0,S1, . . . ,Sk = B with decreasing
geometric complexity. In this case the frequencies that are lost from one
level Si to the next smoother level Si+1 are stored as geometric details
Di+1 = Si 	 Si+1, such that after deforming the base surface to B′, the
modified original surface can be reconstructed by S ′ = B′⊕k−1

i=0 Dk−i. Since
the generalization to several hierarchy levels is straightforward, we restrict
our explanations to the simpler case of a two-level decomposition, as shown
in Figure 9.7.

A complete multi-scale deformation framework has to provide the three
basic operators shown in Figure 9.7: the decomposition operator, the

i
i

i
i

i
i

i
i

160 9. Deformation

deformation operator, and the reconstruction operator. The decomposi-
tion is typically performed by mesh smoothing or fairing (Chapter 4), and
for surface deformation we can employ the techniques discussed in the pre-
vious sections. The missing component is a suitable representation for the
geometric detail D = S 	 B, which we describe next.

9.3.1 Displacement Vectors

The straightforward representation for multi-scale details is a displacement
of the base surface B. The detail information is a vector-valued displace-
ment function h : B → IR3 that associates a displacement vector h(b) to
each point b on the base surface. In most cases S and B have the same con-
nectivity, leading to per-vertex displacement vectors hi = (pi − bi) [Zorin
et al. 97,Kobbelt et al. 98b,Guskov et al. 99] such that

pi = bi + hi, hi ∈ IR3,

where bi ∈ B is the vertex corresponding to pi ∈ S. The vectors hi have
to be encoded in local frames with regard to B [Forsey and Bartels 88,
Forsey and Bartels 95], determined by the normal vector ni and two tangent
vectors ti,1 and ti,2 of the base surface B at point bi:

hi = αi ni + βi ti,1 + γi ti,2. (9.8)

When the base surface B is deformed to B′, the displacement vectors
rotate according to the rotations of the base surface’s local frames, which
then leads to a plausible detail reconstruction for S ′ (see Figure 9.8):

p′i = b′i + αi n
′
i + βi t

′
i,1 + γi t

′
i,2.

Figure 9.8. Representing the displacements with regard to the global coordinate

system does not lead to the desired result (left). The geometrically intuitive

solution is achieved by storing the details with regard to local frames that rotate

according to the local tangent plane’s rotation of B (right). (Image taken from

[Botsch 05].)

i
i

i
i

i
i

i
i

9.3. Multi-Scale Deformation 161

While the normal vector ni is well defined, it is not obvious how to com-
pute the tangent axes ti,1 and ti,2. One heuristic is to choose ti,1 as the
projection of the first edge incident to pi into the tangent plane and to pick
ti,2 to be orthogonal to ni and ti,1.

9.3.2 Normal Displacements

As we will see next, long displacement vectors might lead to instabilities, in
particular for bending deformations. As a consequence, the displacement
vectors should be as short as possible, which is the case if they connect
vertices pi ∈ S to their closest surface points on B instead of to their
corresponding vertices bi ∈ B.

This idea leads to normal displacements that are perpendicular to B,
i.e., parallel to its normal field n(b):

pi = bi + hi · ni, hi ∈ IR.

Since the per-vertex displacements hi of (9.8) are in general not parallel to
the surface normal ni, normal displacements require a re-sampling of either
S or B. Shooting rays in normal direction from each base vertex bi ∈ B
and deriving new vertex positions pi as their intersections with the detailed
surface S leads to a resampling of the latter [Guskov et al. 00,Lee et al. 00].
Because S might be a detailed surface with high-frequency features, such
a resampling is likely to introduce alias artifacts.

Hence we go the other direction, following [Kobbelt et al. 99b]. For
each point pi ∈ S, a local Newton iteration finds a base point bi ∈ B such
that (pi −bi) is parallel to the surface normal ni = n(bi). Note that bi is
now an arbitrary surface point on B (not necessarily a vertex). This point
is contained in a triangle (a,b, c) ⊂ B and therefore can be represented by
barycentric interpolation (see Equation (1.3)):

bi = α a + β b + γ c.

Its normal vector ni is computed by barycentric interpolation of the vertex
normals, similar in concept to Phong shading :

ni =
αna + β nb + γ nc

‖αna + β nb + γ nc‖
.

Using this continuous normal field n(b) on the base surface B, a local
Newton iteration can find the barycentric coordinates (α, β, γ) of the base
point bi as the root of the function

f(α, β, γ) = (pi − bi)× ni.

i
i

i
i

i
i

i
i

162 9. Deformation

Figure 9.9. Top: The original surface S (orange) is decomposed into a low-

frequency base surface B (yellow) and high-frequency normal displacements D
(top right). Bottom: When the base surface is deformed to B′, the normal vectors

rotate accordingly and the displaced surface S ′ = B′⊕D gives the desired result.

The process is initialized with the triangle closest to pi. If a barycentric
coordinate becomes negative during the Newton iteration, one proceeds to
the respective neighboring triangle.

Once the triangle (a,b, c) and the barycentric coordinates (α, β, γ) have
been found, the deformed point p′i can be efficiently computed as a normal
displacement of the deformed base surface B′ (see Figure 9.9):

p′i =
(
α a′ + β b′ + γ c′

)
+ hi ·

αn′a + β n′b + γ n′c
‖αn′a + β n′b + γ n′c‖

.

This process avoids a resampling of S and therefore allows for the preser-
vation of all of its sharp features (see also [Pauly et al. 06] for a comparison
and discussion). Since the base points bi are arbitrary surface points of B,
the connectivity of S and B is no longer restricted to be identical. This can
be exploited in order to remesh the base surface B for the sake of higher
numerical robustness [Botsch and Kobbelt 04b].

The difference in length of general displacement vectors and normal dis-
placements typically depends on how much B differs from S. For instance,
in Figure 9.7 the general displacements are in average about 9 times longer
than normal displacements. Besides being shorter, normal displacements

i
i

i
i

i
i

i
i

9.3. Multi-Scale Deformation 163

Figure 9.10. For the bending of the bumpy plane, normal displacements distort

geometric details and almost lead to self-intersections (left), whereas displacement

volumes (center) and deformation transfer (right) achieve more natural results.

(Image taken from [Botsch et al. 06c].)

have the additional advantage that they do not require the heuristic com-
putation of the tangent directions ti,1 and ti,2.

9.3.3 Advanced Techniques

While normal displacements are extremely efficient, their main problem is
that neighboring displacement vectors are not coupled in any way. When
strongly bending the surface in a convex or concave manner, the angle be-
tween neighboring displacement vectors increases or decreases, leading to
an undesired distortion of geometric details (see Figures 9.5 and 9.10). In
the extreme case of neighboring displacement vectors crossing each other
(which happens if the curvature of B′ becomes larger than the displace-
ment length hi), the surface even self-intersects locally. These problems
are addressed by the advanced detail encoding techniques sketched in this
section.

Displacement volumes. Both problems—the unnatural change of the vol-
ume and the local self-intersections—are addressed by displacement vol-
umes instead of displacement vectors [Botsch and Kobbelt 03]. Each tri-
angle (pi,pj ,pk) of S, together with the corresponding points (bi,bj ,bk)
on B, defines a triangular prism. The volumes of those prisms are used
as detail coefficients D and are kept constant during deformations. For a
modified base surface B′, the reconstruction operator therefore has to find
S ′ such that the enclosed prisms have the same volumes as the original
shape. The local volume preservation leads to more intuitive results and
avoids local self-intersections (see Figures 9.5 and 9.10). However, the im-
proved detail preservation comes at the price of higher computational cost
compared to a linear detail reconstruction process.

i
i

i
i

i
i

i
i

164 9. Deformation

Deformation transfer. [Botsch et al. 06c] use the deformation transfer ap-
proach of [Sumner and Popović 04] to transfer the base surface defor-
mation B 7→ B′ onto the detailed surface S, resulting in a multi-scale
deformation S ′. This method yields results similar in quality to displace-
ment volumes (see Figures 9.5 and 9.10), but it only requires solving a
sparse linear Poisson system. Both in terms of results and of computational
efficiency, this method can be considered as lying in between displacement
vectors and displacement volumes.

9.4 Differential Coordinates
While multi-scale deformation is an effective tool for enhancing shape defor-
mations by fine-scale detail preservation, the generation of such a hierarchy
can become quite involved for geometrically or topologically complex mod-
els. To avoid the explicit multi-scale decomposition, another class of meth-
ods modifies differential surface properties instead of spatial coordinates
and then reconstructs a deformed surface having the desired differential
coordinates. We first describe two typical differential representations—
gradients and Laplacians—and how to derive the deformed surface from
the manipulated differential coordinates. We then explain how to compute
the local transformations of differential coordinates based on the user’s
deformation constraints.

9.4.1 Gradient-Based Deformation

Gradient-based methods [Yu et al. 04,Zayer et al. 05a] deform the surface by
manipulating the original surface gradients and then finding the deformed
surface that matches the target gradient field in the least-squares sense.
This two-step deformation process is depicted by Figure 9.11.

For the manipulation of gradients, let us first consider a piecewise linear
function f : S → IR that lives on the original mesh and is defined by its
values fi at the mesh vertices. Its gradient ∇f : S → IR3 is a piecewise
constant vector field, i.e., a constant vector gT ∈ IR3 for each triangle T .

If instead of a scalar function f the piecewise linear coordinate function
p : S → IR3, vi 7→ pi, is considered, then the gradient within a face T is a
constant 3× 3 Jacobian matrix:

∇p|T =

∇px|T
∇py

∣∣
T

∇pz|T

 =: JT ∈ IR3×3.

The rows of JT are just the gradients of the x-, y-, and z-coordinates of

i
i

i
i

i
i

i
i

9.4. Differential Coordinates 165

Figure 9.11. Using gradient-based editing to bend the cylinder by 90◦ (left).

Rotating the handle and propagating its damped local rotation to the individual

triangles (resp. their gradients JT) breaks up the mesh (center), but solving the

Poisson system (9.10) reconnects it and yields the desired result (right). (Image

taken from [Botsch and Sorkine 08]. c©2008 IEEE.)

the function p within triangle T , respectively, which can be computed by
Equation (3.9).

The face gradients JT are then modified by multiplying them by a 3×3
matrix MT that represents the desired local rotation/scale/shear for the
triangle T , yielding the new, desired gradients J′T :

J′T = MT JT .

How to actually determine the local transformation MT from the user-
defined handle transformation is discussed in Section 9.4.3. For a better
understanding, Figure 9.11 (center) shows the transformations MT applied
to the individual triangles T , thereby breaking up the mesh.

The remaining step is to find new vertex positions p′i, such that the
gradients ∇p′|T of the deformed mesh are as close as possible to the target
gradients J′T . Intuitively this means reconnecting the triangles of Fig-
ure 9.11 (center) while changing their orientations as little as possible.

In the continuous setting, the analogous problem would be to find a
function f : Ω → IR that best matches a given gradient field g. This
amounts to minimizing the following energy functional:

E(f) =

∫∫
Ω

‖∇f(u, v)− g(u, v)‖2 dudv.

Applying variational calculus yields the Euler-Lagrange equation

∆f = div g, (9.9)

i
i

i
i

i
i

i
i

166 9. Deformation

which has to be solved for the optimal function f . Replacing f by the x-,
y-, and z-coordinates of the deformed vertices p′i and discretizing (9.9) by
the discrete Laplace (3.11) and divergence (3.12) yields the linear system

L ·

p′1
T

...

p′n
T

 =

div J′(v1)
...

div J′(vn)

 . (9.10)

This linear system is solved three times for the x-, y-, and z-coordinates of
the deformed vertices, with the right hand side being the divergence of the
modified x-, y-, and z-gradients (the rows of the modified Jacobians J′).
Note that, analogously to Equation (9.7), proper constraints have to be
employed to make the system non-singular, e.g., by prescribing positions
p′i for handle and fixed vertices in H or F .

Comparing Equation (9.10) to Equation (9.7), gradient-based editing
must solve a Poisson system only, which is sparser and hence slightly more
efficient than solving the bi-Laplacian system of the shell-based approach.
On the other hand, the Poisson system allows for C0 continuity at the
boundary of the deformed region R only, whereas the shell-based approach
yields C1 continuous deformations.

9.4.2 Laplacian-Based Deformation

The second class of deformation methods based on differential coordi-
nates is Laplacian editing [Lipman et al. 04,Sorkine et al. 04,Zhou et al. 05,
Nealen et al. 05]. The setting is very similar to the gradient-based editing
of the previous section, but now we manipulate per-vertex Laplacians in-
stead of per-face gradients. We first compute initial Laplace coordinates
δi = ∆(pi), manipulate them to δ′i = Mi δi as discussed in Section 9.4.3,
and find new coordinates p′i that match the target Laplacian coordinates.

In the continuous setting this problem amounts to minimizing

E(p′) =

∫∫
Ω

∥∥∆p′(u, v)− δ′(u, v)
∥∥2

dudv,

which leads to the Euler-Lagrange equation

∆2 p′ = ∆δ′.

For a discrete triangle mesh, this yields a bi-Laplacian system that has to
be solved for the x-, y-, and z-coordinates of the deformed vertices p′i:

L2 ·

 p′1
T

...

p′n
T

 =

∆δ′1

T

...

∆δ′n
T

 .

i
i

i
i

i
i

i
i

9.4. Differential Coordinates 167

Again, suitable boundary constraints for F and H must be employed. Note
that although the original works use the uniform Laplacian (3.10), the
cotangent Laplacian (3.11) has been shown to yield better results for irreg-
ular meshes [Botsch and Sorkine 08].

There is an interesting connection of Laplacian-based deformation to
the shell-based deformation of Section 9.2. Let us neglect for a moment the
local transformations δi 7→ δ′i and instead compute the new coordinates p′i
from the original Laplacians δi, i.e., by solving ∆2p′ = ∆δ, again imposing
constraints p′i = p̄i for pi ∈ H∪F . Using the two identities p′ = p+d and
δ = ∆p reveals that the latter PDE is equivalent to the Euler-Lagrange
equation ∆2d = 0 of the shell-based approach. As a consequence, the two
methods are equivalent up to the way they model the local rotations of
geometric details or differential coordinates, respectively, employing either
a multi-scale technique (Section 9.3) or local transformations of Laplacians,
as discussed next. Another consequence is that Laplacian editing yields C1

continuous deformation, in contrast to the C0 deformations of gradient-
based editing.

9.4.3 Local Transformations

The missing component for gradient-based or Laplacian-based deformation
is a technique for modifying the gradients JT or Laplacians δi based on the
handle transformation provided by the user. The methods discussed below
derive local per-vertex or per-face transformations Mi or MT , respectively,
in order to transform gradients or Laplacians, as discussed above:

J′T = MT JT or δ′i = Mi δi.

Propagation of deformation gradients. The first approach is to transform
the differential coordinates by the gradient of the handle transformation,
which is interpolated over the deformable region similar to Section 9.1 [Yu
et al. 04, Zayer et al. 05a]. Typically, the user manipulates the handle by
prescribing an affine transformation

T(x) = Mx + t.

The gradient of T(x) is the constant 3× 3 matrix M, which represents the
rotation and scale/shear components of the handle transformation.

We would like to propagate this matrix over the deformable region and
damp it using the smooth scalar field s : S → [0, 1] from Section 9.1 such
that we smoothly blend from the full transformation M at the handle H
to no transformation Id at the fixed region F .

However, since rotations should be interpolated differently than scal-
ings, these two components have to be separated first. The tool to decom-
pose the matrix M into rotation R and scale/shear S is the so-called polar

i
i

i
i

i
i

i
i

168 9. Deformation

decomposition [Shoemake and Duff 92]. After computing the singular value
decomposition M = UΣVT , we can find rotation and scale/shear as

R = UVT and S = VΣVT .

Since U and V are orthogonal matrices we get

RS = UVTVΣVT = UΣVT = M.

The rotation and scaling components are then interpolated separately
over the deformable region, yielding the damped local transformation Mi

at vertex vi

Mi = slerp(R, Id, si) · ((1− si) S + si Id) ,

where slerp(·) denotes quaternion interpolation between the full rotation
R and the identity matrix Id, and si = s(pi) is the vertex blending value.
The local transformation MT for a face T = (pi,pj ,pk) is computed using
the blending value sT = (si + sj + sk)/3.

By construction this method works very well for rotations (see Fig-
ure 9.11), but it unfortunately is insensitive to handle translations. Adding
a translation t to a given handle deformation T(x) does not change its gra-
dient M and thus has no influence on the resulting surface gradients J′T
or Laplacian coordinates δ′i. But because there is a (nonlinear) connec-
tion between handle translations and local rotations of the surface, these
methods will give counter-intuitive results for deformations containing large
translations (see also Section 9.7).

Implicit optimization. Sorkine and colleagues simultaneously optimize for
both the new vertex positions p′i and the local rotations Mi by minimizing
the energy functional [Sorkine et al. 04]

E(p′) =
n∑
i=1

Ai ‖Mi δi −∆p′i‖
2
, (9.11)

where Ai = A(vi) is the local vertex area. In this equation the transfor-
mations Mi = Mi(p

′) depend on the new vertex positions p′j . Note that
boundary constraints for H and F again have to be prescribed.

To avoid a nonlinear optimization, which would be necessary for rigid
transformations Mi (i.e., rotations), the local transformations are restricted
to linearized similarity transformations. These can be represented by skew-
symmetric matrices

Mi =

 si −hi,z hi,y
hi,z si −hi,x
−hi,y hi,x si

 .

i
i

i
i

i
i

i
i

9.5. Freeform Deformation 169

The parameters (si,hi) can be determined by writing down the desired
transformation constraints

Mi

(
pi − pj

)
= p′i − p′j , ∀pj ∈ N1(pi)

and extracting (si,hi) as linear combinations of p′i. The precise derivation
can be found in [Sorkine et al. 04]. Plugging the linear expression for Mi

back into (9.11) leads to a linear least-squares problem, which can be solved
efficiently. On the downside, however, the linearized transformations lead
to artifacts in the case of large rotations (see Section 9.7).

9.5 Freeform Deformation

All deformation approaches described so far are surface-based : they com-
pute a smooth deformation field on the surface S by minimizing some
quadratic energy, which amounts to solving a linear system corresponding
to the respective Euler-Lagrange equation.

