New Perspectives on Social Choice

Eric Pacuit, University of Maryland

Lecture 4: Split Cycle
PHIL 808K

Background

Margin

Let \boldsymbol{P} be a profile and $a, b \in X(P)$. Then the margin of a over b is:

$$
\operatorname{Margin}_{P}(a, b)=\left|\left\{i \in V(P) \mid a P_{i} b\right\}\right|-\left|\left\{i \in V(P) \mid b P_{i} a\right\}\right| .
$$

We say that a is majority preferred to b in \boldsymbol{P} when $\operatorname{Margin}_{P}(a, b)>0$.

Margin Graph

The margin graph of $P, \mathcal{M}(P)$, is the weighted directed graph whose set of nodes is $X(P)$ with an edge from a to b weighted by $\operatorname{Margin}(a, b)$ when $\operatorname{Margin}(a, b)>0$. We write

$$
a \xrightarrow{\alpha} \boldsymbol{P} b \text { if } \alpha=\operatorname{Margin}_{\boldsymbol{P}}(a, b)>0 .
$$

40	35	25
t	r	k
k	k	r
r	t	t

Margin Graph

A margin graph is a weighted directed graph \mathcal{M} where all the weights have the same parity.

Theorem (Debord, 1987)
For any margin graph \mathcal{M}, there is a profile \boldsymbol{P} such that \mathcal{M} is the margin graph of P.

VCCRs, Voting Methods

A variable collective choice rule (VCCR) is a function f on the domain of all profiles such that for any profile $P, f(P)$ is an asymmetric binary relation on $X(P)$.

VCCRs, Voting Methods

A variable collective choice rule (VCCR) is a function f on the domain of all profiles such that for any profile $P, f(P)$ is an asymmetric binary relation on $X(P)$.

A voting method is a function F on the domain of all profiles such that for any profile $P, \varnothing \neq F(P) \subseteq X(P)$.

- See https://pref_voting.readthedocs.io for a Python package that provides computational tools to study different voting methods.

Every acyclic VCCR f generates a voting method \bar{f}, where for all $P, \bar{f}(P)$ is the set of undefeated candidates in P according to f.

Condorcet criteria

The Condorcet winner in a profile \boldsymbol{P} is a candidate $x \in X(P)$ that is the maximum of the majority ordering, i.e., for all $y \in X(P)$, if $x \neq y$, then $\operatorname{Margin}_{P}(x, y)>0$.

A voting method F is Condorcet consistent, if for all P, if x is a Condorcet winner in P, then $F(P)=\{x\}$.

Condorcet criteria

The Condorcet winner in a profile \boldsymbol{P} is a candidate $x \in X(P)$ that is the maximum of the majority ordering, i.e., for all $y \in X(P)$, if $x \neq y$, then $\operatorname{Margin}_{P}(x, y)>0$.

A voting method F is Condorcet consistent, if for all P, if x is a Condorcet winner in P, then $F(P)=\{x\}$.

The Condorcet loser in a profile \boldsymbol{P} is a candidate $x \in X(P)$ that is the minimum of the majority ordering, i.e., for all $y \in X(P)$, if $x \neq y$, then $\operatorname{Margin}_{P}(y, x)<0$.

A voting method F is susceptible to the Condorcet loser paradox (also known as Borda's paradox) if there is some \boldsymbol{P} such that x is a Condorcet loser in \boldsymbol{P} and $x \in F(P)$.

- Coherent IIA
- Majority Defeat
- Split Cycle: A VCCR that satisfies Coherent IIA
- Characterizing Split Cycle
- Stability for Winners
- Positive Involvement
- Refining Split Cycle: Stable Voting

The Fallacy of IIA

Suppose x defeats y in a profile P, and a profile P^{\prime} is exactly like P with respect to how every voter ranks x vs. y. Should it follow that x defeats y in P^{\prime} ?

The Fallacy of IIA

Suppose x defeats y in a profile P, and a profile P^{\prime} is exactly like P with respect to how every voter ranks x vs. y. Should it follow that x defeats y in P^{\prime} ?

Arrow's Independence of Irrelevant Alternatives (IIA) says 'yes'.

The Fallacy of IIA

Suppose x defeats y in a profile P, and a profile \boldsymbol{P}^{\prime} is exactly like \boldsymbol{P} with respect to how every voter ranks x vs. y. Should it follow that x defeats y in P^{\prime} ?

Arrow's Independence of Irrelevant Alternatives (IIA) says 'yes'.

We say 'no': if P^{\prime} is sufficiently incoherent, we may need to suspend judgment on many defeat relations that could be coherently accepted in \boldsymbol{P}.
W. Holliday and EP (2021). Axioms for Defeat in Democratic Elections. Journal of Theoretical Politics.

