Handout 1: Arrow's Theorem and Related Results Eric Pacuit August 31, 2022

Relations

Let X be a set. A relation B on X is a subset $B \subseteq X \times X$. Recall some standard properties that a relation may satisfy:

- 1. Reflexive: for all $x \in X$, x B x
- 2. Irreflexive: for all $x \in X$, not x B x
- 3. Complete: for all $x, y \in X$, either x B y or y B x
- 4. Symmetric: for all $x, y \in X$, x B y implies y B x
- 5. Asymmetric: for all $x, y \in X$, x B y implies not y B x
- 6. Transitive: for all $x, y, z \in X$, x B y and y B z implies x B z

Strict preferences

A binary relation P on a set X is a *strict weak order* if and only if P is asymmetric and satisfies the following condition for all $x, y, z \in X$:

negative transitivity: if xPy, then xPz or zPy.

Negative transitivity is equivalent to the condition that if not xPz and not zPy, then not xPy, which explains the name.

Exercise 1. If P is negative transitive and asymmetric, then P is transitive.

Remark 2. If not x P y and not y P x, then we say that the voter is *indifferent* between x and y. Note that this blurs the distinction between being *indifferent* and *non-comparable*.

The relation P is a *strict linear order* if and only if it satisfies asymmetry, negative transitivity, and weak completeness: for all $x, y \in X$, if $x \neq y$, then xPy or yPx.

Weak preferences

Some authors take an agents weak preference as primitive. Let $R \subseteq X \times X$, we defined the following relations from R: P(R) (strict preference), I(R) (indifference) and N(R) (non-comparability):

- xP(R)y if, and only if, xRy and not yRx.
- xI(R)y if, and only if, xRy and yRx.
- xN(R)y if, and only if, neither xRy nor yRx.

A minimal assumption is that R is reflexive (so that indifference is reflexive). We say that R is quasitransitive if P(R) is transitive.

Profiles

For any nonempty set X, whose members we call *alternatives*, and any nonempty set V, whose members we call *voters*, a (X, V)-profile **P** is an element of $\mathcal{O}(X)^V$, i.e., a function assigning to each $i \in V$ a relation $\mathbf{P}(i) \in \mathcal{O}(X)$, which we call *i's strict preference relation*. For $x, y \in X$, let:

 $\begin{array}{lll} \mathbf{P}(x,y) &=& \{i \in V \mid x \; \mathbf{P}_i \; y\}; \\ \mathbf{P}_{|\{x,y\}} &=& \text{the function assigning to each } i \in V \; \text{the relation } \mathbf{P}_i \cap \{x,y\}^2. \end{array}$

Collective Choice Rules

A (V, X)-collective choice rule ((V, X)-CCR) is a function f from a subset of $\mathcal{O}(X)^V$ to $\mathcal{B}(X)$. By $x f(\mathbf{P}) y$, we mean $(x, y) \in f(\mathbf{P})$.

Constant function

Let $P \in \mathcal{L}(X)$. Then define f_P as follows: for all \mathbf{P} , $f_P(\mathbf{P}) = P$. Let P be a strict linear order with cPbPa and \mathbf{P} the following profile.

 $\begin{array}{ccccc}
1 & 1 & 1 \\
a & a & a \\
b & b & b \\
c & c & c
\end{array}$ $bf_P(\mathbf{P})a \text{ even though } \mathbf{P}(a,b) = V.$

Majority ordering

Define f_{maj} as follows: for all \mathbf{P} , $f_{maj}(\mathbf{P}) = \{(x, y) \mid |\mathbf{P}(x, y)| > |\mathbf{P}(y, x)|\}$ (so, $f_{maj}(\mathbf{P})$ is the majority ordering). Let \mathbf{P} be the following profile (a Condorcet cycle):

 $\begin{array}{ccccccc}
1 & 1 & 1 \\
\hline a & b & c \\
b & c & a \\
c & a & b
\end{array}$ $f_{maj}(\mathbf{P}) \text{ is not transitive.}$

Majority ordering with limited domain

Define f_{maj}^* as follows: For each **P** such that there are no cycles in $\mathcal{M}(\mathbf{P})$, $f_{maj}^*(\mathbf{P})$ is the majority ordering for **P**. Then, $dom(f_{maj}^*) \subsetneq \mathcal{O}(X)^V$.