An apparent drawback of such methods is that their computational ef-
fort and numerical robustness are strongly related to the complexity and
quality of the surface tessellation. In the presence of degenerate triangles,
the discrete cotangent weights (3.11) for the Laplacian operator are not
well defined and thus the involved linear systems become singular. Simi-
larly, topological artifacts like gaps or non-manifold configurations lead to
problems, since local vertex neighborhoods become inconsistent. In such
cases quite some effort has to be spent to still be able to compute smooth
deformations, like eliminating degenerate triangles (Chapter 8) or even
remeshing the complete surface (Chapter 6). But even if the mesh quality
is sufficiently high, extremely complex meshes will result in linear systems
that cannot be solved due to their sheer size.

Figure 9.12. Space deformations warp the embedding space around an object

and thus implicitly deform the object. (Image taken from [Botsch et al. 06b].

c©2006 ACM, Inc. Included here by permission.)

i
i

i
i

i
i

i
i

170 9. Deformation

These problems are avoided by space deformations, which deform the
ambient space and thus implicitly deform the embedded objects (see
Figure 9.12). In contrast to surface-based methods, space deformation ap-
proaches employ a trivariate deformation function d : IR3 → IR3 to trans-
form all points of the original surface S. Since the space deformation
function d does not depend on a particular surface representation, it can
be used to deform all kinds of explicit surface representations, e.g., by
transforming all vertices of a triangle mesh or all points of a point-sampled
model.

9.5.1 Lattice-Based Freeform Deformation

Classical freeform deformation (FFD) [Sederberg and Parry 86] represents
the space deformation by a trivariate tensor-product spline function

d(u, v, w) =
∑
i

∑
j

∑
k

δcijkNi(u)Nj(v)Nk(w) , (9.12)

where Ni are B-spline basis functions and δcijk = (c′ijk − cijk) are the
displacements of the control points cijk (compare this to tensor-product
spline surfaces of Section 1.3.1). Let us for the sake of simpler notation
order the grid points and basis functions in a linear manner:

δcl := δcijk and Nl(u) = Nl(u, v, w) := Ni(u)Nj(v)Nk(w) .

This allows us to re-write Equation (9.12) as

d(u) =
n∑
l=1

δclNl(u) .

Each original vertex pi ∈ S has a corresponding parameter value ui =
(ui, vi, wi) such that pi =

∑
l clNl(ui). The vertex is then transformed

by p′i = pi + d(ui), which can be computed efficiently since Nl(ui) stays
constant and can be precomputed.

The deformation can be controlled by manipulating the positions of
control points, i.e., by prescribing the control point displacements δcl (see
Figure 9.13 (left)). This, however, can become tedious for more complex
control grids. Moreover, the support of the deformation is sometimes dif-
ficult to predict since it is determined as the intersection of a volumetric
basis function’s support with the surface S.

A handle-based interface for direct manipulation, allowing the user to
specify displacements of surface points pi ∈ S instead of control points cl,
simplifies the deformation process [Hsu et al. 92]. Given a set of displace-
ment constraints d(ui) = d̄i for {p1, . . . ,pm} = H∪F , one solves a linear

i
i

i
i

i
i

i
i

9.5. Freeform Deformation 171

Figure 9.13. In the FFD approach a 3D control grid is used to specify a vol-

umetric displacement function (left). The regular placement of grid basis func-

tions can lead to alias artifacts in the deformed surface (right). (Image taken

from [Botsch 05].)

system for the required movements δcl of control points:N1(u1) . . . Nn(u1)
...

. . .
...

N1(um) . . . Nn(um)

δc1

...
δcn

 =

 d̄1

...
d̄m

 . (9.13)

This (m × n) system can be over- as well as under-determined, and is
therefore solved using the pseudo-inverse [Hsu et al. 92,Golub and Loan 89].
This yields a least-squares and least-norm solution, which minimizes the

error in the constraints
∑
i

∥∥d(ui)− d̄i
∥∥2

as well as the amount of control

point movement
∑
l ‖δcl‖2.

While this yields a well-defined solution, it has two drawbacks: First, in
an over-determined setting the displacement constraints cannot be satisfied
exactly, but only in the least square sense. Second, in the under-determined
setting the remaining degrees of freedom are determined by minimizing con-
trol point movements, instead of optimizing for an as-smooth-as-possible
deformation, as was the case for the fair surface-based deformation of Sec-
tion 9.2.

The placement of basis functions Nl(u) on a regular grid is another
potential problem. As shown in Figure 9.13 (right), a deformation that
is not well-aligned with the grid axes can lead to aliasing artifacts. This
problem can be addressed by using more flexible (pre-deformed) control
lattices that better represent the desired deformation, but these can be
difficult to set up for complex deformations [Coquillart 90, MacCracken
and Joy 96].

i
i

i
i

i
i

i
i

172 9. Deformation

9.5.2 Cage-Based Freeform Deformation

Cage-based techniques can be considered a generalization of the lattice-
based freeform deformation. Instead of a regular control lattice, a so-called
control cage is used to deform the object. This cage typically is a coarse,
arbitrary triangle mesh enclosing the object to be modified, which allows
the cage to better match the shape and structure of the embedded object
than regular control lattices do (see Figure 9.14).

The vertices pi of the original mesh S can be represented as linear
combinations of the cage’s control vertices cl by

pi =
n∑
l=1

cl ϕl(pi) , (9.14)

where the weights ϕl(pi) are generalized barycentric coordinates [Floater
et al. 05, Ju et al. 05, Ju et al. 07, Lipman et al. 08]. The coordinate func-
tions ϕl in (9.14) therefore correspond to the spline basis functions Nl in
Equation (9.12).

Once the per-vertex weights ϕl(pi) have been pre-computed, the object
can be deformed by manipulating the cage vertices cl 7→ cl + δcl and
computing the per-vertex displacement as

d(pi) =
n∑
l=1

δcl ϕl(pi) .

Finding control vertex displacements δcl resulting in a deformation that
satisfies user-defined constraints d(pi) = d̄i works equivalently to Equa-
tion (9.13), with Nl(ui) replaced by ϕl(pi). While being much more flexible

Figure 9.14. Manipulating a horse using a cage-based space deformation, where

surface vertices are represented and deformed relative to the cage using general-

ized barycentric coordinates. (Model courtesy of [Ju et al. 05].)

i
i

i
i

i
i

i
i

9.6. Radial Basis Functions 173

in terms of the control grid, cage-based methods share the drawback of a
least norm solution that does not necessarily correspond to a fair deforma-
tion.

9.6 Radial Basis Functions
In the case of surface-based deformations, high-quality results are achieved
by interpolating the user’s displacement constraints with a deformation
function d : S → IR3 that minimizes some fairness energies (e.g., Sec-
tion 9.2). Motivated by this, we derive in this section a smoothly interpo-
lating trivariate space deformation function d : IR3 → IR3 that minimizes
analogous fairness energies.

On a more abstract level, the problem is to find a function d that
interpolates some prescribed values d̄i at position pi, while being smooth
and fair in between these constraints. Radial basis functions (RBFs) are
known to be very well suited for this kind of scattered data interpolation
problem [Wendland 05].

A trivariate RBF deformation is defined as a superposition of radially
symmetric kernels ϕj(x), located at centers cj ∈ IR3 and weighted by
wj ∈ IR3:

d(x) =
n∑
j=1

wj ϕ(‖cj − x‖) + π(x) ,

where ϕj(x) = ϕ(‖cj − x‖) is the basis function corresponding to the jth
center cj , and π(x) is a polynomial of low degree used to guarantee poly-
nomial precision. To simplify explanation and notation, we omit the poly-
nomial term in the following.

In order to find an RBF function that interpolates the displacement
constraints d(pi) = d̄i for {p1, . . . ,pn} = H ∪ F , we use as many RBF
kernels as we have constraints and place them on the constraints, i.e.,
cj = pj . The weights wj are then found as the solution of the symmetric
linear systemϕ(‖p1 − p1‖) . . . ϕ(‖pn − p1‖)

...
. . .

...
ϕ(‖p1 − pn‖) . . . ϕ(‖pn − pn‖)

w1

...
wn

 =

d̄1

...
d̄n

 . (9.15)

Once the weights have been computed, i.e., the RBF function d has been
fit to the constraints, the mesh vertices can be displaced as p′i = pi+d(pi).

The choice of the kernel function ϕ has a strong influence on the compu-
tational complexity and the resulting surface’s fairness. While compactly
supported radial basis functions lead to sparse linear systems and hence can

i
i

i
i

i
i

i
i

174 9. Deformation

Figure 9.15. Using three independent handles allows one to stretch the car’s

hood while rigidly preserving the shape of the wheel houses. This 3M triangle

model consists of 10k individual connected components, which are neither 2-

manifold nor consistently oriented. (Model courtesy of BMW AG. Image taken

from [Botsch et al. 06b]. c©2006 ACM, Inc. Included here by permission.)

be used to interpolate a large number of constraints [Morse et al. 01,Ohtake
et al. 04], they do not provide the same degree of fairness as basis functions
of global support [Carr et al. 01]. It was shown by Duchon [Duchon 77]
that the globally supported basis function ϕ(r) = r3 yields a tri-harmonic
function d, i.e., ∆3d = 0. From variational calculus we know that it
therefore minimizes the fairness energy∫

IR3
‖dxxx(x)‖2 + ‖dxxy(x)‖2 + . . .+ ‖dzzz(x)‖2 dx.

Notice that these functions are conceptually equivalent to the minimum
variation surfaces of [Moreton and Séquin 92] and the tri-harmonic sur-
faces used in [Botsch and Kobbelt 04a], and therefore provide the same
degree of fairness. The difference is that for tri-harmonic RBFs the energy
minimization is “built in,” whereas for surface-based approaches we explic-
itly optimized for it (see Section 9.2). The major drawback is that the
global support of ϕ(r) = r3 leads to a dense linear system (9.15), which is
numerically harder to solve (see [Botsch and Kobbelt 05]).

Note that as soon as the constraints change, e.g., by interactively ma-
nipulating the handle, the linear system (9.15) has to be solved again for
the new right-hand side. For efficiency reasons one can factorize the ma-
trix once, and only compute a back-substitution for each new right-hand
side [Golub and Loan 89]. As shown in [Botsch and Kobbelt 05], when
restricting to affine handle transformations one can precompute special
basis functions, which can efficiently be evaluated instead of solving (9.15).
Moreover, evaluating these basis functions on the graphics card further
accelerates this approach and provides real-time space deformations of sev-
eral million points per second. As shown in Figure 9.15, even complex

i
i

i
i

i
i

i
i

9.7. Limitations of Linear Methods 175

surfaces consisting of disconnected patches can be handled by this tech-
nique, whereas all surface-based techniques would fail in this situation.

For the two space deformation approaches described in Sections 9.5
and 9.6, the deformed surface S ′ depends linearly on the displacement con-
straints d(pi) = d̄i. As a consequence, nonlinear effects such as local detail
rotation cannot be achieved, similar to the linear surface-based methods
discussed in Sections 9.2–9.4. Although space deformations can be en-
hanced by multi-scale techniques as well (see, e.g., [Marinov et al. 07]),
they generally suffer from the same limitations as surface-based methods
when it comes to large-scale deformation, as discussed next.

9.7 Limitations of Linear Methods

The methods we described so far provide high quality results and can be
computed robustly and efficiently. However, it is equally important to un-
derstand their limitations as it is to understand their strengths. In this
section we therefore compare some of the discussed methods and point out
their limitations. To this end, the goal is not to show the best-possible re-
sults each method can produce (those can be found in the original papers)
but rather to show under which circumstances each individual method fails.
Figure 9.16 shows deformation examples that were particularly chosen to
identify the respective limitations of the different techniques. For compari-
son we show the results of the nonlinear surface deformation PriMo [Botsch
et al. 06a], which does not suffer from linearization artifacts.

I The shell-based deformation (Section 9.2), in combination with a
multi-scale technique (Section 9.3), works fine for pure translations
and yields fair and detail-preserving deformations. However, due to
the linearization of the shell energy, this approach fails for large ro-
tations.

I Gradient-based editing (Section 9.4.1) updates the face gradients
using the gradient of the handle transformation (its rotation and
scale/shear components) and therefore works very well for rotational
deformation. However, the explicit propagation of local rotations is
translation insensitive, such that the plane example is neither smooth
nor detail preserving.

I Laplacian surface editing (Section 9.4.2) implicitly optimizes for lo-
cal rotations and hence works comparatively well for translations and
rotations. However, the required linearization of rotations yields ar-
tifacts for large deformations.

i
i

i
i

i
i

i
i

176 9. Deformation

Approach Pure Translation 120◦ bend 135◦ twist

Original models

Nonlinear deformation
[Botsch et al. 06a]

Shell-based deformation
with multi-scale technique
[Botsch and Kobbelt 04a]
[Botsch et al. 06c]

Gradient-based editing with
harmonic propagation
[Zayer et al. 05a]

Laplacian-based editing
with implicit optimization
[Sorkine et al. 04]

Figure 9.16. The extreme examples shown in this comparison matrix were partic-

ularly chosen to reveal the limitations of the respective deformation approaches.

(Image taken from [Botsch and Sorkine 08]. c©2008 IEEE.)

i
i

i
i

i
i

i
i

9.8. Summary and Further Reading 177

9.8 Summary and Further Reading
In this chapter we introduced several methods of deforming a given surface
and showed that accurate and high-quality deformations can be obtained
by minimizing suitable energies, which in the end involve solving a linear
system for the deformed vertex positions. With the linear system solvers
described in the appendix, this can be computed robustly and at interac-
tive rates. The interested reader can find more details on linear surface
deformation methods in [Botsch and Sorkine 08].

However, the accurate physical equations governing the surface defor-
mation process are inherently nonlinear, which requires simplifying or lin-
earizing the involved energies at some point. We have seen the consequence
of this in Section 9.7: all linear techniques fail under certain circumstances.
The shell-based approach typically works well for translations, but has
problems with large rotations, whereas it is the other way around for meth-
ods based on differential coordinates. From those examples one can derive
the following guidelines for picking the “right” deformation technique for
a specific application scenario:

I In technical, CAD-like engineering applications, the required shape
deformations are typically rather small, since in many cases an ex-
isting prototype has to be adjusted only slightly, but they have high
requirements for surface fairness, boundary continuity, and the pre-
cise control thereof. For such problems a linearized shell model is
typically the best suited.

I In contrast, applications like character animation mostly involve (pos-
sibly large) rotations of limbs around bends and joints. Here, methods
based on differential coordinates clearly are the better choice. More-
over, the required rotations might be available from, e.g., a sketching
interface [Zhou et al. 05, Nealen et al. 05] or a motion capture sys-
tem [Shi et al. 06].

I Applications that require both large-scale translations and rotations
are problematic for all linear approaches. In this case one can either
employ a more complex nonlinear technique or split up large defor-
mations into a sequence of smaller ones. While the nonlinear tech-
niques are computationally and implementation-wise more involved,
splitting up deformations or providing a denser set of constraints
complicates the user interaction.

Thanks to the rapid increase in both computational power and available
memory of today’s workstations, nonlinear deformation methods have be-
come more and more tractable, which in the last few years has already led
to a first set of nonlinear yet interactive surface deformation approaches.

i
i

i
i

i
i

i
i

178 9. Deformation

Below we briefly mention some nonlinear approaches for surface-based and
space deformation and refer the reader to the original papers. While a
nonlinear implementation of the previously discussed approaches seems to
be straightforward (“simply do not use any linearization”), in the nonlin-
ear case special attention has to be paid to computational efficiency and
numerical robustness of the involved energy minimizations.

Nonlinear surface deformation. Pyramid coordinates (see [Sheffer and
Kraevoy 04, Kraevoy and Sheffer 06]) can be considered nonlinear ver-
sions of Laplacian coordinates, leading to differential coordinates invariant
under rigid motions, which can be used for deformation as well as for
morphing.

Huang et al. employ a nonlinear version of the volumetric graph Lapla-
cian, which also features nonlinear volume preservation constraints [Huang
et al. 06]. In order to increase the performance and efficiency of their opti-
mization, they use a subspace approach: the original mesh is embedded in
a coarse control cage (see Section 9.5.2), and the optimization is performed
on the cage vertices cj while considering the constraints from the original
mesh vertices pi in a least-squares manner.

An alternative approach to subspace methods is the handle-aware iso-
line technique of [Au et al. 07]. In a preprocessing step one constructs a
set of iso-lines of the geodesic distance from either the fixed regions or the
handle regions, similar in spirit to [Zayer et al. 05a]. For each of these
iso-lines, a local transformation Mi for a Laplacian-based deformation is
found by a nonlinear optimization. The number of required iso-lines is
relatively small, which guarantees an efficient numerical optimization and
thereby allows for interactive editing.

Shi et al. combine Laplacian-based deformation with skeleton-based in-
verse kinematics [Shi et al. 07]. Their approach allows for easy and intuitive
character posing, featuring control of lengths, rigidity, and joint limits, but
it in turn requires a complex cascading optimization for the involved non-
linear energy minimization.

PriMo [Botsch et al. 06a] is a nonlinear version of the shell-based min-
imization of bending and stretching energies. The surface is modeled as
a thin layer of triangular prisms, which are coupled by a nonlinear elastic
energy. During deformation the prisms are kept rigid, which allows for
a robust geometric optimization. A hierarchical optimization is used to
increase the computational efficiency.

The as-rigid-as-possible surface deformation of [Sorkine and Alexa 07]
models local rotations in terms of each vertex’s one-ring. An easy-to-
implement alternating optimization solves for the local rotations and the
new vertex positions.

i
i

i
i

i
i

i
i

9.8. Summary and Further Reading 179

Eigensatz and Pauly introduce a surface deformation method that al-
lows directly prescribing positional, metric, and curvature constraints any-
where on the surface. A global nonlinear optimization solves for a deformed
surface that satisfies these user constraints as best as possible, while mini-
mizing the overall metric and curvature distortion [Eigensatz and Pauly 09].

Nonlinear space deformation. Sumner et al. compute detail-preserving
space deformations by formulating an energy functional that explicitly pe-
nalizes deviation from local rigidity by optimizing the local deformation
gradients to be rotations [Sumner et al. 07]. In addition to static geome-
tries, their method can also be applied to hand-crafted animations and
precomputed simulations.

Botsch et al. extend the PriMo framework [Botsch et al. 06a] to defor-
mations of solid objects [Botsch et al. 07]. The input model is voxelized in
an adaptive manner, and the resulting hexahedral cells are kept rigid under
deformations to ensure numerical robustness. The deformation is governed
by a nonlinear elastic energy coupling neighboring rigid cells.