In the context of the following perfectly coherent profile P, the margin of n for a over b should be sufficient for a to defeat b :

n	n	n
\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}
c	c	\boldsymbol{b}

In the context of the following perfectly coherent profile P, the margin of n for a over b should be sufficient for a to defeat b :

n	n	n
\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}
c	c	\boldsymbol{b}

Yet in the following P^{\prime} with $\boldsymbol{P}_{\{\{a, b\}}^{\prime}=\boldsymbol{P}_{\mid\{a, b\}}$, no VCCR satisfying Anonymity, Neutrality, and Availability can say that a defeats b :

n	n	n
\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{b}	c	\boldsymbol{a}
c	\boldsymbol{a}	\boldsymbol{b}

In the context of the following perfectly coherent profile P, the margin of n for a over b should be sufficient for a to defeat b :

n	n	n
\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}
c	c	\boldsymbol{b}

Yet in the following \boldsymbol{P}^{\prime} with $\boldsymbol{P}_{\mid\{a, b\}}^{\prime}=\boldsymbol{P}_{\mid\{a, b\}}$, no VCCR satisfying Anonymity, Neutrality, and Availability can say that a defeats b :

n	n	n
\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{b}	c	\boldsymbol{a}
c	\boldsymbol{a}	\boldsymbol{b}

This is a counterexample to IIA as a plausible axiom.

Theorem (Patty and Penn, 2014)

Arrow's IIA condition is equivalent to the condition of unilateral flip independence: if two profiles are alike except that one voter flips one pair of adjacent candidates on her ballot, then the defeat relations for the two profiles can differ at most on the flipped candidates.

Unilateral flip independence makes the same mistake as IIA in ignoring how context can affect the standard for defeat (let $n=1$ and consider the middle voter in the previous example).

Modified IIA

Modified IIA: for all profiles \boldsymbol{P} and \boldsymbol{P}^{\prime}, if $\boldsymbol{P}_{\{x, y\}}=\boldsymbol{P}_{\{x, y\}}^{\prime}$, and for each voter i and candidate z, i ranks z in between x and y in P if and only if i ranks z in between x and y in P^{\prime}, then x defeats y in P if and only if x defeats y in P^{\prime}. (cf. Saari, 1994, 1995, 1998)

n	n	n	n
a	b	a	a
b	c	b	b
c	d	c	d
d	a	d	c

E. Maskin (2020). A Modified Version of Arrow's IIA Condition. Social Choice and Welfare.

Modified IIA makes the same mistake as IIA:

n	n	n	n
\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}
\boldsymbol{b}	c	\boldsymbol{b}	\boldsymbol{b}
c	d	c	d
d	\boldsymbol{a}	d	c

n	n	n	n
\boldsymbol{a}	\boldsymbol{b}	c	d
\boldsymbol{b}	c	d	\boldsymbol{a}
c	d	\boldsymbol{a}	\boldsymbol{b}
d	\boldsymbol{a}	\boldsymbol{b}	c

Coherent IIA

Coherent IIA: if x defeats y in P,

Coherent IIA

Coherent IIA: if x defeats y in P, and P^{\prime} is a profile such that

1. $\boldsymbol{P}_{\mid\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$

Coherent IIA

Coherent IIA: if x defeats y in P, and P^{\prime} is a profile such that

1. $\boldsymbol{P}_{\{\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$ and
2. the margin graph of P^{\prime} is obtained from that of \boldsymbol{P} by deleting zero or more candidates other than x and y and deleting or reducing the margins on zero or more edges not connecting x and y,

Coherent IIA

Coherent IIA: if x defeats y in P, and P^{\prime} is a profile such that

1. $\boldsymbol{P}_{\{\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$ and
2. the margin graph of P^{\prime} is obtained from that of P by deleting zero or more candidates other than x and y and deleting or reducing the margins on zero or more edges not connecting x and y,
then x still defeats y in P^{\prime}.

Coherent IIA

Coherent IIA: if x defeats y in P, and P^{\prime} is a profile such that

1. $\boldsymbol{P}_{\mid\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$ and
2. the margin graph of \boldsymbol{P}^{\prime} is obtained from that of \boldsymbol{P} by deleting zero or more candidates other than x and y and deleting or reducing the margins on zero or more edges not connecting x and y,
then x still defeats y in P^{\prime}.
Key idea: the operations described in 2 cannot increase cyclic incoherence.

Coherent IIA

Coherent IIA: if x defeats y in P, and P^{\prime} is a profile such that

1. $\boldsymbol{P}_{\mid\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$ and
2. the margin graph of \boldsymbol{P}^{\prime} is obtained from that of \boldsymbol{P} by deleting zero or more candidates other than x and y and deleting or reducing the margins on zero or more edges not connecting x and y,
then x still defeats y in P^{\prime}.
Key idea: the operations described in 2 cannot increase cyclic incoherence.