Pareto/Unanimity

Define f_u as follows: for all \mathbf{P} , $f_u = \{(x, y) \mid \mathbf{P}(x, y) = V\}$. Let \mathbf{P} be the following profile:

$$\begin{array}{ccccc}
1 & 1 & 1 \\
\hline a & b & b \\
b & c & a \\
\hline c & a & c
\end{array}$$

$$b f_u(\mathbf{P}) c \text{ and not } a f_u(\mathbf{P}) c, \text{ but not } b f_u(\mathbf{P}) a.$$

Thus, f_u generates rankings that violate negative transitivity.

Notation Given a strict linear order P on X, the rank of x in P is $rank(x, P) = |\{x \mid x \in X, xPy\}| + 1$. Define the following scoring functions for an alternative $x \in X$ and strict linear order P on X:

$$score_{PL}(x, P) = \begin{cases} 1 & \text{if } rank(x, P) = 1\\ 0 & \text{otherwise} \end{cases}$$

 $score_B(x, P) = m - rank(x, P)$, where m = |X|.

Then, given a profile **P** and $x \in X$,

Plurality ranking

Define f_{pl} as follows: for all $\mathbf{P} \in \mathcal{L}(X)^V$, $f_{pl}(\mathbf{P}) = \{(x, y) \mid PL_{\mathbf{P}}(x) \ge PL_{\mathbf{P}}(y)\}.$

	2	1						
P :	a	b						
	c	c	not $c f_{pl}(\mathbf{P}) d$ even though $\mathbf{P}(c, d) = V$.					
	d	d						
	b	a						
P :	40	25	95		40	25	25	
	40	30	25	P ':	40	30	25	$t f_{pl}(\mathbf{P}) c f_{pl}(\mathbf{P}) k$ $k f_{pl}(\mathbf{P}') t f_{pl}(\mathbf{P}') c$ $\mathbf{P}_{ \{k,t\}} = \mathbf{P}'_{ \{k,t\}}$
	t	$c \ k$	k		t	$k \ t$	k	
	k	k	t	1.	k	t	t	
	c	t	c		c	c	c	

Borda ranking

Define f_{borda} as follows: for all $\mathbf{P} \in \mathcal{L}(X)^V$, $f_{borda}(\mathbf{P}) = \{(x, y) \mid BS_{\mathbf{P}}(x) \geq BS_{\mathbf{P}}(y)\}$.

$$\mathbf{P}: \begin{array}{cccc} \underline{45} & 55 \\ \hline a & b \\ c & a \\ b & c \end{array} \qquad \mathbf{P'}: \begin{array}{cccc} \underline{45} & 55 \\ \hline a & b \\ b & a \\ c & c \end{array} \qquad \mathbf{P'}: \begin{array}{cccc} \underline{45} & 55 \\ \hline a & b \\ b & a \\ c & c \end{array} \qquad \begin{array}{cccc} a & f_{borda}(\mathbf{P}) \ b \ f_{borda}(\mathbf{P}) \ c \\ b \ f_{borda}(\mathbf{P'}) \ a \ f_{borda}(\mathbf{P'}) \ c \\ \mathbf{P}_{|\{a,b\}} = \mathbf{P'}_{|\{a,b\}} \end{array}$$

Dropping anonymity and neutrality

Let $T \subseteq X \times X$ be a strict linear order on X and $R \subseteq V \times V$ be a strict linear order on V. For each $\mathbf{P} \in \mathcal{O}(X)^V$ and $x, y \in X$, let $x f_{T,R}(\mathbf{P}) y$ if, and only if, either

- 1. $x\mathbf{P}_i y$ and there is no j such that jRi and $y\mathbf{P}_j x$; or
- 2. xTy and there is no $i \in V$ such that $x\mathbf{P}_i y$ or $y\mathbf{P}_i x$

Axioms

Domain Conditions

- universal domain (UD): dom $(f) = \mathcal{O}(X)^V$.
- linear domain (LD): dom $(f) = \mathcal{L}(X)^V$.

