CMSC423

Chapter 4 – Proteomics/massspectrometry Dealing with perfect spectra

General approach

- Guess a peptide
- See how well it matches spectrum
- Come up with new guess
- Repeat

• Sound familiar?

Some quick insights

How many peptide words have a given mass?

How many combinations of coins and bills make a same \$ amount?, e.g., \$0.5

brute force – not so simple

```
1. 1 + 1 + 1 + 1 + ... + 1 = \$0.50

2. 1 + 1 + 1 + 1 + ... + 5 = \$0.50

3. 1 + 1 + 1 + 1 + ... + 5 + 5 = \$0.50

...

11. 5 + 5 + 5 + 5 + ... + 5 = \$0.50

12. 5 + 5 + 5 + 5 + ... + 10 = \$0.50

...

16. 10 + 10 + 10 + 10 + 10 = \$0.50

17. 1 + 1 + 1 + 1 + 1 + 5 + ... + 5 + 10 = \$0.50

...
```

MANY!

Stop and Think!

Can you compute the number of ways to make change from a certain \$ amount?

Dynamic programming can help

The order of letters matters

Weight(ELVISLIVES) = Weight(EVVIISLLES)

• Stop and Think!

Can the whole spectrum (not just total mass) help?

Yes!

- ELV ISLIVES
- EVV IISLLES

No peptide EVV in first string, nor ELV in second.

Algorithm 1

- Assume experimental spectrum is perfect
- Generate all peptides of length 1
- Discard the ones not found in spectrum
- Extend the remaining ones by one amino acid
- Discard the ones incompatible with spectrum
- Repeat...
- ...Until one peptide has exact same spectrum as experimental one

Matching spectra

Peptide: GASP 57-71-87-97 Experimental:G A S P GA PG AS SP GAS PGA SPG ASP **GASP** 57 71 87 97 128 154 158 184 215 225 241 255 **312**

Partial peptides (bold if matching):

GAS:	G A S GA AS GAS 57 71 87 128 158 215	Consistent with spectrum
APS:	A S P AP PS APS 71 87 97 168 184 255	Inconsistent with spectrum

Linear or circular spectrum?

Split all circular rotations of the string in 2 pieces or isolate 1 letter, 2 letters, 3 letters, etc. from circularized string

What if we only recovered part of spectrum (partial solution)?

Linear spectrum

Circular spectrum	In partial string, rotated strings are not possible	
ELVISISALIVE	ELVISISAL	
E LVISISALIVE L VISISALIVEE	E LVISISAL L VISISALIVEE	
 ELVI SISALIVE LVIS ISALIVEE	 ELVI SISAL LVIS ISALIVEE	
 SALI VEELVISI	 SALI VEELVISI	
		ELVISISALIVE
Lincer encetrum, pieces of lincer pentide that		E LVISISALIVE
could be part of circular spe	ectrum	E L VISISALIVE
		EL V ISISALIVE
		EL VI SISALIVE

Summary

- Create table of peptides of increasing length
- Check each peptide's LINEAR spectrum against experimental spectrum (check for containment)
- Discard peptides with masses not in experimental spectrum
- Stop when one peptide has CIRCULAR spectrum matching experimental spectrum

Next: dealing with imperfect spectra