CMSC423

Chapter 4 - Proteomics/massspectrometry Dealing with perfect spectra

General approach

- Guess a peptide
- See how well it matches spectrum
- Come up with new guess
- Repeat
- Sound familiar?

Some quick insights

How many peptide words have a given mass?
How many combinations of coins and bills make a same \$ amount?, e.g., \$0.5

brute force - not so simple

1. $1+1+1+1+\ldots+1=\$ 0.50$
2. $1+1+1+1+\ldots+5=\$ 0.50$
3. $1+1+1+1+\ldots+5+5=\$ 0.50$
‥
4. $5+5+5+5+\ldots+5=\$ 0.50$
5. $5+5+5+5+\ldots+10=\$ 0.50$
\ldots
6. $10+10+10+10+10=\$ 0.50$
7. $1+1+1+1+1+5+\ldots+5+10=\$ 0.50$

MANY!
Stop and Think!
Can you compute the number of ways to make change from a certain \$ amount?

Dynamic programming can help

The order of letters matters

- Weight(ELVISLIVES) $=$ Weight(EVVIISLLES)
- Stop and Think!

Can the whole spectrum (not just total mass) help?

Yes!

-ELV - ISLIVES
-EVV - IISLLES
No peptide EVV in first string, nor ELV in second.

Algorithm 1

- Assume experimental spectrum is perfect
- Generate all peptides of length 1
- Discard the ones not found in spectrum
- Extend the remaining ones by one amino acid
- Discard the ones incompatible with spectrum
- Repeat...
- ...Until one peptide has exact same spectrum as experimental one

Matching spectra

Partial peptides (bold if matching):
GAS:
G A S GA AS GAS 577187128158215

Consistent with spectrum

APS: A S P AP PS APS | 7187 | 97 | 168 |
| :--- | :--- | :--- | :--- | :--- |
| 1845 | | |

Inconsistent with spectrum

Linear or circular spectrum?

ELVISISALIVE

Split all circular rotations of the string in 2 pieces or
isolate 1 letter, 2 letters, 3 letters, etc. from circularized string

What if we only recovered part of spectrum (partial solution)?

Linear spectrum

Circular spectrum	In partial string, rotated strings are not possible	
ELVISISALIVE	ELVISISAL	
E LVISISALIVE	E LVISISAL	
L VISISALIVEE	Ł VISISALIVEE	
\ldots	\ldots	
ELVI SISALIVE	ELVI SISAL	
LVIS ISALIVEE	LVIS ISALIVEE	
\ldots	\ldots	
SALI VEELVISI	SALI VEELVISt	
\ldots	\ldots	ELVISISALIVE
		E LVISISALIVE
Linear spectrum - pieces of linear peptide that		
could be part of circular spectrum	EL V ISISALIVE	

Summary

- Create table of peptides of increasing length
- Check each peptide's LINEAR spectrum against experimental spectrum (check for containment)
- Discard peptides with masses not in experimental spectrum
- Stop when one peptide has CIRCULAR spectrum matching experimental spectrum

Next: dealing with imperfect spectra