Codomain Conditions ("Rationality Postulates")

- transitive rationality (TR): for all $\mathbf{P} \in \text{dom}(f)$, $f(\mathbf{P})$ is transitive.
- full rationality (FR): for all $\mathbf{P} \in \text{dom}(f)$, $f(\mathbf{P})$ is a strict weak order.

Interprofile Conditions

• independence of irrelevant alternatives (IIA): for all $\mathbf{P}, \mathbf{P}' \in \text{dom}(f)$ and $x, y \in X$, if $\mathbf{P}_{|\{x,y\}} = \mathbf{P}'_{|\{x,y\}}$, then $xf(\mathbf{P})y$ if and only if $xf(\mathbf{P}')y$.

Decisiveness Conditions

- Pareto (P): for all $\mathbf{P} \in \text{dom}(f)$ and $x, y \in X$, if $\mathbf{P}(x, y) = V$, then $xf(\mathbf{P})y$.
- dictatorship: there is an $i \in V$ such that for all $\mathbf{P} \in \text{dom}(f)$ and $x, y \in X$, if xP_iy , then $xf(\mathbf{P})y$.

Theorem 3 (Arrow). Assume that $|X| \ge 3$ and V is finite. Then any (V, X)-CCR for satisfying UD, IIA, FR, and P is a dictatorship.

Decisive Coalitions

Definition 4 (Decisive Coalition). $A \subseteq V$ is decisive for x over y, if for all $\mathbf{P} \in dom(f)$, if $A \subseteq \mathbf{P}(x, y)$, then $x f(\mathbf{P}) y$.

Lemma 5 (Decisiveness Spread). For any $A \subseteq V$ and candidates $x, y \in X$, if A is decisive for x over y, then for any $z, w \in X$, A is decisive for z over w.

Proof. Let $\mathbf{P} \in dom(f)$ be a profile with $A \subseteq \mathbf{P}(a, b)$. We must show that $a \ f(\mathbf{P}) \ b$. Let \mathbf{P}' be the profile in which $\mathbf{P}'_{|\{a,b\}} = \mathbf{P}_{|\{a,b\}}$ and the rankings of a, b, x, and y are as follows:

- 1. Pareto implies that $a f(\mathbf{P}') x$
- 2. Pareto implies that $y f(\mathbf{P}') b$
- 3. A is decisive for x over y implies that $x f(\mathbf{P}') y$
- 4. $f(\mathbf{P}')$ is (quasi-)transitive, so:
 - (a) 1. and 3. implies that $a f(\mathbf{P}') y$
 - (b) 4(a). and 2. implies that $a f(\mathbf{P}') b$

Since $\mathbf{P}'_{|\{a,b\}} = \mathbf{P}_{|\{a,b\}}$ and $a \ f(\mathbf{P}') \ b$, by IIA, $a \ f(\mathbf{P}) \ b$. (Note that the above proof works even if x = y.) \Box

Lemma 5 means that if A is decisive for some x over y, then A is decisive for all x over y. We say that A is decisive if A is decisive for some (hence all) x over y. Let $\mathcal{D} = \{A \mid A \text{ is decisive}\}$. Then:

- By Pareto, $V \in \mathcal{D}$. So, $\mathcal{D} \neq \emptyset$
- Since V is finite, there is a minimal $A \in \mathcal{D}$: an $A \in \mathcal{D}$ such that there is no $B \in \mathcal{D}$ with $B \subsetneq A$.