Note: this is a variable-candidate axiom, so it is best compared to what we call VIIA (see our "Axioms for Defeat in Democratic Elections").

Violations of Coherent IIA

Borda: c defeats a

Borda winner: a defeats c

Violations of Coherent IIA

Beat Path: d defeats b

Beat Path: d doesn't defeat b

Coherent IIA

Proposition

Coherent IIA implies Weak IIA.
Weak IIA: For all profiles \boldsymbol{P} and \boldsymbol{P}^{\prime}, if x defeats y in \boldsymbol{P} according to f and $\boldsymbol{P}_{\mid\{x, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$, then y does not defeat x in \boldsymbol{P}^{\prime} according to f.

Coherent IIA

Proposition

Coherent IIA implies Weak IIA.
Weak IIA: For all profiles \boldsymbol{P} and \boldsymbol{P}^{\prime}, if x defeats y in \boldsymbol{P} according to f and $\boldsymbol{P}_{\mid\{\{, y\}}=\boldsymbol{P}_{\mid\{x, y\}}^{\prime}$, then y does not defeat x in \boldsymbol{P}^{\prime} according to f.

There is an acyclic VCCR satisfying Coherent IIA: The Split Cycle defeat relation
W. Holliday and EP (2022). Axioms for Defeat in Democratic Elections. Forthcoming in Public Choice.
W. Holliday and EP (2022). Axioms for Defeat in Democratic Elections. Journal of Theoretical Politics, https://arxiv.org/pdf/2008.08451.pdf.

Lemma

Anonymity, Neutrality, Monotonicity (for two-candidate profiles), and Coherent IIA together imply:

If x defeats y, then x is majority preferred to y.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election,

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Example

In the 2000 U.S. presidential election in Florida, George W. Bush defeated AI Gore and Ralph Nader according to Plurality voting, which only allows voters to vote for one candidate. Yet assuming that most Nader voters preferred Gore to Bush, it follows that a majority of all voters preferred Gore to Bush.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Example

In the 2000 U.S. presidential election in Florida, George W. Bush defeated AI Gore and Ralph Nader according to Plurality voting, which only allows voters to vote for one candidate. Yet assuming that most Nader voters preferred Gore to Bush, it follows that a majority of all voters preferred Gore to Bush.

Under Plurality, Nader spoiled the election for Gore, handing victory to Bush.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Example

During the 2016 U.S. presidential primary season, an NBC News/Wall Street Journal poll (March 3-6) asked respondents both for their top choice and their preference between Donald Trump and each of Ted Cruz, John Kasich, and Marco Rubio.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Example

During the 2016 U.S. presidential primary season, an NBC News/Wall Street Journal poll (March 3-6) asked respondents both for their top choice and their preference between Donald Trump and each of Ted Cruz, John Kasich, and Marco Rubio. Trump was the Plurality winner, receiving 30% of first place votes, but Cruz, Kasich, and Rubio were each preferred to Trump by $57 \%, 57 \%$, and 56% of respondents.

Majority Defeat

Majority Defeat: if a candidate does not win in an election, they must have been defeated by some other candidate in the election, and a candidate should defeat another only if a majority of voters prefer the first candidate to the second.

Widely used voting systems can violate the principle of Majority Defeat.

Example

During the 2016 U.S. presidential primary season, an NBC News/Wall Street Journal poll (March 3-6) asked respondents both for their top choice and their preference between Donald Trump and each of Ted Cruz, John Kasich, and Marco Rubio. Trump was the Plurality winner, receiving 30% of first place votes, but Cruz, Kasich, and Rubio were each preferred to Trump by $57 \%, 57 \%$, and 56% of respondents. Cruz, Kasich, and Rubio split the anti-Trump vote.

IRV violates Majority Defeat

In the 2009 Mayoral Election in Burlington, Vermont, the progressive Bob Kiss was elected using Instant Runoff Voting (IRV).

IRV violates Majority Defeat

In the 2009 Mayoral Election in Burlington, Vermont, the progressive Bob Kiss was elected using Instant Runoff Voting (IRV). However, checking the head-to-head matches of the candidates revealed that the Democrat Andy Montroll beat Kiss and every other candidate head-to-head:

37	29	34
Wright	Montroll	Kiss
Montroll	Kiss	Montroll
Kiss	Wright	Wright

From ElectionScience.org:
"a simplified approximation of what happened in the 2009 IRV mayoral election in Burlington, Vermont."

IRV violates Majority Defeat

In the 2009 Mayoral Election in Burlington, Vermont, the progressive Bob Kiss was elected using Instant Runoff Voting (IRV). However, checking the head-to-head matches of the candidates revealed that the Democrat Andy Montroll beat Kiss and every other candidate head-to-head:

Montroll was the Condorcet winner.

