CMSC423: Bioinformatic Algorithms, Databases and Tools

Exact string matching: The Z algorithm

- Recap: Naïve string matching algorithm runs in $\mathrm{O}(\mathrm{m} \mathrm{n})$ $\mathrm{m}=\operatorname{len}($ pattern $), \mathrm{n}=\operatorname{len}($ text $)$
- Stop and think: What inefficiencies can you notice in the naïve algorithm?

Intuition

Naïve algorithm re-computes information it should already know
Specifically, once the Cs match at the first location, we should know they will match after a 1-letter shift

Can we capture the self-similarity of the string to help matching?

Quantifying self-similarity

the Z algorithm (Gusfield)

For a string/text T
$Z[i]=$ length of the longest prefix of $T[i . . m]$ that matches a prefix of T. $Z[i]=0$ if the prefixes don't match. $Z[0]=0$ (by definition)
$T[0$.. $Z[i]]==T[i \quad . . i+Z[i]-1]$

Shaded areas usually called "Z-boxes"

Quick aside: off-by-1 errors

- Is it i, or $\mathrm{i}+1$?
- Is a range inclusive or exclusive?
- Do coordinates start at 0 or 1?
- These are common issues that arise when implementing string algorithms.
- It is important to carefully trace an example on paper when writing your code. It will save you hours of debugging.

AGGTCCTAGGCGCT

$$
\begin{aligned}
& \mathrm{i}=7 \\
& \mathrm{Z}[\mathrm{i}]=3
\end{aligned}
$$

Are the numbers in the diagram above correct, or off by 1 ?

Example Z values

Please write the Z values below each character in this string.
ACAGGTACAGTTCCCTCGACACCTACTACCTAAG

Example Z values

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 0010004010000000003020002002000110

Stop and Think!

- We only talked about one string
- If you are given a pattern P and a text T, can you use the Z values to find out if the pattern matches the text, and where?

Can the Z values help in matching?

Create string Pattern\$Text where \$ is not in the alphabet

Pattern Text

If there exists i, such that $Z[i]=$ length(Pattern)
Pattern occurs in the Text starting at i

Stop and think: Assuming Z values are computed. What is the runtime?

Example

CCTACT\$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 01001000100000100002310100106100100410000

$$
\text { runtime }=O(m+n) \quad \text { (simply scan an array to find the matches) }
$$

- Stop and think! What is the largest Z value possible?

NEXT: Can you compute the Z values efficiently?