Another class of approaches uses divergence-free vector fields to de-
form shapes [Angelidis et al. 06, von Funck et al. 06]. The advantage of
those techniques is that by construction they yield volume-preserving and
intersection-free deformations. As a drawback, it is harder to construct
vector fields that exactly satisfy user-defined deformation constraints.

i
i

i
i

i
i

i
i

NUMERICS

In this appendix we describe different types of solvers for dense and sparse
linear systems. Within this class of systems, we further concentrate on
symmetric positive definite (spd) matrices, since exploiting their special
structure allows for the most efficient and most robust implementations.
Examples of such matrices are Laplacian systems (to be analyzed in Sec-
tion A.1) and least-squares systems. The general case of a non-symmetric
indefinite system is outlined afterwards in Section A.5.

Following [Botsch et al. 05], we propose the use of direct solvers for
sparse spd systems. After reviewing frequently used data structures and
standard linear solvers, we introduce the sparse direct solvers and point
out their advantages.

For the following discussion we restrict ourselves to sparse spd problems
Ax = b, i.e., square, symmetric, positive definite matrices A ∈ IRn×n and
x,b ∈ IRn. We furthermore denote by x∗ the exact solution A−1b, and by
ai,j and xi the individual entries of a matrix A and a vector x, respectively.

A.1 Discretizing Poisson and Laplace Equations

Since Poisson and Laplace equations play a major role in several geometry
processing applications, including smoothing (Chapter 4), conformal pa-
rameterization (Chapter 5), and shape deformation (Chapter 9), we first
briefly describe the matrices obtained by discretizing these equations.

181

i
i

i
i

i
i

i
i

182 A. Numerics

Let us consider the discretization and solution of a Poisson PDE ∆f = b
or a higher-order PDE ∆kf = b on a triangle mesh. The scalar-valued func-
tion f : S → IR is defined by piecewise linear interpolation of its function
values fi = f(vi) at the mesh vertices vi. As discussed in Chapter 3, the
continuous Laplace or Laplace-Beltrami ∆f can be discretized at a mesh
vertex vi by a linear combination of the function values at the center vertex
vi and its one-ring neighbors vj :

∆f(vi) = wi
∑

vj∈N1(vi)

wij (f(vj)− f(vi)) .

Using, for instance, the cotangent discretization of Equation (3.11), the
weights are wi = 1

2Ai
and wij = (cotαi,j + cotβi,j).

If we stack the function values f(vi) and Laplacians ∆f(vi) of all n
vertices into two vectors, the discretized Laplacian of all mesh vertices can
be written in matrix notation:∆f(v1)

...
∆f(vn)

 = D M︸ ︷︷ ︸
L

f(v1)
...

f(vn)

 .

Here, D = diag(w1, . . . , wn) is a diagonal matrix of the vertex weights wi,
and M is a symmetric matrix of edge weights wij :

mi,j =

−∑vk∈N1(vi)

wik , i = j,

wij , vj ∈ N1(vi) ,

0 , otherwise.

Discretizations of higher-order Laplacians can be obtained recursively by

∆kf(vi) = wi
∑

vj∈N1(vi)

wij
(
∆k−1f(vj)−∆k−1f(vi)

)
.

Their matrix representation simply corresponds to the k-th power Lk =
(DM)

k
of the Laplacian matrix L.

The discretization of a higher-order Laplace PDE ∆kf = b on a mesh
of n vertices therefore leads to the (n× n) linear system

Lk x = b, (A.1)

with x = (f(v1), . . . , f(vn))T and b = (b(v1), . . . , b(vn))T . In order to pick
the most efficient linear solver for this problem, we have to analyze the
properties of the system matrix L, or Lk, respectively.

i
i

i
i

i
i

i
i

A.1. Discretizing Poisson and Laplace Equations 183

Sparsity. Since the Laplacian ∆f(vi) of a vertex vi is defined locally in
terms of its one-ring neighbors, the matrix M—and hence the Laplacian
matrix L—is highly sparse. In the ith row it has non-zeros on the diagonal
and in the columns corresponding to vi’s one-ring neighbors vj ∈ N1(vi)
only. Since in a triangle mesh each vertex has six neighbors on average (see
Section 1.3.3), L has about seven non-zero entries per row. As an example,
for a (small) mesh with 10,000 vertices there will only be about 0.07% non-
zero entries. For more complex meshes the sparsity will be even higher. A
bi-Laplacian matrix L2 has an increased density of about 19 non-zeros per
row, which is still very sparse.

Symmetry. Due to the diagonal matrix D, which scales each row of M by
wi, the Laplacian matrix L = DM is not symmetric in general. How-
ever, Laplacian systems Lkx = b of any order k can easily be turned into
symmetric systems by moving the left-most factor D to the right-hand side:

M (DM)
k−1

x = D−1b. (A.2)

Definiteness. For the PDE to have a well-defined solution, and for the ma-
trix to be non-singular, suitable boundary constraints have to be employed.
Typically the values f(vi) of a set of constrained vertices vi ∈ C are pre-
scribed (so-called Dirichlet constraints). When we solve a linear system
Ax = b with certain values xi for vi ∈ C being constrained, these values
are no longer unknown variables. Hence, their corresponding columns ai
are moved to the right-hand side (b ← b − xiai) and their corresponding
rows i are removed from the system. Note that symmetrically eliminating
both column i and row i from the system keeps the matrix symmetric.
After incorporating constraints into a Laplacian system, the resulting ma-
trix L can be shown to be negative definite [Pinkall and Polthier 93]. As
a consequence, we multiply the system by −1 to get a positive definite
system.

Combining these three observations we see that higher-order Laplacian
systems Lkx = b can be rewritten as

(−1)k M (DM)
k−1

x = (−1)k D−1b,

which is a sparse, symmetric, and positive definite (spd) linear system.
These beneficial properties allow us to apply the efficient linear solvers
presented in the remainder of this appendix.

However, note that most other matrices used in mesh processing have
very similar properties. For instance, solving overdetermined systems Ax =
b in a least squares manner through the normal equations ATAx = ATb
also leads to spd systems. Moreover, discretizing PDEs typically leads to
very sparse matrices, since the required partial derivatives depend on local
vertex neighborhoods only.

i
i

i
i

i
i

i
i

184 A. Numerics

A.2 Data Structures for Sparse Matrices
An apparent practical requirement for an efficient implementation are data
structures that are able to exploit the sparsity of the matrices. We therefore
review some popular data structures for sparse matrices first, before we
discuss different algorithms for solving sparse spd linear systems in the
next sections.

The design of data structures for sparse matrices follows two major
goals: the compact storage of the matrix A and the efficient computation
of matrix-vector products y = Ax. In the following we will use the simple
example matrix

A =

0.0 1.1 0.0 0.0
2.2 0.0 3.3 4.4
0.0 5.5 0.0 6.6
0.0 7.7 8.8 9.9

 (A.3)

to explain the different sparse matrix formats.

A.2.1 Triplet Format

A first approach is to store only the non-zero coefficients ai,j = v 6= 0 of
the matrix A as triplets (i, j, v). In an actual implementation one stores
three arrays: row indices i[], column indices j[], and matrix values v[],
respectively. Each array has NNZ (number of non-zeros) elements, which
is much more compact that a naive storage of all n2 matrix entries.

This data structure is referred to as the Triplet format or TRIAD for-
mat. The example matrix of Equation (A.3) would be represented as

i[]: 0 1 1 1 2 2 3 3 3
j[]: 1 0 2 3 1 3 1 2 3
v[]: 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

The code below shows an example implementation of the Triplet format
in C or C++, together with a function for computing the product of a Triplet
matrix and a vector. This function may be used to implement a solver based
on the conjugate gradients method (see Section A.3.2).

// Triplet format for sparse matrices

struct TripletMatrix

{

int n; // matrix dimension

int nnz; // number of non -zero coefficients

int i[]; // row indices (array of size nnz)

int j[]; // column indices (array of size nnz)

double v[]; // non -zero coefficients (array of size nnz)

};

i
i

i
i

i
i

i
i

A.2. Data Structures for Sparse Matrices 185

// sparse matrix vector product y=A*x

void mult(Vector& y, const TripletMatrix& A, const Vector& x)

{

for(int i=0; i<A.n; i++)

y[i] = 0.0;

for (int k=0; k<A.nnz; k++)

y[A.i[k]] += A.v[k] * x[A.j[k]];

}

Despite the gain realized by the Triplet format as compared to a naive
dense regular 2D array, this representation still contains redundancy for
the indices i[], which store the row associated to each entry. For this
reason, this format is seldom used in numerical libraries except for reading
input file formats or initially setting up the system matrices.

A.2.2 Compressed Row Storage

The compressed row storage (CRS) data structure provides a higher mem-
ory compactness and allows for a more efficient matrix vector product. It is
therefore one of the most frequently used sparse matrix data structures in
numerical libraries. Its transposed variant, the compressed column storage
(CCS) format, is also used depending on the underlying algorithms and
implementation choices.

The CRS data structure uses three arrays to represent non-zero coeffi-
cients and their associated row and column indices: as in the Triplet format,
the array v[] stores all the non-zero matrix entries; the array colind[]

indicates for each entry the corresponding column index. The rows are
encoded in a compact manner through the rowptr[] array. This array
indicates for each row its start index and end index in the arrays v[] and
colind[].

To facilitate an easier implementation of algorithms, a common practice
consists of completing the array rowptr[] by an additional entry that
points one entry past the last entry of the matrix, i.e., rowptr[A.n]=A.nnz.
This additional entry, called sentry, avoids resorting to a special case for
the last row in the matrix-vector product.

The CRS representation of the matrix (A.3) is depicted below.

rowptr[]: 0 1 4 6 9
colind[]: 1 0 2 3 1 3 1 2 3

v[]: 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

i
i

i
i

i
i

i
i

186 A. Numerics

Below is a C++ example implementation of the CRS data structure.

// CRS format for sparse matrices

struct CRSMatrix

{

int n; // matrix dimension

int nnz; // number of non -zero coefficients

int rowptr []; // row pointers (array of size n+1)

int colind []; // column indices (array of size nnz)

double v[]; // non -zero coefficients (array of size nnz)

};

// sparse matrix vector product y=A*x

void mult(Vector& y, const CRSMatrix& A, const Vector& x)

{

for(int i=0; i<A.n; i++)

y[i] = 0.0;

for (int i=0; i<A.n; i++)

for (int k=A.rowptr[i]; k<A.rowptr[i+1]; k++)

y[i] += A.v[k] * x[A.colind[k]];

}

There are several variants of the CRS data structure [Barrett et al. 94].
If the matrix is symmetric, it is possible to store the lower triangular part of
the matrix only. Other variants store the diagonal coefficients in a separate
array to facilitate the implementation of a diagonal Jacobi preconditioner.
Alternatively, the block compressed row storage (BCRS) format partitions
the matrix into fixed-size blocks and stores these (instead of scalars) in the
array v[]. This both optimizes memory access and is amenable to the use
of extended instruction sets, such as SSE on Intel processors. It is also well
suited for efficient GPU implementations [Buatois et al. 09].

The CRS data structure and its variants are both compact and effi-
cient, at the price of an increased rigidity compared to, e.g., the Triplet
data structure. This rigidity translates into either the need to generate
the matrix one row after the other (i.e., each row must be completed be-
fore starting a new one) or into two mesh traversals required to first count
the number of non-zero entries before filling the matrix. Practical im-
plementations therefore typically create a Triplet matrix first, which can
then be converted into a CRS matrix using efficient conversion routines
[Davis 06]. An alternative is a CRS-like data structure based on dynamic
arrays per row, which is slightly less efficient but more flexible than the
static CRS format; an example implementation is available in the OpenNL
library.1

1http://alice.loria.fr/index.php/software/4-library/23-opennl.html

http://alice.loria.fr/index.php/software/4-library/23-opennl.html

i
i

i
i

i
i

i
i

A.3. Iterative Solvers 187

A.3 Iterative Solvers
Iterative solvers are designed to exploit the sparsity of the matrix A and
allow for simple implementations [Golub and Loan 89, Press et al. 92]. A
detailed overview of iterative methods with valuable implementation hints
can be found in [Barrett et al. 94].

Iterative methods have in common that they compute a converging
sequence x(0),x(1), . . . ,x(k) of approximations to the solution x∗ of the
linear system, i.e., limk→∞ x(k) = x∗. In practice one has to find a suitable
criterion to stop the iteration as soon as the current approximation x(k) is
accurate enough, i.e., if the norm of the error

e(k) := x∗ − x(k)

is less than some ε. Since the solution x∗ is not known beforehand, the
error must be estimated by considering the residual

r(k) := b−Ax(k).

Error and residual are related by the residual equations

Ae(k) = r(k).

This leads to an upper bound of the error

‖e(k)‖ ≤ ‖A−1‖ ‖r(k)‖,
which, however, requires the norm of the inverse matrix to be estimated or
approximated in some way [Barrett et al. 94]. In practice, the vector x(k)

is often updated until the residual ‖Ax(k) − b‖ < ε for some user-defined
tolerance ε. It is also common practice to specify a maximum number of
iterations such that the algorithm stops even if it does not converge due to
numerical inaccuracies. We now review the most frequently used iterative
methods for sparse spd systems.

A.3.1 Jabobi and Gauss-Seidel

The Jacobi and Gauss-Seidel methods are the simplest approaches, both
from the conceptual and from the implementation point of view. However,
they are rather inefficient and hence should not be used for meshes larger
than a few thousand vertices.

The two approaches are derived by writing the linear system Ax = b
line by line:

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1,
a2,1x1 + a2,2x2 + . . . + a2,nxn = b2,

...
... · · ·

...
...

an,1x1 + an,2x2 + . . . + an,nxn = bn.

i
i

i
i

i
i

i
i

188 A. Numerics

The Jacobi method traverses these equations one by one and updates the
value xi by rearranging equation i and assuming all the other variables xj
for j 6= i to be known. This leads to the following simple update rule:

x
(k+1)
i =

1

ai,i

bi −∑
j 6=i

ai,jx
(k)
j

 .

The complete algorithm for a simple Jacobi solver can be summarized by
the following pseudocode:

while
(
‖Ax(k) − b‖ < ε

)
and (k < kmax)

for i from 1 to n

x
(k+1)
i =

(
bi −

∑
j 6=i ai,jx

(k)
j

)
/ ai,i

end

k = k + 1
end

Here, ε denotes the precision specified by the user and kmax the maximum

number of iterations. Note that the computation of x
(k+1)
i does not make

use of the already available new values x
(k+1)
1 , . . . , x

(k+1)
i−1 . Taking them

into account leads to the update rule of the Gauss-Seidel method:

x
(k+1)
i =

1

ai,i

bi − i−1∑
j=1

ai,jx
(k+1)
j −

n∑
j=i+1

ai,jx
(k)
j

 .

It is easy to see that the Gauss-Seidel method needs one copy of the solution
vector x only, which is successively overwritten, whereas the Jacobi method
has to store the current state (k) and the next state (k+ 1). However, the
Gauss-Seidel method depends on the order to variables xi and is inherently
serial, whereas a Jacobi solver is order-independent and can trivially be
parallelized.

As can be seen from the pseudocode, both algorithms are not applicable
to matrices with zero values on the diagonal. More specifically, it is possible
to prove a sufficient condition for convergence. If the matrix is diagonal
dominant, i.e.,

|ai,i| >
∑
j 6=i

|ai,j | ∀ i = 1, . . . , n,

then the algorithm converges.
The main advantage of the Jacobi and Gauss-Seidel methods is their

extreme simplicity from the implementation point of view, as they do not
even require a sparse matrix data structure (see [Taubin 95, Floater and
Hormann 05]). Their main disadvantage, however, is the slow convergence

i
i

i
i

i
i

i
i

A.3. Iterative Solvers 189

for the many cases where the matrix is not strongly diagonal dominant.
Both methods rapidly remove the high frequencies of the error, but the
iteration stalls as soon as the error becomes a smooth function. As a
consequence, the convergence to the exact solution x∗ is usually too slow
in practice. We review next the conjugate gradients method, which can be
several orders of magnitude faster in such cases.

A.3.2 Conjugate Gradients

In this section we provide a short introduction to the conjugate gradients
algorithm and refer the interested reader to the book [Golub and Loan 89]
and the comprehensive tutorial [Shewchuk 94] for more details.

The conjugate gradients (CG) algorithm is based on the equivalence of
solving the linear system Ax = b and minimizing the quadratic form

Φ(x) =
1

2
xTAx− bTx.

Straightforwardly minimizing Φ(x) by gradient descent results in ineffi-
cient zig-zag paths in steep valleys of Φ(x), which correspond to strongly
differing eigenvalues of A (see [Shewchuk 94]). The speed of convergence
is influenced by the ratio

κ(A) = λmax(A) /λmin(A) (A.4)

of the largest to the smallest eigenvalue, called the condition number of A.
Problems with low or high condition numbers are said to be well-conditioned
or ill-conditioned, respectively.

In order to reduce the effect of A’s eigenvalues, the CG method succes-
sively minimizes Φ(x) along a set of linearly independent search directions
p(k) that define the so-called Krylov spaces K(k):

x(k) = argmin
x∈K(k)

Φ(x) with K(k) = span
{

p(0), . . . ,p(k−1)
}
. (A.5)

The search directions are chosen to be A-conjugate, i.e., orthogonal with

respect to the scalar product induced by A: p(j)TAp(i) = 0 for i 6= j.
Fortunate simplifications in the computations make it possible to obtain
the vectors p(k) one by one, by only keeping one vector in memory. The
next one is then obtained as a linear combination of the previous one and
the gradient ∇Φ = Ax(k) − b = −r(k) at the current point x(k). The
complete algorithm can be summarized as follows:

i
i

i
i

i
i

i
i

190 A. Numerics

Initialize k = 0, r(0) = p(0) = Ax(0) − b

while
(
‖Ax(k) − b‖ < ε

)
and (k < kmax)

α = (r(k) · r(k)) / (p(k) ·Ap(k))

x(k+1) = x(k) + αp(k)

r(k+1) = r(k) − αAp(k)

β = (r(k+1) · r(k+1)) / (r(k) · r(k))
p(k+1) = r(k+1) + β p(k)

k = k + 1
end

Due to the nestedness of the spaces K(k), the error decreases mono-
tonically, and the exact solution x∗ ∈ IRn is found after at most n steps
(neglecting rounding errors), since K(n) = IRn. The complexity of each
CG iteration is dominated by the matrix-vector product Ap, which is of
the order O(n) if the matrix is sparse. Given the maximum number of n
iterations, the total complexity is O(n2) in the worst case, but it is usually
better in practice.