37	29	34
Wright	Montroll	Kiss
Montroll	Kiss	Montroll
Kiss	Wright	Wright

From ElectionScience.org:
"a simplified approximation of what happened in the 2009 IRV mayoral election in Burlington, Vermont."

IRV violates Majority Defeat

In the 2009 Mayoral Election in Burlington, Vermont, the progressive Bob Kiss was elected using Instant Runoff Voting (IRV). However, checking the head-to-head matches of the candidates revealed that the Democrat Andy Montroll beat Kiss and every other candidate head-to-head:

37	29	34
Wright	Montroll	Kiss
Montroll	Kiss	Montroll
Kiss	Wright	Wright

From ElectionScience.org:
"a simplified approximation of what happened in the 2009 IRV mayoral election in Burlington, Vermont."
Montroll was the Condorcet winner. IRV was repealed in 2010.

2022 Alaska Special General Election

The IRV winner is Petola.

- The write-in is initially removed
- Begich is removed in the first round
- Palin loses to Peltola

2022 Alaska Special General Election

The IRV winner is Petola.

- The write-in is initially removed
- Begich is removed in the first round
- Palin loses to Peltola

What are the benefits of respecting Majority Defeat?

Besides mitigating spoiler effects, what are the benefits of Majority Defeat?

What are the benefits of respecting Majority Defeat?

Besides mitigating spoiler effects, what are the benefits of Majority Defeat?
Maskin and Sen (2017) make the following conjecture:
[M]ajority rule may reduce polarization. A centrist like Bloomberg [in the 2016 U.S. presidential election] may not be ranked first by a large proportion of voters [and hence cannot win under Plurality], but can still be elected [with the backing of majorities against each other candidate] if viewed as a good compromise. Majority rule also encourages public debate about a larger group of potential candidates [since more candidates can participate without worry of their being spoilers], bringing us closer to John Stuart Mill's ideal of democracy as "government by discussion."

Problem with Majority Defeat: The "Paradox of Voting" Why not always elect the Condorcet winner?

Problem with Majority Defeat: The "Paradox of Voting"
Why not always elect the Condorcet winner? Well, there may not be one....

Problem with Majority Defeat: The "Paradox of Voting"

Why not always elect the Condorcet winner? Well, there may not be one....
We consider the 2007 Glasgow City Council election for Ward 5 (Govan). The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.

Problem with Majority Defeat: The "Paradox of Voting"

Why not always elect the Condorcet winner? Well, there may not be one....
We consider the 2007 Glasgow City Council election for Ward 5 (Govan). The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.

The top three candidates were in a majority cycle:

Problem with Majority Defeat: The "Paradox of Voting"

Why not always elect the Condorcet winner? Well, there may not be one....
We consider the 2007 Glasgow City Council election for Ward 5 (Govan). The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.

The top three candidates were in a majority cycle:

Yet if we have to pick a single winner, and if we base our choice on the pairwise comparisons, it seems clear who the winner should be....

Problem with Majority Defeat: The "Paradox of Voting"

Why not always elect the Condorcet winner? Well, there may not be one....
We consider the 2007 Glasgow City Council election for Ward 5 (Govan). The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.

The top three candidates were in a majority cycle:

Yet if we have to pick a single winner, and if we base our choice on the pairwise comparisons, it seems clear who the winner should be.... It's Dornan.

2021 Minneapolis City Council Ward 2 Election

Split Cycle

We propose a simple approach to resolving majority cycles, called Split Cycle:

Split Cycle

We propose a simple approach to resolving majority cycles, called Split Cycle:

1. In each majority cycle, identify the wins with the smallest margin in that cycle.

Split Cycle

We propose a simple approach to resolving majority cycles, called Split Cycle:

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.

Split Cycle

We propose a simple approach to resolving majority cycles, called Split Cycle:

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.

Split Cycle

We propose a simple approach to resolving majority cycles, called Split Cycle:

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.

Example

Suppose an election produces the following majority margin graph (i.e., there are 7 more voters who ranked \boldsymbol{b} above \boldsymbol{a} than who ranked \boldsymbol{a} above \boldsymbol{b}, etc.):

Example

Suppose an election produces the following majority margin graph (i.e., there are 7 more voters who ranked \boldsymbol{b} above \boldsymbol{a} than who ranked \boldsymbol{a} above \boldsymbol{b}, etc.):

Our first step is to identify the cycles...

Example

Example

Next find the smallest margin in each cycle.

Example

Next find the smallest margin in each cycle. These edges cannot be defeats.

Example

Motivating ideas

Split Cycle can be motivated using three main ideas. . .

Idea 1

Group incoherence raises the threshold for one candidate to defeat another, but not infinitely.

Idea 1

Group incoherence raises the threshold for one candidate to defeat another, but not infinitely.