Lemma 6. Suppose that f is a CCR for X, V and \mathcal{D} is the set of all decisive sets for f. If $A, A' \in \mathcal{D}$ are minimal, then A = A'.

Proof. Suppose that f is a CCR for X, V and \mathcal{D} is the set of all decisive sets for f with $A, A' \in \mathcal{D}$. We show that (i) $A \cap A' \neq \emptyset$ and (ii) $A \cap A'$ is decisive for f.

To show (i), suppose that $A \cap A' = \emptyset$. Let **P** be a profile in which $A \subseteq \mathbf{P}(x, y)$ and $A' \subseteq \mathbf{P}(y, x)$. Since A is decisive, $x f(\mathbf{P}) y$ and since A' is decisive, $y f(\mathbf{P}) x$. This is a contradiction since $f(\mathbf{P})$ is asymmetric.

To show (ii), let $z \neq x$ and $z \neq y$. Suppose that **P** is a profile in which $A \cap A' \subseteq \mathbf{P}(z, y)$. Suppose that **P**' is a profile with $\mathbf{P}'_{|\{z,y\}} = \mathbf{P}_{|\{z,y\}}$, and the rankings of x, y and z are as follows:

Since $\mathbf{P}'_{|\{z,y\}} = \mathbf{P}_{|\{z,y\}}$ and $z \ f(\mathbf{P}') \ y$, by IIA, $z \ f(\mathbf{P}) \ y$. So $A \cap A'$ is decisive for z over y and by Lemma 5, $A \cap A' \in \mathcal{D}$. The contradicts the assumption that A and A' are minimal.

Hence, there is a unique minimal element of \mathcal{D} .

Lemma 7. Let A^* be the unique minimal element of \mathcal{D} . For all $i \in A^*$ and $\mathbf{P} \in dom(f)$, if $x\mathbf{P}_i y$, then not $y f(\mathbf{P}) x$.

Proof. Suppose not. There is a $\mathbf{P} \in dom(f)$ and $i \in A^*$ such that $x\mathbf{P}_i y$ and $y f(\mathbf{P}) x$. Since A^* is decisive for x over y, there must be some $A' \subsetneq A^*$ such that $A' \neq \emptyset$ and for all $j \in A'$, not $x\mathbf{P}_j y$. (In particular, $i \notin A'$). We show that A' is decisive for z over x. Let $\mathbf{P}'' \in dom(f)$ be a profile with $A' \subseteq \mathbf{P}''(z, x)$. Consider the profile \mathbf{P}' with $\mathbf{P}'_{|\{x,y\}} = \mathbf{P}_{|\{x,y\}}$ and $\mathbf{P}'_{|\{x,z\}} = \mathbf{P}''_{|\{x,z\}}$ and the remaining rankings of x, y and z are as follows:

A' ∪ {i} = A* ∈ D and A* ⊆ P'(z, y) implies that z f(P') y
 IIA, P'_{|{x,y}} = P_{|{x,y}}, and y f(P) x implies that y f(P') x.
 f(P') is (quasi-)transitive, so:

 (a) 1. and 2. implies that z f(P') x

Since $\mathbf{P}_{|\{x,z\}}'' = \mathbf{P}_{|\{x,z\}}'$ and $z \ f(\mathbf{P}') \ x$, by IIA, $z \ f(\mathbf{P}'') \ x$. So, A' is decisive for z over x. By Lemma 5, $A' \in \mathcal{D}$. This contradicts the minimality of A^* .

Definition 8 (Oligarchy). Suppose that f is a CCR for (X, V). A set $A \subseteq V$ is an *oligarchy* for f if A is decisive for f and

For $\mathbf{P} \in dom(f)$, if $x\mathbf{P}_i y$ for some $i \in A$, then not $y f(\mathbf{P}) x$.

