CMSC423: Chapter 9

Introduction to suffix trees

Class so far...

- Deterministic searching (counting, clumps)
- Exact matching (KMP, Z algorithm)
- Randomized searching (Gibbs sampling)
- Branch and bound search (Proteomics)
- Dynamic programming for inexact matching
- This week: exact matching again, for indexing

Stop and think

- Given a text T and pattern P
- Find the longest prefix of P that matches somewhere in T
- Note: KMP solves this for the prefix that is the whole P - What if the whole of P does not match?

Stop and think...part 2

- Given text T and pattern P
- Find the longest substring of P that matches somewhere in T
- in $\mathrm{O}(\mathrm{n})$ time
- Substring - the characters are adjacent (unlike subsequence discussed last week)
- Note: dynamic programming solves the above in $\mathrm{O}(\mathrm{mn})$ time (pick the right weights and use local alignment)

Solution...

- Note: Donald Knuth did not think $O(n)$ was possible
- Solution:
- Think of suffixes
- Each substring is a prefix of a suffix
- But we know how to solve longest prefix
- How do we organize suffixes?

Many strings: trie

- Basic idea: if many strings share a same sequence only represent it once in the tree

Stop and think: How many nodes are in the suffix trie for a string of length N ?

Suffix tree

- Extends trie of all suffixes of a string
- Collapses non-branching nodes

1	ATCATG
2	TCATG
3	CATG
4	ATG
5	TG
6	G

Stop and think: How many nodes are in the suffix tree for a string of length N? How much memory do you need to store the suffix tree?

Some answers...

- Number of internal nodes <= number of leaves
- Worst case scenario - complete binary tree: number of internal nodes = number of leaves - 1
- Tree size = \# nodes + info in tree
- \# nodes = O(N)
(as many leaves as suffixes)
- info in tree = all suffixes $-\mathrm{O}\left(\mathrm{N}^{2}\right)$

Suffix tree ...cont

- To store in linear space - just store range in sequence instead of string (constant space per edge/node)
- To ensure suffixes end at leaves, add \$ char at end of string
- ATCATG\$

Next: using suffix trees to perform matching