\boldsymbol{a} does not defeat \boldsymbol{b}, but \boldsymbol{b} defeats \boldsymbol{c} and \boldsymbol{c} defeats \boldsymbol{a}.

Idea 2
Incoherence can be localized.

Idea 2

Incoherence can be localized.

\boldsymbol{a} does not defeat \boldsymbol{b}, but \boldsymbol{a} defeats \boldsymbol{d}.

Idea 3

Majority defeat: a candidate should defeat another only if a majority of voters prefer the first candidate to the second. (We also say "Defeat is direct")

\boldsymbol{c} defeats \boldsymbol{e}, but \boldsymbol{c} does not defeat \boldsymbol{f}.
\checkmark Coherent IIA
\checkmark Majority Defeat
\checkmark Split Cycle: A VCCR that satisfies Coherent IIA

- Characterizing Split Cycle
- Stability for Winners
- Positive Involvement
- Refining Split Cycle: Stable Voting

Condorcet consistent methods

$$
\begin{aligned}
\text { Minimax: } & \{d\} \\
\text { Copeland: } & \{a, b\} \\
\text { Beat Path: } & \{d\} \\
\text { Ranked Pairs: } & \{b\} \\
\text { Split Cycle: } & \{b, d\}
\end{aligned}
$$

Condorcet consistent methods

$$
\begin{aligned}
\text { Minimax: } & \{d\} \\
\text { Copeland: } & \{a, b\} \\
\text { Beat Path: } & \{d\} \\
\text { Ranked Pairs: } & \{b\} \\
\text { Split Cycle: } & \{b, d\}
\end{aligned}
$$

Proposition. Both Ranked Pairs and Beat Path refine Split Cycle (i.e., in all profiles, any Ranked Pairs (resp. Beat Path) winner is also a Split Cycle winner.

Distinguishing Split Cycle from other definitions of defeat

Split Cycle is distinguished from other definitions of defeat by:

Distinguishing Split Cycle from other definitions of defeat

Split Cycle is distinguished from other definitions of defeat by:

1. responding in a reasonable way to new candidates joining the election;

Distinguishing Split Cycle from other definitions of defeat

Split Cycle is distinguished from other definitions of defeat by:

1. responding in a reasonable way to new candidates joining the election;
2. responding in a reasonable way to new voters joining the election.

Stability for Winners

Stability for Winners

and

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Example violations:

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile P and $a, b \in X(P)$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Example violations:

- arguably the 2000 US Presidential Election in Florida, run with Plurality Voting, where \boldsymbol{a} was AI Gore and \boldsymbol{b} was Ralph Nader.

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Example violations:

- arguably the 2000 US Presidential Election in Florida, run with Plurality Voting, where \boldsymbol{a} was AI Gore and \boldsymbol{b} was Ralph Nader.
- definitely the 2009 mayoral election in Burlington, Vermont, run with Instant Runoff Voting, where \boldsymbol{a} was the Democrat and \boldsymbol{b} was the Republican.

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile \boldsymbol{P} and $a, b \in X(\boldsymbol{P})$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Example violations:

- arguably the 2000 US Presidential Election in Florida, run with Plurality Voting, where \boldsymbol{a} was AI Gore and \boldsymbol{b} was Ralph Nader.
- definitely the 2009 mayoral election in Burlington, Vermont, run with Instant Runoff Voting, where \boldsymbol{a} was the Democrat and \boldsymbol{b} was the Republican.
- there are also violations in profiles with no Condorcet winner.

Stability for Winners

Definition

A VCCR satisfies Stability for Winners if for any profile \boldsymbol{P} and $a, b \in X(\boldsymbol{P})$, if a is undefeated in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then a is undefeated in P.

Example violations:

- arguably the 2000 US Presidential Election in Florida, run with Plurality Voting, where \boldsymbol{a} was AI Gore and \boldsymbol{b} was Ralph Nader.
- definitely the 2009 mayoral election in Burlington, Vermont, run with Instant Runoff Voting, where \boldsymbol{a} was the Democrat and \boldsymbol{b} was the Republican.
- there are also violations in profiles with no Condorcet winner.

Proposition

Anonymity, Neutrality, Monotonicity (for two-candidate profiles), and Coherent IIA together imply Stability for Winners.