As the convergence rate mainly depends on the spectral properties of
the matrix A, a proper pre-conditioning scheme should be used to increase
the efficiency and robustness of the CG method [Golub and Loan 89,Barrett
et al. 94]. While very sophisticated preconditioners exist (SSOR, incom-
plete Cholesky, etc.), our experiments with Laplacian systems have shown
that a simple diagonal Jacobi preconditioner is often satisfactory.

Although the conjugate gradients method decreases the computational
complexity from O(n3) to O(n2), it is still too slow to compute exact (or
sufficiently accurate) solutions of large and possibly ill-conditioned systems.
This motivates the use of multigrid iterative solvers.

A.3.3 Multigrid Iterative Solvers

One drawback of most iterative solvers is that they attenuate the high
frequencies of the error e(k) very fast, but their convergence stalls in the
case where the error is a fairly smooth function (which is typically the case
of Laplacian systems). These solvers are therefore often called smoothers
or relaxation methods.

Multigrid methods overcome the problem of slow convergence by build-
ing a fine-to-coarse hierarchy of meshes

M =M0 ⊃M1 ⊃ · · · ⊃ Mk

of the computational domain M and solving the linear system hierarchi-
cally from coarse to fine [Hackbusch 86, Briggs et al. 00]. After a few

i
i

i
i

i
i

i
i

A.3. Iterative Solvers 191

smoothing iterations (e.g., Jacobi, Gauss-Seidel) on the finest level M0

(so-called pre-smoothing), the high frequencies of the error are removed
and the smoothing iterations become inefficient. However, the remaining
low frequency error e0 = x∗−x0 onM0 corresponds to higher frequencies
when restricted to the coarser level meshM1 and therefore can be removed
efficiently on M1.

Hence, the error is solved for using the residual equations Ae1 = r1

on M1, where r1 = R1r0 is the residual on M0 transferred to M1 by
a restriction operator R1. The result e1 is prolongated back to M0 by
e0 ← P1e1 and used to correct the current approximation: x0 ← x0 + e0.
Small high-frequency errors due to the prolongation are finally removed by
a few Jacobi iterations (so-called post-smoothing) on M0.

The recursive application of this two-level approach to the whole hier-
archy can be summarized as follows:

Φi = SµPi+1Φi+1Ri+1Sλ, i = 0, . . . , k − 1,

Φk = A−1
k b,

where Sλ and Sµ denote λ pre-smoothing and µ post-smoothing iterations,
respectively. The recursion stops on the coarsest level Mk, where the
(small) linear system Akek = rk is solved using any linear solver, denoted
by the operator Φk. One recursive run is referred to as a V-cycle iteration.

Another concept is the method of nested iterations, which exploits the
fact that iterative solvers are very efficient if the starting value is sufficiently
close to the actual solution. One thus starts by computing the exact so-
lution on the coarsest level Mk, which can be done efficiently since the
system Akxk = bk corresponding to the restriction to Mk is small. The
prolongated solution Pkx

∗
k is then used as the starting value for an iterative

solver on levelMk−1, and this process is repeated until the finest levelM0

is reached and the solution x∗0 = x∗ is computed.
The remaining question is what kind of iterative solver to choose for

the solution on each levelMi in a nested iterations approach? The typical
method is to perform one or two V-cycle iterations (from Mi to Mk an
back toMi). This results in the so-called full multigrid method. However,
one can also use an iterative smoothing solver (e.g., Jacobi or CG) at each
level and completely avoid V-cycles. In the latter case the number of iter-
ations mi at level i should not be constant but instead should be chosen
as mi = mγi to decrease exponentially from coarse to fine [Bornemann
and Deuflhard 96]. Besides easier implementation, the advantage of this
cascading multigrid approach is that once a level is computed, it is not
involved in further computations and can thus be discarded. A compar-
ison of the three methods in terms of visited multigrid levels is given in
Figure A.1.

i
i

i
i

i
i

i
i

192 A. Numerics

Figure A.1. A schematic comparison in terms of visited multigrid levels for

V-cycle (left), full multigrid with one V-cycle per level (center), and cascading

multigrid (right). (Image taken from [Botsch et al. 05].)

Since in our case the discrete computational domain M is an irregular
triangle mesh instead of a regular 2D or 3D grid, the coarsening operator
for building the hierarchy is based on mesh decimation techniques (Chap-
ter 7). The shape of the resulting triangles is important for numerical
robustness, and the edge lengths on the different levels should mimic the
case of regular grids. Therefore, the decimation usually removes edges in
the order of increasing lengths, such that the hierarchy levels have uniform
edge lengths and triangles of bounded aspect ratio. The simplification from
one hierarchy level Mi to the next coarser one Mi+1 should additionally
be restricted to remove a maximally independent set of vertices, i.e., no two
removed vertices vj , vl ∈ Mi \Mi+1 are connected by an edge ejl ∈ Mi.
In [Aksoylu et al. 05] some more efficient alternatives for building the hi-
erarchy are described.

Due to the logarithmic number of hierarchy levels O(log n), the full
multigrid method and the cascading multigrid method can both be shown
to have O(n) asymptotic complexity, as opposed to O(n2) complexity
for non-hierarchical iterative methods. This linear complexity allows for
highly efficient implementations even for very complex systems. Successful
applications of multigrid methods in computer graphics are, for instance,
[Ray and Lévy 03,Bolz et al. 03,Shi et al. 06,Georgii and Westermann 06,
Kazhdan and Hoppe 08,Zhu et al. 10].

However, the main problem of multigrid solvers is their involved imple-
mentation, since special care must be taken for building the hierarchy, for
specialized preconditioners, and for the inter-level conversion by restriction
and prolongation operators. In addition, appropriate numbers of iterations
per hierarchy level are chosen either empirically or from experience, since
they depend not only on the nature of the problem (here the structure of A)
but also on its specific instance (the values of A). A detailed overview of
these techniques is given in [Aksoylu et al. 05].

For these reasons, sparse direct solvers, as described in the following,
are easier to use since they do not require complicated parameter tuning

i
i

i
i

i
i

i
i

A.4. Sparse Direct Cholesky Solver 193

and furthermore can exploit synergies when the linear system has to be
solved several times for multiple right-hand sides.

A.4 Sparse Direct Cholesky Solver
Direct solvers for linear systems are based on the factorization of the matrix
A into matrices of simpler structure, e.g., triangular or orthogonal matrices.
Once the factorization has been computed, this special structure allows for
an efficient solution of the linear system. It can therefore also be used to
efficiently solve the linear system for multiple right-hand sides.

For symmetric and positive definite linear systems the Cholesky fac-
torization is the most efficient choice [Golub and Loan 89, Trefethen and
Bau 97]: it factorizes the matrix A into the product LLT of a lower tri-
angular matrix L and its transpose. Once the Cholesky factorization is
obtained, it is a trivial matter to solve the linear system Ax = b:

Ax = b ⇔ LLTx = b ⇔
{

Ly = b,

LTx = y.

A Cholesky solver thus solves the linear system by solving two triangular
systems, which can be performed efficiently through trivial forward and
backward substitutions. The Cholesky solver, in comparison to the more
general LU-factorization, exploits the symmetry of A and is numerically
very robust due to the positive definiteness of A.

On the downside, we have to consider that the asymptotic time com-
plexity of a standard Cholesky solver is O(n3) for computing the factoriza-
tion and O(n2) for solving the two triangular systems. Since, for the prob-
lems we are targeting, n can be of the order of 106, this cubic complexity
is prohibitive. In practice, on a recent computer, it takes 0.01 seconds to
solve a (tiny) linear system of size n = 100, but the cubic complexity makes
this timing become 10 centuries if n = 106! Even if the matrix A is highly
sparse, a naive Cholesky solver does not exploit this structure, such that
the matrix factor L is dense in general (see Figure A.2, top row). Note
that this is true for all dense matrix factorizations (LU, QR, SVD), which
all have cubic time complexity.

However, an analysis of the Cholesky factorization reveals that the band-
width of the matrix A is preserved. The bandwidth of A is defined as

β(A) = max
i,j
{|i− j| : ai,j 6= 0} ,

and intuitively describes the maximum distance of a non-zero entry from
the diagonal. If A has a certain bandwidth, then so does its factor L,
i.e., β(L) ≤ β(A). Hence, additional non-zeros (so-called fill-in elements

i
i

i
i

i
i

i
i

194 A. Numerics

li,j 6= 0 = ai,j) can only appear within the band around the diagonal.
This additional structure can be exploited in both the factorization and
the solution processes, such that their complexities reduce from O(n3) to
O(nβ2) and from O(n2) to O(nβ), respectively [George and Liu 81].

An even stricter bound is that the Cholesky factorization also preserves
the so-called envelope, i.e., all leading zeros of each row. The time complex-
ity of factorization and solution generally depend linearly on the number of
non-zeros of the factor L. If the number of non-zeros is in turn of the order
O(n)—for instance, if the width of the band or the envelope is a small
constant—then we get the same O(n) time complexity as for multigrid
solvers!

However, if the matrix A is sparse but does not have a special band-
or envelope-structure, this result does not apply: the Cholesky factor L
will be a dense matrix and the complexity stays cubic (see Figure A.2,
top row). We can, however, minimize the matrix envelope in a first step,
which can be achieved by symmetric row and column permutations. This
simply corresponds to a reordering of the mesh vertices. Although finding
the optimal reordering is an NP-complete problem, several good heuristics
exist, of which we outline the most frequently used in the following. All of
these methods work on the undirected adjacency graph Adj(A), where two
nodes i, j ∈ {1, . . . , n} are connected by an edge if and only if ai,j 6= 0.

The standard method for envelope minimization is the Cuthill-McKee
algorithm [Cuthill and McKee 69], which picks a start node and renumbers
all its neighbors by traversing the adjacency graph in a greedy breadth-
first manner. Reverting this permutation further improves the reordering,
leading to the reverse Cuthill-McKee method [Liu and Sherman 76]. The
result of this reordering is shown in the second row of Figure A.2.

The minimum degree algorithm [George and Liu 89, Liu 85] builds on
the fact that the non-zero structure of L can symbolically be derived from
the non-zero structure of the matrix A, or, equivalently, from its adjacency
graph Adj(A). By analyzing the graph interpretation of the Cholesky
factorization it tries to minimize fill-in elements. This reordering does not
yield a band structure (which implicitly limits fill-in), but instead explic-
itly minimizes fill-in, which usually yields fewer non-zeros and thus higher
performance (see Figure A.2, third row).

The last class of reordering approaches is based on graph partitioning.
A matrix A whose adjacency graph has m separate connected compo-
nents can be restructured to a block-diagonal matrix of m blocks, such
that the factorization can be performed on each block individually. If
the adjacency graph is connected, a small subset S of separating nodes,
whose elimination would separate the graph into two components of roughly
equal size, is found by one of several heuristics [Karypis and Kumar 98].
This graph partitioning results in a matrix consisting of two large diagonal

i
i

i
i

i
i

i
i

A.4. Sparse Direct Cholesky Solver 195

Ordering Matrix A = LLT Factor L NNZ(L)

Original 36k

Reverse
Cuthill-
McKee

14k

Minimum
Degree

6.2k

Nested
Dissection

7.1k

Figure A.2. Nonzero pattern of a 500 × 500 matrix A (corresponding to a

Laplacian system on an irregular triangle mesh) and of its Cholesky factor L,

and the numbers of non-zeros of the matrices L, for different matrix reordering

schemes. (Image taken from [Botsch et al. 05].)

i
i

i
i

i
i

i
i

196 A. Numerics

blocks (two connected components) and |S| rows representing the separator
S. Recursively repeating this process leads to the method of nested dis-
section, which yields matrices of the block structure shown in the bottom
row of Figure A.2. Besides the obvious fill-in reduction, the block structure
also allows for parallelization of the factorization and the solution.

Analogously to the dense direct solvers, the factorization can be ex-
ploited to solve for different right-hand sides in a very efficient manner since
only the forward and backward substitutions have to be performed again.
Furthermore, no additional parameters have to be chosen in a problem-
dependent manner (such as iteration numbers for iterative solvers). The
only degree of freedom is the matrix reordering, which depends on the sym-
bolic structure of the matrix only and therefore can be chosen quite eas-
ily. Highly efficient implementations are publicly available in the libraries
TAUCS [Toledo et al. 03] and CHOLMOD [Chen et al. 08].

A.5 Non-Symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of
matrix A are not satisfied, optimal methods like the Cholesky factorization
or conjugate gradients cannot be used. In this section we shortly outline
which techniques are applicable instead.

For a non-symmetric matrix, it is possible to apply the conjugate gradi-
ents method to the normal equation ATAx = ATb. The resulting method
is called conjugate gradients squared (CGSQ). However, since this squares
the condition number (see Equation (A.4)), the loss of numerical stability
makes this method unsuitable in general.

Another idea consists of deriving from the system Ax = b an equivalent
symmetric system: [

Id A

AT 0

](
0
x

)
=

(
b
0

)
.

It is then possible to apply the conjugate gradients method to this system.

This defines the bi-conjugate gradient (BiCG) algorithm [Press et al. 92].
Although it works well in most cases, BiCG does not provide any theo-
retical convergence guarantees and has a very irregular non-monotonically
decreasing residual error for ill-conditioned systems.

On the other hand, the generalized minimal residual (GMRES) method
converges monotonically with guarantees, but its computational cost and
memory consumption increase in each iteration [Golub and Loan 89]. As a
good trade-off, the stabilized bi-conjugate gradients (BiCGStab) [Barrett
et al. 94] represent a mixture between the efficient BiCG and the smoothly

i
i

i
i

i
i

i
i

A.6. Comparison 197

converging GMRES; it provides a much smoother convergence and is rea-
sonably efficient and easy to implement. For this reason, BiCGStab was
used in early parameterization methods [Floater 97].

When considering dense direct solvers, the Cholesky factorization can-
not be used for general matrices. Therefore, the LU factorization is typi-
cally employed since it is similarly efficient and also extends well to sparse
direct methods. After factorizing the matrix A into the product of a lower
triangular matrix L and an upper triangular matrix U, it solves two trian-
gular systems by forward and backward substitution:

Ax = b ⇔ LUx = b ⇔
{

Ly = b,
Ux = y.

In contrast to the Cholesky factorization, (partial) row and column pivot-
ing is essential for the numerical robustness of the LU factorization.

Similarly to the Cholesky factorization, the LU factorization also pre-
serves the bandwidth and envelope of the matrix A. Techniques like the
minimum degree algorithm generalize to non-symmetric matrices as well.
However, as for dense matrices, the sparse LU factorization relies on piv-
oting in order to guarantee numerical stability. This means that two
competing types of permutations are involved: permutations for matrix
reordering and pivoting permutations for numerical robustness. Because
these permutations cannot be handled separately, a trade-off between sta-
bility and fill-in minimization has to be found, resulting in a more com-
plex factorization. Efficient implementations of sparse LU factorization
are provided by the libraries SuperLU [Demmel et al. 99] and UMFPACK
[Davis 04].

A.6 Comparison

In the following we compare four different linear system solvers on Lapla-
cian and bi-Laplacian systems of varying size:

I CG. The iterative conjugate gradients solver from the gmm++ library
[Renard and Pommier 05], using incomplete LDLT factorization as
preconditioner.

I MG. The cascading multigrid solver of [Botsch and Kobbelt 04a],
which exploits SSE instructions in order to solve for up to four right-
hand sides simultaneously.

I LLT. The sparse Cholesky solver of the TAUCS library [Toledo
et al. 03], using nested dissection matrix reordering.

i
i

i
i

i
i

i
i

198 A. Numerics

I LU. Although our linear systems are spd, we also compare to the
popular SuperLU solver [Demmel et al. 99], which is based on a sparse
LU factorization.

All timings were taken on a 3.0 GHz Pentium4 running Linux.
Iterative solvers (CG, MG) have the advantage that the computation

can be stopped as soon as a sufficiently small error is reached, which—in
typical computer graphics applications—does not have to be the highest
possible precision. In contrast, direct methods (LLT, LU) always com-
pute the exact solution up to numerical round-off errors, which in our
application examples was more precise than required. The stopping cri-
teria of the iterative methods were therefore chosen to yield results com-
parable to that achieved by direct solvers. Their residual errors were al-
lowed to be about one order of magnitude higher than those of the direct
solvers.

Table A.1 shows timings for the different solvers on Laplacian systems
∆x = b for 10k–50k and 100k–500k unknowns. For each solver three
columns of timings are given:

I Setup. Computing the cotangent weights for the Laplace discretization
and building the matrix structure (done per-level for MG).

I Precomputation. Preconditioning (CG), computing the hierarchy by
mesh decimation (MG), matrix reordering and factorization (LLT,
LU).

I Solution. Solving the linear system for three different right-hand sides
corresponding to the x, y, and z components of the free vertices x.

Due to its effective preconditioner, which computes a sparse incomplete
factorization, the iterative solver scales almost linearly with the system
complexity. However, for large and thus ill-conditioned systems, it breaks
down. Notice that without preconditioning the solver would not converge
for the larger systems.

The experiments clearly verify the linear complexity of multigrid and
sparse direct solvers. Once their sparse factorizations are pre-computed,
the computational costs for actually solving the system are about the same
for the LU and Cholesky solver. However, they differ significantly in the
factorization performance because the numerically more robust Cholesky
factorization allows for more optimizations, whereas pivoting is required
for the LU factorization to guarantee robustness.

Interactive applications often require the solution of the same linear
system for multiple right-hand sides (e.g., once per frame), which typically
reflects the change of boundary constraints due to user interaction. For

i
i

i
i

i
i

i
i

A.6. Comparison 199

Size CG MG LU LLT

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03
20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06
30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09
40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12
50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31
200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65
300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00
400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37
500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table A.1. Comparison of different solvers for Laplacian systems ∆x = b of

10k–50k (left) and 100k–500k (right) free vertices x. The three timings for each

solver represent matrix setup, pre-computation, and three solutions for the x, y,

and z components of x. The graphs in the upper row show the total computation

times (sum of all three timing columns). The second row plots the solution times

only (third column of timings), as those typically determine the per-frame cost

in interactive applications. (Image taken from [Botsch et al. 05].)

i
i

i
i

i
i

i
i

200 A. Numerics

Size CG MG LU LLT

10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04
20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09
30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15
40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21
50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62
200k — 9.19/16.6/8.50 — 5.54/18.2/1.32
300k — 17.0/24.8/16.0 — 8.13/31.2/2.07
400k — 19.7/32.6/19.0 — 10.4/44.5/2.82
500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table A.2. Comparison of different solvers for bi-Laplacian systems ∆2x = b

of 10k–50k (left) and 100k–500k (right) free vertices P. The three timings for

each solver represent matrix setup, pre-computation, and three solutions for the

components of x. The graphs in the upper row again show the total computa-

tion times, while the second row depicts the solution times only. For the larger

systems, the iterative solver and the sparse LU factorization fail to compute a

solution. (Image taken from [Botsch et al. 05].)

i
i

i
i

i
i

i
i

A.6. Comparison 201

such problems the solution times, i.e., the third columns of the timings, are
more relevant, as they correspond to the per-frame computational costs.
Here, the pre-computation of a sparse factorization clearly pays off and the
direct solvers are superior to the multigrid method.

