CMSC423

Chapter 4 – Proteomics/massspectrometry Leaderboard searching

Warmup

Assume you sail to a remote island and discover a hidden treasure. You want to bring as much of the treasure back with you, but you cannot overload your boat and return safely. You, thus, decide to pick a set S of artifacts that will fit in your boat, and which, in combination, are the most valuable. Since you are a computer scientist, you decide to model the problem as follows:

Your boat can carry at most W total weight. Each artifact *i* has weight w_i and value v_i

You need to identify S such that

 $\sum_{obj_i \in S} w_i \leq W$ and $\sum_{obj_i \in S} v_i$ is maximized over all choices of S

Class so far...

- Deterministic searching (counting, clumps, KMP)
- Randomized searching (Gibbs sampling)

• This week: Branch and bound search

Random breakage

Glu Leu Val IIe Ser IIe Ser Ala Leu IIe Val Glu

- ELVISISALIVE weight (ELVISISALIVE)
- E LVISISALIVE + weight(E) + weight (LVISIS...)
- EL VISISALIVE + weight (EL) +
- ELV ISISALIVE
- ELVIS ISALIVE
- ELVISI SALIVE
- ELVISIS ALIVE

- - -

Peptide spectrum

Cyclic spectrum?

Whole peptide + all possible breaks into 2 pieces

What is the runtime for creating the cyclic spectrum of a peptide of size length k?

Our goal

- Given a real spectrum
- Find peptide that generated it

- The other way around is easy:
 - break peptide in every each way
 - calculate weights
 - compute predicted spectrum

Next: the algorithm