Choice Consistency

Suppose that C is a choice function on X : for all $\emptyset \neq A \subseteq X, \emptyset \neq C(A) \subseteq A$.
Sen's α condition: if $A^{\prime} \subseteq A$, then $C(A) \cap A^{\prime} \subseteq C\left(A^{\prime}\right)$
Sen's γ condition (expansion): $C(A) \cap C\left(A^{\prime}\right) \subseteq C\left(A \cup A^{\prime}\right)$
Theorem (Sen 1971)
Let C be a choice function on a nonempty finite set X. TFAE:

1. C satisfies α and γ
2. There exists a binary relation P on X such that for all $A \subseteq X$,

$$
C(A)=\{x \in A \mid \text { there is no } y \in A \text { such that } y P x\}
$$

A. Sen. Choice Functions and Revealed Preference. The Review of Economic Studies, 38:3, pp. 307-317, 1971.

Choice Consistency

Suppose that C is a choice function on X : for all $\emptyset \neq A \subseteq X, \emptyset \neq C(A) \subseteq A$.
Sen's α condition: if $A^{\prime} \subseteq A$, then $C(A) \cap A^{\prime} \subseteq C\left(A^{\prime}\right)$

```
Sen's \gamma condition (expansion): C(A)\capC(A')\subseteqC(A\cupA')
```


Theorem (Sen 1971)

Let C be a choice function on a nonempty finite set X. TFAE:

1. C satisfies α and γ
2. There exists a binary relation P on X such that for all $A \subseteq X$,

$$
C(A)=\{x \in A \mid \text { there is no } y \in A \text { such that } y P x\}
$$

A. Sen. Choice Functions and Revealed Preference. The Review of Economic Studies, 38:3, pp. 307-317, 1971.

Binary Expansion

Expansion: For all $A, A^{\prime} \subseteq X, C(A) \cap C\left(A^{\prime}\right) \subseteq C\left(A \cup A^{\prime}\right)$.

Binary Expansion: For all $A, A^{\prime} \subseteq X$ such that $\left|A^{\prime}\right|=2$, $C(A) \cap C\left(A^{\prime}\right) \subseteq C\left(A \cup A^{\prime}\right)$.

Binary Expansion

Expansion: For all $A, A^{\prime} \subseteq X, C(A) \cap C\left(A^{\prime}\right) \subseteq C\left(A \cup A^{\prime}\right)$.

Binary Expansion: For all $A, A^{\prime} \subseteq X$ such that $\left|A^{\prime}\right|=2$, $C(A) \cap C\left(A^{\prime}\right) \subseteq C\left(A \cup A^{\prime}\right)$.

Modulo α, Expansion is equivalent to Binary Expansion. Thus, we can replace Expansion by Binary Expansion in Sen's representation theorem.

Expansion in Voting

A voting method is a function F on the domain of all profiles such that for any profile $P, \varnothing \neq F(P) \subseteq X(P)$.

A voting method F satisfies Expansion if for all profiles P and Y, Y^{\prime} with $Y \cup Y^{\prime}=X(P)$,

$$
F\left(P_{\mid Y}\right) \cap F\left(P_{\mid Y^{\prime}}\right) \subseteq F(P) .
$$

Beat Path and Minimax Violate Binary Expansion

$$
\begin{array}{llllllll}
2 & 1 & 1 & 1 & 3 & 1 & 1 & 1 \\
\hline b & a & d & a & c & b & c & d \\
a & b & a & d & b & d & d & c \\
d & d & c & c & a & c & a & a \\
c & c & b & b & d & a & b & b
\end{array}
$$

Beat Path and Minimax both violate Binary Expansion: $F\left(P_{-a}\right)=\{b, c, d\}$, $\operatorname{Margin}_{P}(b, a)>0\left(\right.$ so $\left.F\left(\boldsymbol{P}_{\mid\{a, b\}}\right)=\{b\}\right)$, and $b \notin F(\boldsymbol{P})$.

Spoilers

Binary Expansion rules out spoilers.

37	29	34
d	d	p
p	p	d

IR Winner: p

Immunity to Spoilers: For all profiles P and $a, b \in X(P)$, if $a \in F\left(P_{-b}\right), \operatorname{Margin}_{P}(a, b)>0$ and $b \notin F(P)$, then $a \in F(P)$

Minimax, Copeland, and GOCHA all satisfy Immunity to Spoilers, but not Binary Expansion

Spoilers, Stealers

Definition

Let F be a voting method, $\boldsymbol{P} \in \operatorname{dom}(F)$, and $a, b \in X(\boldsymbol{P})$. Then we say that:

1. b spoils the election for a in P
if $a \in F\left(P_{-b}\right), \operatorname{Margin}_{P}(a, b)>0, a \notin F(P)$, and $b \notin F(P)$;
2. b steals the election from a in P
if $a \in F\left(P_{-b}\right), \operatorname{Margin}_{P}(a, b)>0, a \notin F(P)$, and $b \in F(P)$.

Spoilers, Stealers

Definition

Let F be a voting method.