Table A.2 shows the same timings for bi-Laplacian systems ∆2x = b.
In this case, the matrix setup is more complex, the condition number is
squared, and the sparsity decreases from about 7 to about 19 non-zeros per
row. Due to the higher condition number, the iterative solver takes much
longer and even fails to converge on large systems.

In contrast, the multigrid solver converges robustly without numerical
problems. The computational costs required for the sparse factorization
are proportional to the increased number of non-zeros per row. The LU
factorization additionally has to incorporate pivoting for numerical stabil-
ity, and it failed for larger systems. In contrast, the Cholesky factorization
worked robustly in all experiments.

Besides computational cost, memory consumption is also a very im-
portant property of a linear system solver. The memory consumption of
the multigrid method is mainly determined by the meshes representing
the different hierarchy levels. In contrast, the memory required for the
Cholesky factorization depends significantly on the sparsity of the matrix,
too. On the largest example (500k unknowns) the multigrid method con-
sumes about 1 GB memory for the Laplacian system and about 1.1 GB
for the bi-Laplacian system, whereas the Cholesky solver needs about 600
MB and 1.2 GB, respectively. Hence, the direct solver would not be able
to factorize large higher-order Laplacian systems on standard PCs, while
the multigrid method would still succeed.

These comparisons show that direct solvers are a valuable and effi-
cient alternative to multigrid methods, even for complex linear systems. In
all experiments the sparse Cholesky solver was faster than the multigrid
method, and if the system has to be solved for multiple right-hand sides, the

Method Pros Cons

Jacobi easy to implement inefficient
low memory cost

conjugate gradients easy to implement low performance
low memory cost

multigrid highly efficient difficult to implement
low memory cost difficult to tune

sparse Cholesky highly efficient high memory cost
public codes available implementations are complex

Table A.3. Advantages and disadvantages of different classes of linear system

solvers.

i
i

i
i

i
i

i
i

202 A. Numerics

Name Location

SuperLU http://crd.lbl.gov/∼xiaoye/SuperLU/
TAUCS http://www.tau.ac.il/∼stoledo/taucs/
MUMPS http://graal.ens-lyon.fr/MUMPS/
UMFPAK http://www.cise.ufl.edu/research/sparse/umfpack/
OpenNL http://alice.loria.fr/software

Table A.4. Some publicly available sparse direct solvers and APIs.

precomputation of a sparse factorization is even more beneficial. Table A.3
summarizes the conclusions of these comparisons. Finally, we mention that
direct solvers with out-of-core storage [Meshar et al. 06] let the user benefit
from the high efficiency of sparse direct solvers while keeping the control
of the used amount of RAM. References to publicly available sparse di-
rect solvers are given in Table A.4. The OpenNL library can be used as a
convenient front end for these sparse solvers.

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[Aksoylu et al. 05] B. Aksoylu, A. Khodakovsky, and P. Schröder. “Multilevel
Solvers for Unstructured Surface Meshes.” SIAM Journal on Scientific Com-
puting 26:4 (2005), 1146–65.

[Aleardi et al. 08] L. C. Aleardi, O. Devillers, and G. Schaeffer. “Succinct Repre-
sentations of Planar Maps.” Theoretical Computer Science 408:2–3 (2008),
174–87.

[Alliez and Desbrun 01] P. Alliez and M. Desbrun. “Valence-Driven Connectivity
Encoding for 3D Meshes.” Computer Graphics Forum (Proc. Eurographics)
20:3 (2001), 480–89.

[Alliez et al. 99] Pierre Alliez, Nathalie Laurent, Henri Sanson, and Francis
Schmitt. “Mesh Approximation Using a Volume-Based Metric.” In Proc. of
Pacific Graphics, pp. 292–301. Washington, DC: IEEE Computer Society,
1999.

[Alliez et al. 02] P. Alliez, M. Meyer, and M. Desbrun. “Interactive Geome-
try Remeshing.” ACM Transactions on Graphics (Proc. SIGGRAPH) 21:3
(2002), 347–54.

[Alliez et al. 03a] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Des-
brun. “Anisotropic Polygonal Remeshing.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 22:3 (2003), 485–93.

[Alliez et al. 03b] P. Alliez, É. Colin de Verdière, O. Devillers, and M. Isenburg.
“Isotropic Surface Remeshing.” In Proc. of Shape Modeling International,
pp. 49–58. Washington, DC: IEEE Computer Society, 2003.

[Alliez et al. 07] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. “Recent Ad-
vances in Remeshing of Surfaces.” In Shape Analysis and Structuring, edited

203

i
i

i
i

i
i

i
i

204 Bibliography

by Leila de Floriani and Michela Spagnuolo, pp. 53–82. Heidelberg: Springer-
Verlag, 2007.

[Amenta et al. 99] N. Amenta, M. Bern, and D. Eppstein. “Optimal Point Place-
ment for Mesh Smoothing.” Journal of Algorithms 30:2 (1999), 302–22.

[Angelidis et al. 06] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. “Swirling-
Sweepers: Constant Volume Modeling.” Graphical Models 68:4 (2006), 324–
32.

[Attene 10] M. Attene. “A Lightweight Approach to Repairing Digitized Polygon
Meshes.” The Visual Computer 26 (2010), To appear.

[Au et al. 07] Oscar Kin-Chung Au, Hongbo Fu, Chiew-Lan Tai, and Daniel
Cohen-Or. “Handle-Aware Isolines for Scalable Shape Editing.” ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 26:3 (2007), 83.

[Bærentzen and Aanæs 05] J. Bærentzen and H. Aanæs. “Signed Distance Com-
putation Using the Angle Weighted Pseudo-normal.” IEEE Transactions on
Visualization and Computer Graphics 11:3 (2005), 243–53.

[Bajaj and Xu 03] C. L. Bajaj and G. Xu. “Anisotropic Diffusion of Surfaces
and Functions on Surfaces.” ACM Transaction on Graphics 22:1 (2003),
4–32.

[Barequet and Kumar 97] G. Barequet and S. Kumar. “Repairing CAD Models.”
In VIS ’97: Proceedings of the Conference on Visualization ’97, pp. 363–70.
Washington, DC: IEEE Computer Society, 1997.

[Barequet and Sharir 95] G. Barequet and M. Sharir. “Filling Gaps in the
Boundary of a Polyhedron.” Computer Aided Geometric Design 12:2 (1995),
207–29.

[Barrett et al. 94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Tem-
plates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods, Second edition. Philadelphia: SIAM, 1994.

[Baumgart 72] B. G. Baumgart. “Winged-Edge Polyhedron Representation.”
Technical Report STAN-CS320, Computer Science Department, Stanford
University, 1972.

[Ben-Chen et al. 08] M. Ben-Chen, C. Gotsman, and G. Bunin. “Conformal
Flattening by Curvature Prescription and Metric Scaling.” Computer Graph-
ics Forum (Proc. Eurographics) 27 (2008), 449–58.

[Bendels and Klein 03] G. H. Bendels and R. Klein. “Mesh Forging: Editing of
3D-Meshes Using Implicitly Defined Occluders.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 207–17. Aire-la-Ville, Switzerland:
Eurographics Association, 2003.

[Berger 07] Marcel Berger. A Panoramic View of Riemannian Geometry. Berlin:
Springer, 2007.

[Bern and Eppstein 00] M. W. Bern and D. Eppstein. “Quadrilateral Meshing
by Circle Packing.” International Journal of Computational Geometry and
Applications 10:4 (2000), 347–60.

i
i

i
i

i
i

i
i

Bibliography 205

[Bischoff and Kobbelt 03] S. Bischoff and L. Kobbelt. “Sub-Voxel Topology Con-
trol for Level-Set Surfaces.” Computer Graphics Forum (Proc. Eurographics)
22:3 (2003), 273–80.

[Bischoff and Kobbelt 05] S. Bischoff and L. Kobbelt. “Structure Preserving
CAD Model Repair.” Computer Graphics Forum (Proc. Eurographics) 24:3
(2005), 527–36.

[Bischoff et al. 05] S. Bischoff, D. Pavic, and L. Kobbelt. “Automatic Restora-
tion of Polygon Models.” ACM Transaction on Graphics 24:4 (2005), 1332–
52.

[Bobenko and Hoffmann 01] A. I. Bobenko and T. Hoffmann. “Conformally
Symmetric Circle Packings: A Generalization of Doyle Spirals.” Experi-
mental Mathematics 10:1 (2001), 141–50.

[Bobenko and Schröder 05] A. I. Bobenko and P. Schröder. “Discrete Will-
more Flow.” In Proc. of Eurographics Symposium on Geometry Processing,
pp. 101–110. Aire-la-Ville, Switzerland: Eurographics Association, 2005.

[Bobenko and Springborn 07] A. I. Bobenko and B. A. Springborn. “A Discrete
Laplace-Beltrami Operator for Simplicial Surfaces.” Discrete and Computa-
tional Geometry 38:4 (2007), 740–56.

[Bobenko et al. 06] A.I. Bobenko, T. Hoffmann, and B.A. Springborn. “Minimal
Surfaces from Circle Patterns: Geometry from Combinatorics.” Annals of
Mathematics 164:1 (2006), 1–24.

[Boier-Martin et al. 04] I. Boier-Martin, H. Rushmeier, and J. Jin. “Parameter-
ization of Triangle Meshes over Quadrilateral Domains.” In Proc. of Eu-
rographics Symposium on Geometry Processing, pp. 193–203. Aire-la-Ville,
Switzerland: Eurographics Association, 2004.

[Boissonnat and Oudot 05] J.-D. Boissonnat and S. Oudot. “Provably Good
Sampling and Meshing of Surfaces.” Graphical Models 67 (2005), 405–51.

[Boissonnat and Yvinec 98] J.-D. Boissonnat and M. Yvinec. Algorithmic Ge-
ometry. Cambridge, UK: Cambridge University Press, 1998.

[Bolz et al. 03] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid.” ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 22:3 (2003), 917–24.

[Bommes and Kobbelt 07] D. Bommes and L. Kobbelt. “Accurate Computation
of Geodesic Distance Fields for Polygonal Curves on Triangle Meshes.” In
Proc. of Vision, Modeling, Visualization, pp. 151–60. Berlin: Akademische
Verlagsgesellschaft, 2007.

[Bommes et al. 09] D. Bommes, H. Zimmer, and L. Kobbelt. “Mixed-Integer
Quadrangulation.” ACM Transactions on Graphics (Proc. SIGGRAPH)
28:3 (2009), 77:1–77:10.

[Bornemann and Deuflhard 96] F. A. Bornemann and P. Deuflhard. “The Cas-
cading Multigrid Method for Elliptic Problems.” Num. Math. 75:2 (1996),
135–52.

i
i

i
i

i
i

i
i

206 Bibliography

[Borodin et al. 02] P. Borodin, M. Novotni, and R. Klein. “Progressive Gap Clos-
ing for Mesh Repairing.” In Advances in Modelling, Animation and Ren-
dering, edited by J. Vince and R. Earnshaw, pp. 201–13. London: Springer
Verlag, 2002.

[Borodin et al. 04] P. Borodin, G. Zachmann, and R. Klein. “Consistent Normal
Orientation for Polygonal Meshes.” In Proc. of Computer Graphics Inter-
national, pp. 18–25. Washington, DC: IEEE Computer Society, 2004.

[Borouchaki and Frey 05] H. Borouchaki and P. Frey. “Simplification of Surface
Mesh Using Hausdorff Envelope.” Computer Methods in Applied Mechanics
and Engineering 194:48-49 (2005), 4864–84.

[Bossen and Heckbert 96] F. J. Bossen and P. S. Heckbert. “A Pliant Method
for Anisotropic Mesh Generation.” In Proc. of International Meshing
Roundtable, pp. 63–74. New York: Springer, 1996.

[Botsch and Kobbelt 03] M. Botsch and L. Kobbelt. “Multiresolution Surface
Representation Based on Displacement Volumes.” Computer Graphics Fo-
rum (Proc. Eurographics) 22:3 (2003), 483–91.

[Botsch and Kobbelt 04a] M. Botsch and L. Kobbelt. “An Intuitive Framework
for Real-Time Freeform Modeling.” ACM Transactions on Graphics (Proc.
SIGGRAPH) 23:3 (2004), 630–34.

[Botsch and Kobbelt 04b] M. Botsch and L. Kobbelt. “A Remeshing Approach
to Multiresolution Modeling.” In Proc. of Eurographics Symposium on Ge-
ometry Processing, pp. 189–96. Aire-la-Ville, Switzerland: Eurographics As-
sociation, 2004.

[Botsch and Kobbelt 05] M. Botsch and L. Kobbelt. “Real-Time Shape Editing
Using Radial Basis Functions.” Computer Graphics Forum (Proc. Euro-
graphics) 24:3 (2005), 611–21.

[Botsch and Sorkine 08] M. Botsch and O. Sorkine. “On Linear Variational Sur-
face Deformation Methods.” IEEE Transactions on Visualization and Com-
puter Graphics 14:1 (2008), 213–30.

[Botsch et al. 02] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. Paper
presented at the OpenSG Symposium 02, 2002.

[Botsch et al. 04] M. Botsch, D. Bommes, C. Vogel, and L. Kobbelt. “GPU-
Based Tolerance Volumes for Mesh Processing.” In Proc. of Pacific Graphics.
Washington, DC: IEEE Computer Society, 2004.

[Botsch et al. 05] M. Botsch, D. Bommes, and L. Kobbelt. “Efficient Linear
System Solvers for Mesh Processing.” Lecture Notes in Computer Science
(Proc. Mathematics of Surfaces) 3604 (2005), 62–83.

[Botsch et al. 06a] Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt.
“PriMo: Coupled Prisms for Intuitive Surface Modeling.” In Proc. of Eu-
rographics Symposium on Geometry Processing, pp. 11–20. Aire-la-Ville,
Switzerland: Eurographics Association, 2006.

[Botsch et al. 06b] Mario Botsch, Mark Pauly, Christian Rössl, Stephan Bischoff,
and Leif Kobbelt, 2006. Course presented at ACM SIGGRAPH 2006.

i
i

i
i

i
i

i
i

Bibliography 207

[Botsch et al. 06c] Mario Botsch, Robert Sumner, Mark Pauly, and Markus
Gross. “Deformation Transfer for Detail-Preserving Surface Editing.” In
Proc. of Vision, Modeling, Visualization, pp. 357–64. Berlin: Akademische
Verlagsgesellschaft, 2006.

[Botsch et al. 07] M. Botsch, M. Pauly, M. Wicke, and M. Gross. “Adaptive
Space Deformations Based on Rigid Cells.” Computer Graphics Forum
(Proc. Eurographics) 26:3 (2007), 339–47.

[Botsch 05] M. Botsch. High Quality Surface Generation and Efficient Multires-
olution Editing Based on Triangle Meshes. Aachen: Shaker Verlag, 2005.

[Bremner et al. 01] David Bremner, Ferran Hurtado, Suneeta Ramaswami, and
Vera Sacristan. “Small Convex Quadrangulations of Point Sets.” In Al-
gorithms and Computation, 12th International Symposium, ISAAC, 2223,
pp. 623–35. Berlin: Springer, 2001.

[Briggs et al. 00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid
Tutorial, Second edition. Philadelphia: SIAM, 2000.

[Buatois et al. 09] Luc Buatois, Guillaume Caumon, and Bruno Lévy. “Concur-
rent Number Cruncher: A GPU Implementation of a General Sparse Linear
Solver.” International Journal of Parallel, Emergent and Distributed Sys-
tems 24:3 (2009), 205–23.

[Campagna et al. 98] S. Campagna, L. Kobbelt, and H.-P. Seidel. “Directed
Edges: A Scalable Representation for Triangle Meshes.” Journal of Graph-
ics, GPU, and Game Tools 3:4 (1998), 1–12.

[Campen and Kobbelt 10] Marcel Campen and Leif Kobbelt. “Exact and Ro-
bust (Self-)Intersections for Polygonal Meshes.” Computer Graphics Forum
(Proc. Eurographics) 29:2 (2010), 397–406.

[Carr et al. 01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. “Reconstruction and Repre-
sentation of 3D Objects with Radial Basis Functions.” In Proc. of ACM
SIGGRAPH, pp. 67–76. New York: ACM, 2001.

[Cazals and Pouget 03] F. Cazals and M. Pouget. “Estimating Differential Quan-
tities Using Polynomial Fitting of Osculating Jets.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 177–87. Aire-la-Ville, Switzerland:
Eurographics Association, 2003.

[Celniker and Gossard 91] G. Celniker and D. Gossard. “Deformable Curve and
Surface Finite-Elements for Free-Form Shape Design.” In Proc. of ACM
SIGGRAPH, pp. 257–66. New York: ACM, 1991.

[CGAL 09] CGAL. “CGAL, Computational Geometry Algorithms Library.”
http://www.cgal.org, 2009.

[Chen et al. 08] Yanqing Chen, Timothy A. Davis, William W. Hager, and
Sivasankaran Rajamanickam. “Algorithm 887: CHOLMOD, Supernodal
Sparse Cholesky Factorization and Update/Downdate.” ACM Transactions
on Mathematical Software 35:3 (2008), 1–14.

i
i

i
i

i
i

i
i

208 Bibliography

[Chen 04] Long Chen. “Mesh Smoothing Schemes Based on Optimal Delaunay
Triangulations.” In Proc. of International Meshing Roundtable, pp. 109–20.
New York: Springer, 2004.

[Chew 93] P. Chew. “Guaranteed-Quality Mesh Generation for Curved Sur-
faces.” In Proc. of Symposium on Computational Geometry, pp. 274–80.
New York: ACM, 1993.

[Cignoni et al. 98a] P. Cignoni, C. Montani, and R. Scopigno. “A Comparison
of Mesh Simplification Algorithms.” In Computers & Graphics, pp. 37–54.
Amsterdam: Elsevier Science, 1998.

