CMSC423: Bioinformatic Algorithms, Databases and Tools

Exact string matching:
KMP - analysis and computation of sp values

- Recap: The KMP algorithm uses suffix-prefix ($s p$) values to decide how far to shift the pattern along the text
- Here we analyze why the algorithm works, and describe an algorithm to compute sp values efficiently.

KMP - speed

- How many character comparisons are made during the execution?
- If a character in the text matches a character in the pattern, do we have to look at it again?
- How many times can a character in the text fail to match the pattern?

Run time analysis

Observation 1: after each shift, the prefix of the pattern matches the text. Only need to check whether $T[j]$ matches.

Corollary: Once a character in the text matches the pattern, we no longer need to look at it.

Observation 2: We can get "stuck" mismatching T[j] over multiple rounds

BUT: each time we do, the pattern shifts by at least one character.

Runtime - putting it all together

- \# of times a character in text matches the pattern: $O(n)$ length of text
- \# of times a character in text mismatches the pattern: $O(n)$ after each mismatch the pattern advances to a new location
- Hence: Runtime(KMP) $=O(n)+O(n)=O(n)$

KMP - computing sp values

- Can sp values be computed efficiently?

- Stop and think: Can you use Z values of P to compute the sp values?
- Stop and think: Can you use a similar algorithmic strategy (induction) as for computing the Z values?
- Stop and think: what is the relationship between $\mathrm{sp}[\mathrm{i}]$ and sp[i + 1]?

Computing sp values

$$
\mathrm{sp}[\mathrm{i}+1]=\mathrm{sp}[\mathrm{i}]+1 \text {, if and only if } \mathrm{P}[\mathrm{i}+1]==\mathrm{P}[\mathrm{sp}[\mathrm{i}]+1]
$$

what if $\mathrm{P}[\mathrm{i}+1]!=\mathrm{P}[\mathrm{sp}[\mathrm{i}]+1]$? ?

$\mathrm{sp}[\mathrm{sp}[\mathrm{i}]] \quad \mathrm{sp}[\mathrm{i}]$
simply check $\mathrm{P}[\mathrm{i}+1]==\mathrm{P}[\operatorname{sp}[\operatorname{sp}[\mathrm{i}]]+1]$
if yes, then $\mathrm{sp}[\mathrm{i}+1]=\mathrm{P}[\mathrm{sp}[\mathrm{sp}[\mathrm{i}]]]+1$
else
repeat with $\operatorname{sp}[\operatorname{sp}[s p[i]]]$...

Computing sp values - runtime?

I. $\quad \operatorname{sp}[i+1]=\operatorname{sp}[i]+1$, if and only if $\mathrm{P}[\mathrm{i}+1]==\mathrm{P}[\mathrm{sp}[\mathrm{i}]+1]$
what if $\mathrm{P}[\mathrm{i}+1]!=\mathrm{P}[\mathrm{sp}[\mathrm{i}]+1]$?
?
This case has one operation per sp value (linear)
II.

$\mathrm{sp}[\mathrm{sp}[\mathrm{i}] \mathrm{s} \quad \mathrm{sp}[\mathrm{i}]$
simply check $\mathrm{P}[\mathrm{i}+1]==\mathrm{P}[\operatorname{sp}[\operatorname{sp}[\mathrm{i}]]+1]$ if yes, then $\mathrm{sp}[\mathrm{i}+1]=\mathrm{P}[\mathrm{sp}[\mathrm{sp}[\mathrm{i}]]]+1$ else
repeat with $\operatorname{sp}[\operatorname{sp}[s p[i]]]$...

This case may have an arbitrary number of operations.

Worst case quadratic?

A bank analogy

I.

$$
\mathrm{sp}[\mathrm{i}+1]=\mathrm{sp}[\mathrm{i}]+1 \text {, if and only if } \mathrm{P}[\mathrm{i}+1]==\mathrm{P}[\mathrm{sp}[\mathrm{i}]+1]
$$

II.

$$
\operatorname{sp}[\mathrm{sp}[\mathrm{i}]] \quad \mathrm{sp}[\mathrm{i}]
$$

simply check $P[i+1]==P[s p[\operatorname{sp}[i]]+1]$ if yes, then $\mathrm{sp}[\mathrm{i}+1]=\mathrm{P}[\mathrm{sp}[\mathrm{sp}[\mathrm{i}]]]+1$ else
repeat with $\mathrm{sp}[\mathrm{sp}[\mathrm{sp}[\mathrm{i}]]]$...
each iteration is a comparison but...sp value becomes lower too
sp grows slowly - by 1 every time case I occurs

The bank analogy

- sp grows by at most 1 per round - hence max(sp) <= len(P)
- in round $\mathrm{i}, \#$ of comparisons <= sp[i]
- then it takes a while to regain "potential" in sp
- hence - runtime $=O(\operatorname{len}(p))=O(m)$
- In bank terms, if you are paid $1 \$ /$ day, you cannot spend more than \$7/week

The End (or is it?)

- More exact matching in Chapter 9
- In preparation, Stop and Think!

Can you find a linear time algorithm to find the longest match between a prefix of a pattern and the text? The whole pattern match (this module) is a special case

Can you find a linear time algorithm that finds the longest match (not restricted to the beginning of the pattern) between the pattern and the text?