1. F satisfies immunity to spoilers if for $\boldsymbol{P} \in \operatorname{dom}(F)$ and $a, b \in X(\boldsymbol{P})$, b does not spoil the election for a.
2. F satisfies immunity to stealers if for $\boldsymbol{P} \in \operatorname{dom}(F)$ and $a, b \in X(\boldsymbol{P})$, b does not steal the election from a.
3. F satisfies stability for winners if for $\boldsymbol{P} \in \operatorname{dom}(F)$ and $a, b \in X(\boldsymbol{P})$, if $a \in F\left(\boldsymbol{P}_{-b}\right)$ and $\operatorname{Margin}_{\boldsymbol{P}}(a, b)>0$, then $a \in F(\boldsymbol{P})$.

	Split Cycle	Ranked Pairs	Beat Path	Minimax	Copeland	GETCHA /GOCHA	Uncov. Set	Instant Runoff	Plurality
Immunity to Spoilers	\checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-
Immunity to Stealers	\checkmark	\checkmark *	-	-	-	\checkmark	\checkmark	-	-
Stability for Winners	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-
Expansion Consistency	\checkmark	-	-	-	-	$\checkmark /-$	\checkmark^{\dagger}	-	-

W. Holliday and EP. Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers. https://arxiv.org/abs/2004.02350, 2021.

Distinguishing Split Cycle from other definitions of defeat

Split Cycle is distinguished from other definitions of defeat by:

1. responding in a reasonable way to new candidates joining the election;
2. responding in a reasonable way to new voters joining the election.

Positive Involvement

Definition

A VCCR satisfies Positive Involvement in Defeat if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is not defeated by b in P, and P^{\prime} is obtained from P by adding one new voter who ranks a above b, then a is still not defeated by b in P^{\prime}.

Positive Involvement

Definition

A VCCR satisfies Positive Involvement in Defeat if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is not defeated by b in P, and P^{\prime} is obtained from P by adding one new voter who ranks a above b, then a is still not defeated by b in P^{\prime}.

Surprisingly, many VCCRs that are Condorcet consistent (the Condorcet winner is the unique undefeated candidate, whenever one exists) violate this axiom!

Positive Involvement

Definition

A VCCR satisfies Positive Involvement in Defeat if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is not defeated by b in P, and P^{\prime} is obtained from P by adding one new voter who ranks a above b, then a is still not defeated by b in P^{\prime}.

Surprisingly, many VCCRs that are Condorcet consistent (the Condorcet winner is the unique undefeated candidate, whenever one exists) violate this axiom! This has been called a "common flaw" of Condorcet methods in the literature.

Positive Involvement

Definition

A VCCR satisfies Positive Involvement in Defeat if for any profile \boldsymbol{P} and $a, b \in X(P)$, if a is not defeated by b in P, and P^{\prime} is obtained from P by adding one new voter who ranks a above b, then a is still not defeated by b in P^{\prime}.

Surprisingly, many VCCRs that are Condorcet consistent (the Condorcet winner is the unique undefeated candidate, whenever one exists) violate this axiom! This has been called a "common flaw" of Condorcet methods in the literature.

Proposition

Split Cycle satisfies Positive Involvement in Defeat.

Key idea: Unequivocal increase in support for a candidate should not result in that candidate going from being a winner to being a loser.

1. monotonicity: if a candidate x is a winner given a preference profile \boldsymbol{P}, and P^{\prime} is obtained from P by one voter moving x up in their ranking, then x should still be a winner given P^{\prime}. (fixed-electorate axiom)
2. positive involvement: if a candidate x is a winner given P, and P^{*} is obtained from P by adding a new voter who ranks x in first place, then x should still be a winner given P^{*}.
(variable-electorate axiom)

No Show Paradox

The term "No Show Paradox" was introduced by Fishburn and Brams for violations of what is now called negative involvement: Adding a new voter who ranks a candidate last should not result in the candidate going from being a loser to a winner.
P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine, 56(4), pp. 207-214, 1983.
D. Saari. Basic Geometry of Voting. Springer, 1995.

No Show Paradox

Moulin changed the meaning of "No Show Paradox" to refer to violations of participation: A resolute voting method satisfies participation if adding a new voter who ranks x above y cannot result in a change from x being the unique winner to y being the unique winner.
H. Moulin. Condorcet's Principle Implies the No Show Paradox. Journal of Economic Theory 45(1), pp. 53-64, 1988.

No Show Paradox

Peréz concludes that the Strong No Show Paradox is a common flaw of many Condorcet consistent voting methods, which are methods that always pick a Condorcet winner-a candidate who is majority preferred to every other candidate-if one exists.
J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences. Social Choice and Welfare 18(3), pp. 601-616, 2001.

Violating Positive Involvement: Copeland

Violating Positive Involvement: Beat Path

	Split Cycle	Ranked Pairs	Beat Path	Mini- \max	Copeland	GETCHA /GOCHA	Uncov. Set	Instant Runoff	Plurality
Monotonicity	\checkmark	-	\checkmark						
Positive Involvement	\checkmark	-	-	\checkmark	-	-	-	\checkmark	\checkmark
Negative Involvement	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark

Axiomatic characterization

Beyond finding some axioms that distinguish Split Cycle from other proposed VCCRs, we sought a complete axiomatic characterization of Split Cycle.