[Cignoni et al. 98b] P. Cignoni, C. Rocchini, and R. Scopigno. “Metro: Measur-
ing Error on Simplified Surfaces.” Computer Graphics Forum 17:2 (1998),
167–74.

[Cignoni et al. 99] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and
M. Tarini. “Preserving Attribute Values on Simplified Meshes by Re-
sampling Detail Textures.” The Visual Computer 15:10 (1999), 519–39.

[Cignoni et al. 04] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Mar-
ton, Federico Ponchio, and Roberto Scopigno. “Adaptive Tetrapuzzles: Ef-
ficient Out-Of-Core Construction and Visualization of Gigantic Multires-
olution Polygonal Models.” ACM Transactions on Graphics (Proc. SIG-
GRAPH) 23:3 (2004), 796–803.

[Clarenz et al. 00] U. Clarenz, U. Diewald, and M. Rumpf. “Anisotropic Geo-
metric Diffusion in Surface Processing.” In Proc. of IEEE Visualization,
pp. 397–406. Washington, DC: IEEE Computer Society, 2000.

[Cohen et al. 96] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks, Jr., and W. Wright. “Simplification Envelopes.”
In Proc. of ACM SIGGRAPH, pp. 119–28. New York: ACM, 1996.

[Cohen et al. 98] J. Cohen, M. Olano, and D. Manocha. “Appearance-Preserving
Simplification.” In Proc. of ACM SIGGRAPH, pp. 115–22. New York: ACM,
1998.

[Cohen-Steiner and Morvan 03] D. Cohen-Steiner and J.-M. Morvan. “Re-
stricted Delaunay Triangulations and Normal Cycle.” In Proc. of Symposium
on Computational Geometry, pp. 237–46. New York: ACM, 2003.

[Cohen-Steiner et al. 04] D. Cohen-Steiner, P. Alliez, and M. Desbrun. “Varia-
tional Shape Approximation.” ACM Transactions on Graphics (Proc. SIG-
GRAPH) 23:3 (2004), 905–14.

[Coquillart 90] S. Coquillart. “Extended Free-Form Deformation: A Sculpturing
Tool for 3D Geometric Modeling.” In Proc. of ACM SIGGRAPH, pp. 187–
96. New York: ACM, 1990.

[Courant 50] R. Courant. Dirichlet’s Principle, Conformal Mapping and Mini-
mal Surfaces. New York: Interscience, 1950.

[Coxeter 89] H. Coxeter. Introduction to Geometry. New York: John Wiley &
Sons, 1989.

i
i

i
i

i
i

i
i

Bibliography 209

[Curless and Levoy 96] B. Curless and M. Levoy. “A Volumetric Method for
Building Complex Models from Range Images.” In Proc. of ACM SIG-
GRAPH, pp. 303–12. New York: ACM, 1996.

[Cuthill and McKee 69] E. Cuthill and J. McKee. “Reducing the Bandwidth of
Sparse Symmetric Matrices.” In ACM ’69: Proc. of the 24th ACM National
Conference, pp. 157–72. New York: ACM, 1969.

[Davis et al. 02] J. Davis, S. Marschner, M. Garr, and M. Levoy. “Filling Holes
in Complex Surfaces Using Volumetric Diffusion.” In Proc. International
Symposium on 3D Data Processing, Visualization, Transmission, pp. 428–
38. Washington, DC: IEEE Computer Society, 2002.

[Davis 04] T. A. Davis. “Algorithm 832: UMFPACK, An Unsymmetric-Pattern
Multifrontal Method.” ACM Transactions on Mathematical Software 30:2
(2004), 196–99.

[Davis 06] Timothy A. Davis. Direct Methods for Sparse Linear Systems.
Philadelphia: SIAM, 2006.

[de Verdiere 90] Y. Colin de Verdiere. “Sur un nouvel invariant des graphes et
un critere de planarite.” Journal of Combinatorial Theory 50 (1990), 11–21.

[Degener et al. 03] P. Degener, J. Meseth, and R. Klein. “An Adaptable Surface
Parameterization Method.” In Proc. of International Meshing Roundtable,
pp. 201–13. New York: Springer, 2003.

[Demmel et al. 99] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and
J. W. H. Liu. “A Supernodal Approach to Sparse Partial Pivoting.” SIAM
Journal on Matrix Analysis and Applications 20:3 (1999), 720–55.

[Desbrun et al. 99] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. “Im-
plicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow.” In
Proc. of ACM SIGGRAPH, pp. 317–24. New York: ACM, 1999.

[Desbrun et al. 00] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. “Aniso-
tropic Feature-Preserving Denoising of Height Fields and Images.” In Proc.
of Graphics Interface, pp. 145–52. Toronto: Canadian Information Process-
ing Society, 2000.

[Desbrun et al. 02] M. Desbrun, M. Meyer, and P. Alliez. “Intrinsic Parameteri-
zations of Surface Meshes.” Computer Graphics Forum (Proc. Eurographics)
21:3 (2002), 209–18.

[Dey et al. 99] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev.
“Topology Preserving Edge Contraction.” Publ. Inst. Math. (Beograd) 66
(1999), 23–45.

[Dey et al. 05] T. K. Dey, G. Li, and T. Ray. “Polygonal Surface Remeshing
with Delaunay Refinement.” In Proc. of International Meshing Roundtable,
pp. 343–61. New York: Springer, 2005.

[Dey 06] T. K. Dey. Curve and Surface Reconstruction: Algorithms with Math-
ematical Analysis. Cambridge, UK: Cambridge University Press, 2006.

[do Carmo 76] M. P. do Carmo. Differential Geometry of Curves and Surfaces.
Englewood Cliffs, NJ: Prentice Hall, 1976.

i
i

i
i

i
i

i
i

210 Bibliography

[Douglas 31] J. Douglas. “Solution of the Problem of Plateau.” Transactions of
the American Mathematical Society 33:1 (1931), 263–321.

[Du et al. 99] Qiang Du, Vance Faber, and Max Gunzburger. “Centroidal
Voronoi Tesselations: Applications and Algorithms.” SIAM Review 41:4
(1999), 637–76.

[Duchon 77] J. Duchon. “Spline Minimizing Rotation-Invariant Semi-Norms in
Sobolev Spaces.” In Constructive Theory of Functions of Several Variables,
number 571 in Lecture Notes in Mathematics, edited by W. Schempp and
K. Zeller, pp. 85–100. Berlin: Springer Verlag, 1977.

[Eck et al. 95] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. “Multiresolution Analysis of Arbitrary Meshes.” In Proc. of
ACM SIGGRAPH, pp. 173–82. New York: ACM, 1995.

[Edelsbrunner and Shah 94] H. Edelsbrunner and N. R. Shah. “Triangulating
Topological Spaces.” In Proc. of Symposium on Computational Geometry,
pp. 285–92. New York: ACM, 1994.

[Edelsbrunner 06] Herbert Edelsbrunner. Geometry and Topology for Mesh Gen-
eration. Cambridge, UK: Cambridge University Press, 2006.

[Eigensatz and Pauly 09] Michael Eigensatz and Mark Pauly. “Positional, Met-
ric, and Curvature Control for Constraint-Based Surface Deformation.”
Computer Graphics Forum (Proc. Eurographics) 28:2 (2009), 551–558.

[Eigensatz et al. 08] M. Eigensatz, R. Sumner, and M. Pauly. “Curvature-
Domain Shape Processing.” Computer Graphics Forum (Proc. Eurographics)
27:2 (2008), 241–250.

[Eppstein 01] D. Eppstein. Global Optimization of Mesh Quality. Tutorial at the
10th International Meshing Roundtable, New York: Springer, 2001.

[Farin 97] G. Farin. Curves and Surfaces for Computer Aided Geometric Design,
Fourth edition. San Diego: Academic Press, 1997.

[Fleishman et al. 03] S. Fleishman, I. Drori, and D. Cohen-Or. “Bilateral Mesh
Denoising.” ACM Transactions on Graphics (Proc. SIGGRAPH) 22:3
(2003), 950–53.

[Floater and Hormann 05] M. S. Floater and K. Hormann. “Surface Parameter-
ization: A Tutorial and Survey.” In Advances in Multiresolution for Geo-
metric Modelling, Mathematics and Visualization, edited by N. A. Dodgson,
M. S. Floater, and M. A. Sabin, pp. 157–186. Berlin: Springer, 2005.

[Floater et al. 05] Michael S. Floater, G. Kos, and M. Reimers. “Mean Value
Coordinates in 3D.” Computer Aided Geometric Design 22 (2005), 623–31.

[Floater 97] M. S. Floater. “Parametrization and Smooth Approximation of Sur-
face Triangulations.” Computer Aided Geometric Design 14:3 (1997), 231–
50.

[Floater 03] M. S. Floater. “Mean Value Coordinates.” Computer Aided Geo-
metric Design 20:1 (2003), 19–27.

i
i

i
i

i
i

i
i

Bibliography 211

[Floriani and Hui 03] L. De Floriani and A. Hui. “A Scalable Data Structure
for Three-Dimensional Non-Manifold Objects.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 72–82. Aire-la-Ville, Switzerland:
Eurographics Association, 2003.

[Floriani and Hui 05] L. De Floriani and A. Hui. “Data Structures for Simpli-
cial Complexes: An Analysis and a Comparison.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 119–28. Berlin: Eurographics As-
sociation, 2005.

[Foley et al. 90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice, Second edition.
Boston, MA: Addison Welsey, 1990.

[Forsey and Bartels 88] D. Forsey and R. H. Bartels. “Hierarchical B-spline Re-
finement.” In Proc. of ACM SIGGRAPH, pp. 205–12. New York: ACM,
1988.

[Forsey and Bartels 95] D. Forsey and R. H. Bartels. “Surface Fitting with Hi-
erarchical Splines.” ACM Transaction on Graphics 14:2 (1995), 134–61.

[Frisken et al. 00] S. Frisken, R. Perry, A. Rockwood, and T. Jones. “Adaptively
Sampled Distance Fields: A General Representation of Shape for Computer
Graphics.” In Proc. of ACM SIGGRAPH, pp. 249–54. New York: ACM,
2000.

[Garland and Heckbert 97] M. Garland and P. Heckbert. “Surface Simplification
Using Quadric Error Metrics.” In Proc. of ACM SIGGRAPH, pp. 209–16.
New York: ACM, 1997.

[Garland and Heckbert 98] M. Garland and P. Heckbert. “Simplifying Surfaces
with Color and Texture Using Quadric Error Metrics.” In Proc. of IEEE
Visualization. Washington, DC: IEEE Computer Society, 1998.

[Gelfand and Fomin 00] I. M. Gelfand and S. V. Fomin. Calculus of Variations.
New York: Dover Publications, 2000.

[George and Liu 81] A. George and J. W. H. Liu. Computer Solution of Large
Sparse Positive Definite Matrices. Englewood Cliffs, NJ: Prentice Hall, 1981.

[George and Liu 89] A. George and J. W. H. Liu. “The Evolution of the Mini-
mum Degree Ordering Algorithm.” SIAM Review 31:1 (1989), 1–19.

[Georgii and Westermann 06] Joachim Georgii and Rüdiger Westermann. “A
Multigrid Framework for Real-Time Simulation of Deformable Bodies.”
Computers & Graphics 30:3 (2006), 408–15.

[Goldfeather and Interrante 04] J. Goldfeather and V. Interrante. “A Novel
Cubic-Order Algorithm for Approximating Principal Directions Vectors.”
ACM Transaction on Graphics 23:1 (2004), 45–63.

[Golub and Loan 89] G. H. Golub and C. F. Van Loan. Matrix Computations.
Baltimore: Johns Hopkins University Press, 1989.

[Gortler et al. 06] S. J. Gortler, C. Gotsman, and D. Thurston. “Discrete One-
Forms on Meshes and Applications to 3D Mesh Parameterization.” Com-
puter Aided Geometric Design 23:2 (2006), 83–112.

i
i

i
i

i
i

i
i

212 Bibliography

[Gotsman et al. 02] C. Gotsman, S. Gumhold, and L. Kobbelt. “Simplification
and Compression of 3D Meshes.” In Tutorials on Multiresolution in Geo-
metric Modeling, edited by M. Floater A. Iske, E. Quak. Berlin: Springer,
2002.

[Greß and Klein 03] A. Greß and R. Klein. “Efficient Representation and Extrac-
tion of 2-Manifold IsoSurfaces Using kd-Trees.” In Proc. of Pacific Graphics,
pp. 364–376. Washington, DC: IEEE Computer Society, 2003.

[Grinspun et al. 08] E. Grinspun, M. Desbrun, P. Schröder, and M. Wardetzky,
2008. Course presented at SIGGRAPH Asia 2008.

[Gu and Yau 03] X. Gu and S.-T. Yau. “Global Conformal Surface Parame-
terization.” In Proc. of Eurographics Symposium on Geometry Processing,
pp. 127–37. Aire-la-Ville, Switzerland: Eurographics Association, 2003.

[Gu and Yau 04] X. Gu and S.-T. Yau. “Optimal Global Conformal Surface Pa-
rameterization for Visualization.” In Proc. of IEEE Visualization, pp. 267–
274. Washington, DC: IEEE Computer Society, 2004.

[Gu et al. 02] X. Gu, S. J. Gortler, and H. Hoppe. “Geometry Images.” ACM
Transactions on Graphics (Proc. SIGGRAPH) 21:3 (2002), 355–361.

[Guéziec et al. 01] A. Guéziec, G. Taubin, F. Lazarus, and B. Horn. “Cutting
and Stitching: Converting Sets of Polygons to Manifold Surfaces.” IEEE
Transactions on Visualization and Computer Graphics 7:2 (2001), 136–51.

[Guibas and Stolfi 85] L. Guibas and J. Stolfi. “Primitives for the Manipulation
of General Subdivisions and Computation of Voronoi Diagrams.” ACM
Transaction on Graphics 4:2 (1985), 74–123.

[Gumhold et al. 03] Stephan Gumhold, Pavel Borodin, and Reinhard Klein.
“Intersection-Free Simplification.” International Journal of Shape Model-
ing 9:2 (2003), 155–76.

[Guskov and Wood 01] I. Guskov and Z. J. Wood. “Topological Noise Removal.”
In Proc. of Graphics Interface, pp. 19–26. Toronto: Canadian Information
Processing Society, 2001.

[Guskov et al. 99] I. Guskov, W. Sweldens, and P. Schröder. “Multiresolution
Signal Processing for Meshes.” In Proc. of ACM SIGGRAPH, pp. 325–34.
New York: ACM, 1999.

[Guskov et al. 00] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. “Nor-
mal Meshes.” In Proc. of ACM SIGGRAPH, pp. 95–102. New York: ACM,
2000.

[Hackbusch 86] W. Hackbusch. Multi-Grid Methods and Applications. Berlin:
Springer Verlag, 1986.

[Haralick et al. 87] R. M. Haralick, S. R. Sternberg, and X. Zhuang. “Image
Analysis Using Mathematical Morphology.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 9:4 (1987), 532–50.

[Hétroy et al. 08] F. Hétroy, S. Rey, C. Andújar, P. Brunet, and À. Vinacua.
“Mesh Repair with Topology Control.” Technical Report 6535, INRIA, 2008.

i
i

i
i

i
i

i
i

Bibliography 213

[Hildebrandt and Polthier 04] K. Hildebrandt and K. Polthier. “Anisotropic Fil-
tering of Non-Linear Surface Features.” Computer Graphics Forum (Proc.
Eurographics) 23:3 (2004), 391–400.

[Hildebrandt et al. 06] K. Hildebrandt, K. Polthier, and M. Wardetzky. “On the
Convergence of Metric and Geometric Properties of Polyhedral Surfaces.” In
Geometriae Dedicata, pp. 89–112. Aire-la-Ville, Switzerland: Eurographics
Association, 2006.

[Ho et al. 05] C.-C. Ho, F.-C. Wu, B.-Y. Chen, Y.-Y. Chuang, and M. Ouhyoung.
“Cubical Marching Squares: Adaptive Feature Preserving Surface Extrac-
tion from Volume Data.” Computer Graphics Forum (Proc. Eurographics)
24:3 (2005), 537–545.

[Hoppe et al. 92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. “Surface Reconstruction from Unorganized Points.” In Proc.
of ACM SIGGRAPH, pp. 71–78. New York: ACM, 1992.

[Hoppe et al. 93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. “Mesh Optimization.” In Proc. of ACM SIGGRAPH, pp. 19–
26. New York: ACM, 1993.

[Hoppe 96] H. Hoppe. “Progressive Meshes.” In Proc. of ACM SIGGRAPH,
pp. 99–108. New York: ACM, 1996.

[Hormann and Greiner 00] K. Hormann and G. Greiner. “MIPS: An Efficient
Global Parametrization Method.” In Curve and Surface Design: Saint-Malo
1999, edited by P.-J. Laurent, P. Sablonniere, and L. Schumaker, pp. 153–62.
Nashville, TN: Vanderbilt University Press, 2000.

[Hormann et al. 07] Kai Hormann, Bruno Lévy, and Alla Sheffer, 2007. Course
presented at ACM SIGGRAPH 2007.

[Hsu et al. 92] W. M. Hsu, J. F. Hughes, and H. Kaufman. “Direct Manipulation
of Free-Form Deformations.” In Proc. of ACM SIGGRAPH, pp. 177–84. New
York: ACM, 1992.

[Hu et al.] L. Hu, P. Sander, and H. Hoppe. In Proc. of the Symposium on
Interactive 3D Graphics and Games. New York: ACM.

[Huang et al. 06] Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei,
Shanghua Teng, Hujun Bao, Baining Guo, and Heung-Yeung Shum. “Sub-
space Gradient Domain Mesh Deformation.” ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 25:3 (2006), 1126–34.

[Isenburg and Lindstrom 05] M. Isenburg and P. Lindstrom. “Streaming
Meshes.” In Proc. of IEEE Visualization, pp. 231–38. Washington, DC:
IEEE Computer Society, 2005.

[Isenburg et al. 03] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink.
“Large Mesh Simplification Using Processing Sequences.” In Proc. of IEEE
Visualization, pp. 465–72. Washington, DC: IEEE Computer Society, 2003.

[Jin et al. 05] Shuangshuang Jin, Robert R. Lewis, and David West. “A Compar-
ison of Algorithms for Vertex-Normal Computation.” The Visual Computer
21:1–2 (2005), 71–82.

i
i

i
i

i
i

i
i

214 Bibliography

[Jones et al. 03] T. R. Jones, F. Durand, and M. Desbrun. “Non-Iterative,
Feature-Preserving Mesh Smoothing.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 22:3 (2003), 943–49.

