Finding Eulerian paths/tours

Problem solved?

- Number of possible Eulerian/Chinese Postman tours in a graph

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, ${ }^{19} \mathfrak{\mathcal { W }}(G, t)=(\operatorname{det} L)\left\{\prod_{u \in V}\left(r_{u}-1\right)!\right\}\left\{\prod_{(u, v) \in E} a_{u v}!\right\}^{-1}$

$$
\begin{aligned}
& L=n \times n \text { matrix with } r_{u}-a_{u u} \text { along the diagonal and }-a_{u v} \text { in entry uv } \\
& r_{u}=d^{+}(u)+1 \text { if } u=t, \text { or } d^{+}(u) \text { otherwise } \\
& a_{u v}=\text { multiplicity of edge from } u \text { to } v
\end{aligned}
$$

There are no shortcuts in assembly

Theorem: Must try all possible assemblies before finding the correct one Peltola et al. 1970s
Myers et al. 1990s
Medvedev et al. 2000s
Nagarajan et al. 2000s

Two approaches

- Greedy

- Keep visiting non-visited edges and fix mistakes later
- Using a guide-tree
- Build spanning tree
- Traverse graph using spanning tree as escape route

Greedy

Spanning tree