Theorem 9 (Gibbard's Oligarchy Theorem). Assume that $|X| \ge 3$ and V is finite. Then any CCR for $\langle X, V \rangle$ satisfying UD, IIA, TR, and P has an oligarchy.

Proving Arrow's Theorem

Lemma 10. Assume that $|X| \ge 3$ and V is finite. Suppose that f is a CCR for $\langle X, V \rangle$ satisfying UD, IIA, FR, and P. Then, if A is an oligarchy for f, then |A| = 1 (so A f is a dictatorship).

Proof. Suppose not. That is, there is an oligarchy A for f with |A| > 1. Then, $A = A_1 \cup A_2$ where $A_1 \cap A_2 = \emptyset$, $A_1 \neq \emptyset$ and $A_2 \neq \emptyset$. Let **P** be a profile with the following rankings of x, y, and z:

- 1. A is an oligarchy, there is $i \in A_1 \subseteq A$ with $x \mathbf{P}_i y$ implies that not $y f(\mathbf{P}) x$
- 2. A is an oligarchy, there is $j \in A_2 \subseteq A$ with $z\mathbf{P}_j x$ implies that not $x f(\mathbf{P}) z$
- 3. $f(\mathbf{P}')$ is negatively transitive, so:
 - (a) 1. and 2. implies that not $y f(\mathbf{P}) z$
- 4. $A_1 \cup A_2 = A$ is decisive and $A \subseteq \mathbf{P}(y, z)$ implies that $y f(\mathbf{P}) z$. This contradicts 3.

Non-Paretian Social Choice

Let $\mathcal{O}(X)$ be the set of all complete, reflexive and transitive relations and $\mathcal{B}(X)$ the set of binary relations on X. A CCR is a function $f: \mathcal{D} \to \mathcal{B}(X)$ for some set \mathcal{D} of profiles.

- f is a SWF (social welfare function) if for all $\mathbf{R} \in dom(f)$, $f(\mathbf{R})$ is complete and transitive.
- f is null if for all $x, y \in X$ and all $\mathbf{R} \in dom(f)$, not $x P(f(\mathbf{R})) y$.
- f is an it-Paretian if for all $\mathbf{R} \in dom(f)$, if $xP(\mathbf{R}_i)y$ for all $i \in V$, then $y P(f(\mathbf{R})) x$.
- f is dis-Paretian if for all $\mathbf{R} \in dom(f)$, if $xP(\mathbf{R}_i)y$ for all $i \in V$, then $x N(f(\mathbf{R})) y$.
- non-nullness (NN): f is not null.
- non-imposition (NI): for all $x, y \in X$, there is an $\mathbf{R} \in dom(f)$ such that $x f(\mathbf{R}) y$.
- strict non-imposition (SNI): for all $x, y \in X$ with $x \neq y$, there is an $\mathbf{R} \in dom(f)$ such that $x P(f(\mathbf{R})) y$.
- inverse-dictator: d is an inverse dictator if for all $\mathbf{R} \in \text{dom}(f)$ and $x, y \in X$, if $xP(\mathbf{R}_i)y$, then $y P(f(\mathbf{R})) x$.

Theorem 11 (Murakami 1968). Any SWF satisfying UD, IIA and SNI is either Paretian or anti-Paretian.

Theorem 12 (Murakami 1968). Any SWF satisfying UD, IIA and SNI is either dictatorial or inversely dictatorial.

Theorem 13 (Malawski and Zhou 1994). Any SWF satisfying UD, IIA, and NI is either null, Paretian, or anti-Paretian.

Theorem 14 (Wilson 1972). Any SWF satisfying satisfying UD, IIA, and NI is either null, dictatorial, or inversely dictatorial.

Theorem 15 (Holliday and Kelley 2020). Any transitive CCR satisfying UD, IIA, NI, and NN is either Paretian, anti-Paretian, or dis-Paretian.