[Ju et al. 02] T. Ju, F. Lasasso, S. Schaefer, and J. Warren. “Dual Contouring of
Hermite Data.” ACM Transactions on Graphics (Proc. SIGGRAPH) 21:3
(2002), 339–46.

[Ju et al. 05] Tao Ju, Scott Schaefer, and Joe Warren. “Mean Value Coordinates
for Closed Triangular Meshes.” ACM Transactions on Graphics (Proc. SIG-
GRAPH) 24:3 (2005), 561–66.

[Ju et al. 07] Tao Ju, P. Liepa, and Joe Warren. “A General Geometric Con-
struction of Coordinates in a Convex Simplicial Polytope.” Computer Aided
Geometric Design 24:3 (2007), 161–78.

[Ju 04] T. Ju. “Robust Repair of Polygonal Models.” ACM Transactions on
Graphics (Proc. SIGGRAPH) 23:3 (2004), 888–95.

[Ju 09] Tao Ju. “Fixing Geometric Errors on Polygonal Models: A Survey.”
Journal of Computer Science and Technology 1:24 (2009), 19–29.

[Julius et al. 05] D. Julius, V. Kraevoy, and A. Sheffer. “D-Charts: Quasi-
Developable Mesh Segmentation.” Computer Graphics Forum (Proc. Eu-
rographics) 24:3 (2005), 581–90.

[Kälberer et al. 05] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky.
“FreeLence: Coding with Free Valences.” Computer Graphics Forum (Proc.
Eurographics) 24:3 (2005), 469–78.

[Kallmann and Thalmann 01] Marcelo Kallmann and Daniel Thalmann. “Star-
Vertices: A Compact Representation for Planar Meshes with Adjacency
Information.” Journal of Graphics, GPU, and Game Tools 6:1 (2001), 7–18.

[Karypis and Kumar 98] G. Karypis and V. Kumar. “A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.” SIAM Journal on
Scientific Computing 20:1 (1998), 359–92.

[Kaufman 87] A. Kaufman. “Efficient Algorithms for 3D Scan-Conversion of
Parametric Curves, Surfaces, and Volumes.” In Proc. of ACM SIGGRAPH,
pp. 171–79. New York: ACM, 1987.

[Kazhdan and Hoppe 08] Michael Kazhdan and Hugues Hoppe. “Streaming
Multigrid for Gradient-Domain Operations on Large Images.” ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 27:3 (2008), 21:1–21:10.

[Kettner 99] L. Kettner. “Using Generic Programming for Designing a Data
Structure for Polyhedral Surfaces.” Computational Geometry: Theory and
Applications 13:1 (1999), 65–90.

[Kimmel and Sethian 98] R. Kimmel and J. A. Sethian. “Computing Geodesic
Paths on Manifolds.” Proc. Natl. Acad. Sci. USA 95 (1998), 8431–35.

[Klein et al. 96] R. Klein, G. Liebich, and W. Straßer. “Mesh Reduction with
Error Control.” In Proc. of IEEE Visualization, pp. 311–18. Los Alamitos,
CA: IEEE Computer Society Press, 1996.

i
i

i
i

i
i

i
i

Bibliography 215

[Klincsek 80] G. Klincsek. “Minimal Triangulation of Polygonal Domains.” An-
nals of Discrete Mathemathics 9 (1980), 121–23.

[Kobbelt and Botsch 04] L. Kobbelt and M. Botsch. “A Survey of Point-Based
Techniques in Computer Graphics.” Computers & Graphics 28:6 (2004),
801–14.

[Kobbelt et al. 98a] L. Kobbelt, S. Campagna, and H.-P. Seidel. “A General
Framework for Mesh Decimation.” In Proc. of Graphics Interface, pp. 43–
50. Toronto: Canadian Information Processing Society, 1998.

[Kobbelt et al. 98b] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. “In-
teractive Multi-Resolution Modeling on Arbitrary Meshes.” In Proc. of ACM
SIGGRAPH, pp. 105–14. New York: ACM, 1998.

[Kobbelt et al. 99a] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. “A
Shrink Wrapping Approach to Remeshing Polygonal Surfaces.” Computer
Graphics Forum (Proc. Eurographics) 18:3 (1999), 119–30.

[Kobbelt et al. 99b] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. “Multiresolution
Hierarchies on Unstructured Triangle Meshes.” Computational Geometry:
Theory and Applications 14:1–3 (1999), 5–24.

[Kobbelt et al. 00] L. Kobbelt, T. Bareuther, and H.-P. Seidel. “Multiresolu-
tion Shape Deformations for Meshes with Dynamic Vertex Connectivity.”
Computer Graphics Forum (Proc. Eurographics) 19:3 (2000), 249–60.

[Kobbelt et al. 01] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
“Feature Sensitive Surface Extraction from Volume Data.” In Proc. of ACM
SIGGRAPH, pp. 57–66. New York: ACM, 2001.

[Kobbelt et al. 05] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. “Ex-
tended Marching Cubes Implementation.” http://www-i8.informatik.rwth-
aachen.de/software/software.html, 2002–2005.

[Kobbelt 97] L. Kobbelt. “Discrete Fairing.” In Proc. of 7th IMA Conference on
the Mathematics of Surfaces, pp. 101–31. Berlin: Springer, 1997.

[Kobbelt 03] L. Kobbelt. “Freeform Shape Representations for Efficient Geome-
try Processing.” Presentation at Eurographics, 2003.

[Lee et al. 98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. “MAPS: Multiresolution Adaptive Parameterization of Sur-
faces.” In Proc. of ACM SIGGRAPH, pp. 95–104. New York: ACM, 1998.

[Lee et al. 00] A. Lee, H. Moreton, and H. Hoppe. “Displaced Subdivision Sur-
faces.” In Proc. of ACM SIGGRAPH, pp. 85–94. New York: ACM, 2000.

[Lévy et al. 02] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot.
“Least Squares Conformal Maps for Automatic Texture Atlas Generation.”
ACM Trans. Graph. 21 (2002), 362–71.

[Liepa 03] P. Liepa. “Filling Holes in Meshes.” In Proc. of Eurographics Sympo-
sium on Geometry Processing, pp. 200–205. Aire-la-Ville, Switzerland: Eu-
rographics Association, 2003.

i
i

i
i

i
i

i
i

216 Bibliography

[Light 92] W. Light. Advances in Numerical Analysis: Wavelets, Subdivision
Algorithms, and Radial Basis Functions, 2. Oxford: Clarendon Press, 1992.

[Lindstrom and Silva 01] P. Lindstrom and C. Silva. “A Memory-Insensitive
Technique for Large Model Simplification.” In Proc. of IEEE Visualization,
pp. 121–6. Washington, DC: IEEE Computer Society, 2001.

[Lindstrom 00] P. Lindstrom. “Out-Of-Core Simplification of Large Polygonal
Models.” In Proc. of ACM SIGGRAPH, pp. 259–62. New York: ACM,
2000.

[Lipman et al. 04] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and
H.-P. Seidel. “Differential Coordinates for Interactive Mesh Editing.” In
Proc. of Shape Modeling International, pp. 181–90. Washington, DC: IEEE
Computer Society, 2004.

[Lipman et al. 08] Yaron Lipman, David Levin, and Daniel Cohen-Or. “Green
Coordinates.” ACM Transactions on Graphics (Proc. SIGGRAPH) 27:3
(2008), 1–10.

[Liu and Sherman 76] J. W. H. Liu and A. H. Sherman. “Comparative Analysis
of the Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms
for Sparse Matrices.” SIAM Journal on Numerical Analysis 2:13 (1976),
198–213.

[Liu 85] J. W. H. Liu. “Modification of the Minimum-Degree Algorithm by Mul-
tiple Elimination.” ACM Trans. Math. Softw. 11:2 (1985), 141–53.

[Lloyd 82] S. Lloyd. “Least Square Quantization in PCM.” IEEE Trans. Inform.
Theory 28 (1982), 129–37.

[Lorensen and Cline 87] W. E. Lorensen and H. E. Cline. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm.” In Proc. of ACM
SIGGRAPH, pp. 163–70. New York: ACM, 1987.

[Losasso et al. 03] F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. “Smooth
Geometry Images.” In Proc. of Eurographics Symposium on Geometry Pro-
cessing, pp. 138–45. Aire-la-Ville, Switzerland: Eurographics Association,
2003.

[Luebke et al. 03] David Luebke, Martin Reddy, Jonathan D. Cohen, Amitabh
Varshney, Benjamin Watson, and Robert Huebner. Level of Detail for 3D
Graphics. San Francisco: Morgan Kaufmann, 2003.

[MacCracken and Joy 96] R. MacCracken and K. I. Joy. “Free-Form Deforma-
tions with Lattices of Arbitrary Topology.” In Proc. of ACM SIGGRAPH,
pp. 181–88. New York: ACM, 1996.

[Maillot et al. 93] J. Maillot, H. Yahia, and A. Verroust. “Interactive Texture
Mapping.” In Proc. of ACM SIGGRAPH, pp. 27–34. New York: ACM,
1993.

[Mantyla 88] M. Mantyla. An Introduction to Solid Modeling. New York: Com-
puter Science Press, 1988.

i
i

i
i

i
i

i
i

Bibliography 217

[Marinov and Kobbelt 04] M. Marinov and L. Kobbelt. “Direct Anisotropic
Quad-Dominant Remeshing.” In Proc. of Pacific Graphics, pp. 207–16.
Washington, DC: IEEE Computer Society, 2004.

[Marinov and Kobbelt 05] M. Marinov and L. Kobbelt. “Automatic Generation
of Structure Preserving Multiresolution Models.” Computer Graphics Forum
(Proc. Eurographics) 24:3 (2005), 479–86.

[Marinov and Kobbelt 06] M. Marinov and L. Kobbelt. “A Robust Two-Step
Procedure for Quad-Dominant Remeshing.” Computer Graphics Forum
(Proc. Eurographics) 25:3 (2006), 537–46.

[Marinov et al. 07] M. Marinov, M. Botsch, and L. Kobbelt. “GPU-Based Mul-
tiresolution Deformation Using Approximate Normal Field Reconstruction.”
Journal of Graphics, GPU, and Game Tools 12:1 (2007), 27–46.

[Max 99] Nelson Max. “Weights for Computing Vertex Normals from Facet Nor-
mals.” Journal of Graphics, GPU, and Game Tools 4:2 (1999), 1–6.

[Meeks 81] W. H. Meeks. “A Survey of the Geometric Results in the Classical
Theory of Minimal Surfaces.” Bulletin of the Brazilian Mathematical Society
12:1 (1981), 29–86.

[Meshar et al. 06] O. Meshar, D. Irony, and S. Toledo. “An Out-Of-Core Sparse
Symmetric Indefinite Factorization Method.” ACM Transactions on Math-
ematical Software 32 (2006), 445–71.

[Meyer et al. 03] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. “Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds.” In Visual-
ization and Mathematics III, edited by Hans-Christian Hege and Konrad
Polthier, pp. 35–57. Heidelberg: Springer-Verlag, 2003.

[Montani et al. 94] C. Montani, R. Scateni, and R. Scopigno. “A Modified Look-
up Table for Implicit Disambiguation of Marching Cubes.” The Visual Com-
puter 10:6 (1994), 353–55.

[Moreton and Séquin 92] H. P. Moreton and C. H. Séquin. “Functional Opti-
mization for Fair Surface Design.” In Proc. of ACM SIGGRAPH, pp. 167–
76. New York: ACM, 1992.

[Morse et al. 01] B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, and K. R.
Subramanian. “Interpolating Implicit Surfaces from Scattered Surface Data
Using Compactly Supported Radial Basis Functions.” In Proc. of Shape
Modeling International, pp. 89–98. Washington, DC: IEEE Computer Soci-
ety, 2001.

[Murali and Funkhouser 97] T. M. Murali and T. A. Funkhouser. “Consistent
Solid and Boundary Representations from Arbitrary Polygonal Data.” In
Proc. of the Symposium on Interactive 3D Graphics, pp. 155–62. New York:
ACM, 1997.

[Nadler 86] Edmond Nadler. “Piecewise-Linear Best L2 Approximation on Tri-
angulations.” In Approximation Theory V, edited by C. K. Chui, L. L.
Schumaker, and J. D. Ward, pp. 499–502. New York: Academic Press, 1986.

i
i

i
i

i
i

i
i

218 Bibliography

[Nealen et al. 05] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. “A Sketch-
Based Interface for Detail-Preserving Mesh Editing.” ACM Transactions on
Graphics (Proc. SIGGRAPH) 24:3 (2005), 1142–47.

[Needham 94] Tristan Needham. Visual Complex Analysis. Oxford, UK: Oxford
Press, 1994. http://www.usfca.edu/vca/.

[Nooruddin and Turk 03] F.S. Nooruddin and G. Turk. “Simplification and Re-
pair of Polygonal Models Using Volumetric Techniques.” IEEE Transactions
on Visualization and Computer Graphics 9:2 (2003), 191–205.

[Ohtake et al. 03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel.
“Multi-Level Partition of Unity Implicits.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 22:3 (2003), 463–70.

[Ohtake et al. 04] Y. Ohtake, A. Belyaev, and H.-P. Seidel. “3D Scattered Data
Approximation with Adaptive Compactly Supported Radial Basis Func-
tions.” In Proc. of Shape Modeling International, pp. 31–9. Washington,
DC: IEEE Computer Society, 2004.

[Okabe et al. 92] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Chichester, UK: Wiley,
1992.

[O’Rourke 94] J. O’Rourke. Computational Geometry in C. Cambridge, UK:
Cambridge University Press, 1994.

[Pauly et al. 00] Mark Pauly, Thomas Kollig, and Alexander Keller. “Metropolis
Light Transport for Participating Media.” In Proc. of Eurographics Work-
shop on Rendering Techniques, pp. 11–22. Aire-la-Ville, Switzerland: Euro-
graphics Association, 2000.

[Pauly et al. 03] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. “Shape Model-
ing with Point-Sampled Geometry.” ACM Transactions on Graphics (Proc.
SIGGRAPH) 22:3 (2003), 641–50.

[Pauly et al. 05] M. Pauly, N. Mitra, J. Giesen, M. Gross, and L. J. Guibas.
“Example-Based 3D Scan Completion.” In Proc. of Eurographics Symposium
on Geometry Processing, pp. 23–32. Aire-la-Ville, Switzerland: Eurographics
Association, 2005.

[Pauly et al. 06] M. Pauly, L. Kobbelt, and M. Gross. “Point-Based Multi-Scale
Surface Representation.” ACM Transaction on Graphics 25:2 (2006), 177–
93.

[Pauly 03] Mark Pauly. Point Primitives for Interactive Modeling and Processing
of 3D Geometry. PhD Thesis, ETH Zurich, Konstanz, Germany: Hartung
Gorre, 2003.

[Perona and Malik 90] P. Perona and J. Malik. “Scale-Space and Edge Detection
Using Anisotropic Diffusion.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 12:7 (1990), 629–39.

[Peters and Reif 08] J. Peters and U. Reif. Subdivision Surfaces, Geometry and
Computing edition. Berlin: Springer Verlag, 2008.

i
i

i
i

i
i

i
i

Bibliography 219

[Petitjean 02] S. Petitjean. “A Survey of Methods for Recovering Quadrics in
Triangle Meshes.” ACM Computing Surveys 34:2 (2002), 211–62.

[Peyré and Cohen 04] G. Peyré and L. Cohen. “Surface Segmentation Using
Geodesic Centroidal Tesselation.” In 3DPVT ’04: Proceedings of the 3D
Data Processing, Visualization, and Transmission, pp. 995–1002. Washing-
ton, DC: IEEE Computer Society, 2004.

[Piegl and Tiller 97] L. A. Piegl and W. Tiller. The NURBS Book, Second edi-
tion. Berlin: Springer, 1997.

[Pinkall and Polthier 93] U. Pinkall and K. Polthier. “Computing Discrete Mini-
mal Surfaces and Their Conjugates.” Experimental Mathematics 2:1 (1993),
15–36.

[Plateau 73] J. A. F. Plateau. Statistique Experimentale et Theorie des Liquides
Soumis aux Seules Forces Moleculaires. Paris: Gauthier-Villars, 1873.

[Podolak and Rusinkiewicz 05] J. Podolak and S. Rusinkiewicz. “Atomic Vol-
umes for Mesh Completion.” In Proc. of Eurographics Symposium on Ge-
ometry Processing, pp. 33–41. Aire-la-Ville, Switzerland: Eurographics As-
sociation, 2005.

[Prautzsch et al. 02] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and
B-Spline Techniques. Berlin: Springer Verlag, 2002.

[Press et al. 92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling. Numerical Recipes: The Art of Scientific Computing, Second edition.
Cambrdige, UK: Cambridge University Press, 1992.

[Rado 30] T. Rado. “The Problem of Least Area and the Problem of Plateau.”
In Mathematische Zeitschrift, 32, pp. 763–96. Berlin: Springer, 1930.

[Ray and Lévy 03] Nicolas Ray and Bruno Lévy. “Hierarchical Least Squares
Conformal Maps.” In Proc. of Pacific Graphics, pp. 263–70. Washington,
DC: IEEE Computer Society, 2003.

[Ray et al. 06] Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre
Alliez. “Periodic Global Parameterization.” ACM Transaction on Graphics
25:4 (2006), 1460–85.

[Renard and Pommier 05] Y. Renard and J. Pommier. “Gmm++: A Generic
Template Matrix C++ Library.” http://www-gmm.insa-toulouse.fr/getfem/
gmm intro, 2005.

[Rivara 84] Ceciliar Rivara. “Mesh Refinement Processes Based on the Gener-
alized Bisection of Simplices.” SIAM Journal on Numerical Analysis 21
(1984), 604–13.

[Ross 80] K. Ross. Elementary Analysis: The Theory of Calculus. Berlin:
Springer Verlag, 1980.

[Rossignac and Borrel 93] J. Rossignac and P. Borrel. “Multi-resolution 3D Ap-
proximations for Rendering Complex Scenes.” In Modeling in Computer
Graphics, edited by B. Falcidieno and T. L. Kunii, pp. 455–65. Berlin:
Springer Verlag, 1993.

i
i

i
i

i
i

i
i

220 Bibliography

[Rudin 02] W. Rudin. Principles of Mathematical Analysis, Third edition. New
York: McGraw-Hill, 2002.

[Rusinkiewicz 04] S. Rusinkiewicz. “Estimating Curvatures and Their Deriva-
tives on Triangle Meshes.” In 3DPVT ’04: Proceedings of the 3D Data
Processing, Visualization, and Transmission, pp. 486–93. Washington, DC:
IEEE Computer Society, 2004.

[Samet 94] H. Samet. The Design and Analysis of Spatial Data Structures. Read-
ing, MA: Addison Wesley, 1994.

[Sander et al. 01] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. “Texture
Mapping Progressive Meshes.” In Proc. of ACM SIGGRAPH, pp. 409–16.
New York: ACM, 2001.

[Sander et al. 02] P. Sander, S. Gortler, J. Snyder, and H. Hoppe. “Signal-
Specialized Parametrization.” In Proc. of Eurographics Workshop on Ren-
dering Techniques. Aire-la-Ville, Switzerland: Eurographics Association,
2002.

[Sander et al. 03] P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe.
“Multi-Chart Geometry Images.” In Proc. of Eurographics Symposium on
Geometry Processing, pp. 146–55. Aire-la-Ville, Switzerland: Eurographics
Association, 2003.

[Schneider and Kobbelt 00] R. Schneider and L. Kobbelt. “Generating Fair
Meshes with G1 Boundary Conditions.” In Proc. of Geometric Modeling and
Processing, pp. 251–61. Washington, DC: IEEE Computer Society, 2000.

[Schneider and Kobbelt 01] R. Schneider and L. Kobbelt. “Geometric Fairing of
Irregular Meshes for Free-Form Surface Design.” Computer Aided Geometric
Design 18:4 (2001), 359–79.

[Schroeder et al. 92] W. Schroeder, J. Zarge, and W. Lorensen. “Decimation of
Triangle Meshes.” In Proc. of ACM SIGGRAPH, pp. 65–70. New York:
ACM, 1992.

[Schroeder 97] W. Schroeder. “A Topology Modifying Progressive Decimation
Algorithm.” In Proc. of IEEE Visualization, pp. 205–12. Washington, DC:
IEEE Computer Society, 1997.

[Sederberg and Parry 86] T. W. Sederberg and S. R. Parry. “Free-Form Defor-
mation of Solid Geometric Models.” In Proc. of ACM SIGGRAPH, pp. 151–
59. New York: ACM, 1986.

[Sederberg et al. 03] T. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. “T-
splines and T-NURCCs.” ACM Transactions on Graphics (Proc. SIG-
GRAPH) 22:3 (2003), 477–84.

[Sethian 96] J. Sethian. “A Fast Marching Level Set Method for Monotonically
Advancing Fronts.” Proc. of the National Academy of Science 93 (1996),
1591–95.

[Shaffer and Garland 01] E. Shaffer and M. Garland. “Efficient Adaptive Sim-
plification of Massive Meshes.” In Proc. of IEEE Visualization, pp. 127–34.
Washington, DC: IEEE Computer Society, 2001.

i
i

i
i

i
i

i
i

Bibliography 221

[Sharf et al. 04] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. “Context-
Based Surface Completion.” ACM Transactions on Graphics (Proc. SIG-
GRAPH) 23:3 (2004), 878–87.

[Sheffer and de Sturler 01] Alla Sheffer and Eric de Sturler. “Parameterization
of Faceted Surfaces for Meshing Using Angle Based Flattening.” Engineering
with Computers 17:3 (2001), 326–37.

[Sheffer and Hart 02] A. Sheffer and J. C. Hart. “Seamster: Inconspicuous Low-
Distortion Texture Seam Layout.” In Proc. of IEEE Visualization, pp. 291–
98. Washington, DC: IEEE Computer Society, 2002.

[Sheffer et al. 05] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander
Bogomyakov. “ABF++ : Fast and Robust Angle Based Flattening.” ACM
Transaction on Graphics 24:2 (2005), 311–30.

[Shen et al. 04] C. Shen, J. F. O’Brien, and J. R. Shewchuk. “Interpolating and
Approximating Implicit Surfaces from Polygon Soup.” ACM Transactions
on Graphics (Proc. SIGGRAPH) 23:3 (2004), 896–904.

[Shewchuk 94] J. R. Shewchuk. “An Introduction to the Conjugate Gradient
Method without the Agonizing Pain.” Technical report, Carnegie Mellon
University, 1994.

[Shewchuk 97] J. R. Shewchuk. “Delaunay Refinement Mesh Generation.” Ph.D.
thesis, Carnegie Mellon University, Pittsburg, 1997.

[Shewchuk 02] J. R. Shewchuk. “What Is a Good Linear Element? Interpolation,
Conditioning, and Quality Measures.” In Proc. of International Meshing
Roundtable, pp. 115–26. New York: Springer, 2002.

[Shi et al. 06] Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. “A Fast
Multigrid Algorithm for Mesh Deformation.” ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 25:3 (2006), 1108–17.

[Shi et al. 07] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun
Bao, and Baining Guo. “Mesh Puppetry: Cascading Optimization of Mesh
Deformation with Inverse Kinematics.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 26:3 (2007), 81:1–81:10.

[Shoemake and Duff 92] K. Shoemake and T. Duff. “Matrix Animation and Po-
lar Decomposition.” In Proc. of Graphics Interface, pp. 258–64. Toronto:
Canadian Information Processing Society, 1992.

[Shreiner and Khronos OpenGL ARB Working Group 09] Dave Shreiner and
Khronos OpenGL ARB Working Group. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, 7th edition. Reading, MA: Addison-
Wesley Professional, 2009.

[Sorkine and Alexa 07] O. Sorkine and M. Alexa. “As-Rigid-As-Possible Surface
Modeling.” In Proc. of Eurographics Symposium on Geometry Processing.
Aire-la-Ville, Switzerland: Eurographics Association, 2007.

[Sorkine et al. 04] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl,
and H.-P. Seidel. “Laplacian Surface Editing.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 179–88. Aire-la-Ville, Switzerland:
Eurographics Association, 2004.

i
i

i
i

i
i

i
i

222 Bibliography

[Springborn et al. 08] Boris Springborn, Peter Schröder, and Ulrich Pinkall.
“Conformal Equivalence of Triangle Meshes.” ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 27:3 (2008), 1–11.

[Steiner and Fischer 05] D. Steiner and A. Fischer. “Planar Parameterization
for Closed Manifold Genus-g Meshes Using Any Type of Positive Weights.”
JCISE 5:2 (2005), 118–26.

[Sumner and Popović 04] R. W. Sumner and J. Popović. “Deformation Transfer
for Triangle Meshes.” ACM Transactions on Graphics (Proc. SIGGRAPH)
23:3 (2004), 399–405.

[Sumner et al. 07] R. Sumner, J. Schmid, and M. Pauly. “Embedded Defor-
mation for Shape Manipulation.” ACM Transactions on Graphics (Proc.
SIGGRAPH) 26:3 (2007), 80:1–80:7.

[Surazhsky and Gotsman 03] V. Surazhsky and C. Gotsman. “Explicit Surface
Remeshing.” In Proc. of Eurographics Symposium on Geometry Processing,
pp. 20–30. Aire-la-Ville, Switzerland: Eurographics Association, 2003.

[Surazhsky et al. 03] V. Surazhsky, P. Alliez, and C. Gotsman. “Isotropic
Remeshing of Surfaces: A Local Parameterization Approach.” In Proc. of
International Meshing Roundtable, pp. 215–24. New York: Springer, 2003.

[Surazhsky et al. 05] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov,
Steven J. Gortler, and Hugues Hoppe. “Fast Exact and Approximate
Geodesics on Meshes.” ACM Transactions on Graphics (Proc. SIGGRAPH)
24:3 (2005), 553–60.

[Szymczak et al. 02] A. Szymczak, D. King, and J. Rossignac. “Piecewise Reg-
ular Meshes: Construction and Compression.” Graphical Models 64:3–4
(2002), 183–98.

[Taubin 95] G. Taubin. “A Signal Processing Approach to Fair Surface Design.”
In Proc. of ACM SIGGRAPH, pp. 351–58. New York: ACM, 1995.

[Taubin 00] G. Taubin. “Geometric Signal Processing on Polygonal Meshes.”
In Eurographics 2000 State of the Art Report. Aire-la-Ville, Switzerland:
Eurographics Association, 2000.

[Terzopoulos et al. 87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. “Elas-
tically Deformable Models.” In Proc. of ACM SIGGRAPH, pp. 205–14. New
York: ACM, 1987.

[Theisel et al. 04] H. Theisel, C. Rössl, R. Zayer, and H.-P. Seidel. “Normal
Based Estimation of the Curvature Tensor for Triangular Meshes.” In Proc.
of Pacific Graphics, pp. 288–97. Washington, DC: IEEE Computer Society,
2004.

[Toledo et al. 03] S. Toledo, D. Chen, and V. Rotkin. “TAUCS: A Library of
Sparse Linear Solvers.” http://www.tau.ac.il/∼stoledo/taucs, 2003.

[Tomasi and Manduchi 98] C. Tomasi and R. Manduchi. “Bilateral Filtering for
Gray and Color Images.” In ICCV ’98: Proc. of the 6th International Con-
ference on Computer Vision, pp. 839–46. Washington, DC: IEEE Computer
Society, 1998.

i
i

i
i

i
i

i
i

Bibliography 223

[Tong et al. 03] Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. “Discrete
Multiscale Vector Field Decomposition.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 22:3 (2003), 445–52.

[Tong et al. 06] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. “De-
signing Quadrangulations with Discrete Harmonic Forms.” In Proc. of Eu-
rographics Symposium on Geometry Processing, pp. 201–10. Aire-la-Ville,
Switzerland: Eurographics Association, 2006.

[Touma and Gotsman 98] C. Touma and C. Gotsman. “Triangle Mesh Com-
pression.” In Proc. of Graphics Interface, pp. 26–34. Toronto: Canadian
Information Processing Society, 1998.

[Trefethen and Bau 97] L. N. Trefethen and D. Bau. Numerical Linear Algebra.
Philadelphia: SIAM, 1997.

[Turk and Levoy 94] G. Turk and M. Levoy. “Zippered Polygon Meshes from
Range Images.” In Proc. of ACM SIGGRAPH, pp. 311–18. New York:
ACM, 1994.

[Tutte 60] W. Tutte. “Convex Representation of Graphs.” Proc. London Math.
Soc. 10 (1960), 304–20.

[Valette and Chassery 04] S. Valette and J.-M. Chassery. “Approximated Cen-
troidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening.” Com-
puter Graphics Forum (Proc. Eurographics) 23:3 (2004), 381–89.

[Vallet and Lévy 08] Bruno Vallet and Bruno Lévy. “Spectral Geometry Pro-
cessing with Manifold Harmonics.” Computer Graphics Forum (Proc. Eu-
rographics) 27:2 (2008), 251–60.

[von Funck et al. 06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel.
“Vector Field-Based Shape Deformations.” ACM Transactions on Graphics
(Proc. SIGGRAPH) 25:3 (2006), 1118–25.

[Vorsatz et al. 03] J. Vorsatz, C. Rössl, and H.-P. Seidel. “Dynamic Remeshing
and Applications.” In Proc. of Symposium on Solid Modeling and Applica-
tions, pp. 167–75. New York: ACM, 2003.

[Wardetzky et al. 07] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun.
“Discrete Laplace Operators: No Free Lunch.” In Proc. of Eurographics
Symposium on Geometry Processing, pp. 33–37. Aire-la-Ville, Switzerland:
Eurographics Association, 2007.

[Welch and Witkin 92] W. Welch and A. Witkin. “Variational Surface Model-
ing.” In Proc. of ACM SIGGRAPH, pp. 157–66. New York: ACM, 1992.

[Welch and Witkin 94] W. Welch and A. Witkin. “Free-Form Shape Design Us-
ing Triangulated Surfaces.” In Proc. of ACM SIGGRAPH, pp. 247–56. New
York: ACM, 1994.

[Wendland 05] H. Wendland. Scattered Data Approximation. Cambridge, UK:
Cambridge University Press, 2005.

[Westermann et al. 99] R. Westermann, L. Kobbelt, and T. Ertl. “Real-Time
Exploration of Regular Volume Data by Adaptive Reconstruction of Iso-
Surfaces.” The Visual Computer 15 (1999), 100–111.

i
i

i
i

i
i

i
i

224 Bibliography

[Wood et al. 04] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. “Removing
Excess Topology from Isosurfaces.” ACM Transaction on Graphics 23:2
(2004), 190–208.

[Wu and Kobbelt 03] J. Wu and L. Kobbelt. “Piecewise Linear Approximation
of Signed Distance Fields.” In Proc. of Vision, Modeling, Visualization,
pp. 513–20. Berlin: Akademische Verlagsgesellschaft, 2003.

[Wu and Kobbelt 04] J. Wu and L. Kobbelt. “A Stream Algorithm for the Dec-
imation of Massive Meshes.” In Proc. of Graphics Interface, pp. 185–92.
Toronto: Canadian Information Processing Society, 2004.

[Wu and Kobbelt 05] J. Wu and L. Kobbelt. “Structure Recovery via Hybrid
Variational Surface Approximation.” Computer Graphics Forum (Proc. Eu-
rographics) 24:3 (2005), 277–84.

[Yan et al. 06] Dong-Ming Yan, Yang Liu, and Wenping Wang. “Quadric Sur-
face Extraction by Variational Shape Approximation.” In Proceedings of
Geometric Modeling and Processing 2006, pp. 73–86. Berlin: Springer, 2006.

[Yan et al. 09] Dong-Ming Yan, Bruno Lévy, Yang Liu, Feng Sun, and Wenping
Wang. “Isotropic Remeshing with Fast and Exact Computation of Restricted
Voronoi Diagram.” Computer Graphics Forum (Proc. Symp. Geometry Pro-
cessing) 28:5 (2009), 1445–54.

[Yang et al. 08] Yong-Liang Yang, Junho Kim, Feng Luo, and Shi-Min Hu. “Op-
timal Surface Parameterization Using Inverse Curvature Map.” IEEE Trans-
actions on Visualization and Computer Graphics 14:4 (2008), 1054–66.

[Yu et al. 04] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum.
“Mesh Editing with Poisson-Based Gradient Field Manipulation.” ACM
Transactions on Graphics (Proc. SIGGRAPH) 23:3 (2004), 644–51.

[Zayer et al. 05a] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel. “Harmonic
Guidance for Surface Deformation.” Computer Graphics Forum (Proc. Eu-
rographics) 24:3 (2005), 601–10.

[Zayer et al. 05b] R. Zayer, C. Rössl, and H.-P. Seidel. “Discrete Tensorial Quasi-
Harmonic Maps.” In Proc. of Shape Modeling International, pp. 276–85.
Washington, DC: IEEE Computer Society, 2005.

[Zayer et al. 05c] Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel. “Setting
the Boundary Free: A Composite Approach to Surface Parameterization.”
In SGP ’05: Proceedings of the Symposium on Geometry Processing. Aire-
la-Ville, Switzerland: Eurographics Association, 2005. Article no. 91.

[Zayer et al. 07] Rhaleb Zayer, Bruno Lévy, and Hans-Peter Seidel. “Linear An-
gle Based Parameterization.” In Proc. of Eurographics Symposium on Ge-
ometry Processing, pp. 135–142. Aire-la-Ville, Switzerland: Eurographics
Association, 2007.

[Zhou et al. 05] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y.
Shum. “Large Mesh Deformation Using the Volumetric Graph Laplacian.”
ACM Transactions on Graphics (Proc. SIGGRAPH) 24:3 (2005), 496–503.

i
i

i
i

i
i

i
i

Bibliography 225

[Zhu et al. 10] Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt.
“An Efficient Multigrid Method for the Simulation of High-Resolution Elas-
tic Solids.” ACM Transaction on Graphics 29:2 (2010), 16:1–16:18.

[Zorin et al. 97] D. Zorin, P. Schröder, and W. Sweldens. “Interactive Multireso-
lution Mesh Editing.” In Proc. of ACM SIGGRAPH, pp. 259–68. New York:
ACM, 1997.

[Zorin et al. 00] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. “Subdivision for Modeling and Animation.” In ACM SIG-
GRAPH 2000 Courses. New York: ACM, 2000.

	Contents
	Preface
	1. Surface Representations
	1.1 Surface Definition and Properties
	1.2 Approximation Power
	1.3 Parametric Surface Representations
	1.4 Implicit Surface Representations
	1.5 Conversion Methods
	1.6 Summary and Further Reading

	2. Mesh Data Structures
	2.1 Face-Based Data Structures
	2.2 Edge-Based Data Structures
	2.3 Halfedge-Based Data Structure
	2.4 Directed-Edge Data Structure
	2.5 Summary and Further Reading

	3. Differential Geometry
	3.1 Curves
	3.2 Surfaces
	3.3 Discrete Differential Operators
	3.4 Summary and Further Reading

	4. Smoothing
	4.1 Fourier Transform and Manifold Harmonics
	4.2 Diffusion Flow
	4.3 Fairing
	4.4 Summary and Further Reading

	5. Parameterization
	5.1 General Goals
	5.2 Parameterization of a Triangulated Surface
	5.3 Barycentric Mapping
	5.4 Conformal Mapping
	5.5 Methods Based on Distortion Analysis
	5.6 Summary and Further Reading

	6. Remeshing
	6.1 Local Structure
	6.2 Global Structure
	6.3 Correspondences
	6.4 Voronoi Diagrams and Delaunay Triangulations
	6.5 Triangle-Based Remeshing
	6.6 Quad-dominant Remeshing
	6.7 Summary and Further Reading

	7. Simplification & Approximation
	7.1 Vertex Clustering
	7.2 Incremental Decimation
	7.3 Shape Approximation
	7.4 Out-of-Core Methods
	7.5 Summary and Further Reading

	8. Model Repair
	8.1 Types of Artifacts: The "Freak Show"
	8.2 Types of Repair Algorithms
	8.3 Types of Input
	8.4 Surface-Oriented Algorithms
	8.5 Volumetric Repair Algorithms
	8.6 Summary and Further Reading

	9. Deformation
	9.1 Transformation Propagation
	9.2 Shell-Based Deformation
	9.3 Multi-Scale Deformation
	9.4 Differential Coordinates
	9.5 Freeform Deformation
	9.6 Radial Basis Functions
	9.7 Limitations of Linear Methods
	9.8 Summary and Further Reading

	A. Numerics
	A.1 Discretizing Poisson and Laplace Equations
	A.2 Data Structures for Sparse Matrices
	A.3 Iterative Solvers
	A.4 Sparse Direct Cholesky Solver
	A.5 Non-Symmetric Indefinite Systems
	A.6 Comparison

	Bibliography
	Index