Axiomatic characterization

Beyond finding some axioms that distinguish Split Cycle from other proposed VCCRs, we sought a complete axiomatic characterization of Split Cycle.

In "Axioms for Defeat in Democratic Elections," we characterize Split Cycle as

- the most resolute VCCR satisfying five standard axioms plus a weakening of Arrow's axiom of IIA that we call Coherent IIA.

Five standard axioms

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity);

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity); and if x defeats y in P, and P^{\prime} is obtained from P by swapping x and y on each voter's ballot, then y defeats x in P^{\prime} (Neutrality).

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity); and if x defeats y in P, and P^{\prime} is obtained from P by swapping x and y on each voter's ballot, then y defeats x in P^{\prime} (Neutrality).

A2. Availability: for every \boldsymbol{P}, there is some undefeated candidate in \boldsymbol{P}.

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity); and if x defeats y in P, and P^{\prime} is obtained from P by swapping x and y on each voter's ballot, then y defeats x in P^{\prime} (Neutrality).

A2. Availability: for every \boldsymbol{P}, there is some undefeated candidate in \boldsymbol{P}.
A3. (Upward) Homogeneity: if x defeats y in P, then x defeats y in $2 \boldsymbol{P}$.

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity); and if x defeats y in P, and P^{\prime} is obtained from P by swapping x and y on each voter's ballot, then y defeats x in P^{\prime} (Neutrality).

A2. Availability: for every \boldsymbol{P}, there is some undefeated candidate in \boldsymbol{P}.
A3. (Upward) Homogeneity: if x defeats y in P, then x defeats y in $2 \boldsymbol{P}$.
A4. Monotonicity (for 2 candidate profiles): if x defeats y in P (a 2 candidate profile), and P^{\prime} is obtained from P by some voter i moving x above the candidate that i ranked immediately above x in P, then x defeats y in P^{\prime}.

Five standard axioms

A1. Anonymity and Neutrality: if x defeats y in P, and P^{\prime} is obtained from P by swapping the ballots assigned to two voters, then x still defeats y in P^{\prime} (Anonymity); and if x defeats y in P, and P^{\prime} is obtained from P by swapping x and y on each voter's ballot, then y defeats x in P^{\prime} (Neutrality).

A2. Availability: for every \boldsymbol{P}, there is some undefeated candidate in \boldsymbol{P}.
A3. (Upward) Homogeneity: if x defeats y in \boldsymbol{P}, then x defeats y in $2 \boldsymbol{P}$.
A4. Monotonicity (for 2 candidate profiles): if x defeats y in P (a 2 candidate profile), and P^{\prime} is obtained from P by some voter i moving x above the candidate that i ranked immediately above x in P, then x defeats y in P^{\prime}.

A5. Neutral Reversal: if \boldsymbol{P}^{\prime} is obtained from \boldsymbol{P} by adding two voters with reversed ballots, then x defeats y in P if and only if x defeats y in P^{\prime}.

Characterization with Coherent IIA

Given a class C of VCCRs and $g \in C$, we say that

$$
g \text { is the most resolute VCCR in C }
$$

if for every $f \in C$, profile P, and $x, y \in X(P)$, if x defeats y in P according to f, then x defeats y in P according to g.

Characterization with Coherent IIA

Given a class C of VCCRs and $g \in C$, we say that

$$
g \text { is the most resolute VCCR in } C
$$

if for every $f \in C$, profile P, and $x, y \in X(P)$, if x defeats y in P according to f, then x defeats y in P according to g.

Theorem (Holliday and EP 2021)
Split Cycle is the most resolute VCCR satisfying A1-A5 and Coherent IIA.

Characterization with Coherent IIA

Given a class C of VCCRs and $g \in C$, we say that

$$
g \text { is the most resolute VCCR in C }
$$

if for every $f \in C$, profile P, and $x, y \in X(P)$, if x defeats y in P according to f, then x defeats y in P according to g.

Theorem (Holliday and EP 2021)
Split Cycle is the most resolute VCCR satisfying A1-A5 and Coherent IIA.
See "Axioms for Defeat in Democratic Elections," Journal of Theoretical Politics (arXiv:2008.08451 [econ.TH]).

Definition

A VCCR F satisfies Coherent Defeat iff for any x and y that are not in any majority cycle, x defeats y iff $\operatorname{Margin}_{P}(x, y)>0$.

Theorem (Ding, Holliday and EP 2022)

Split Cycle is the only VCCR satisfying A1-A5, Coherent IIA, Coherent Defeat, and Positive Involvement in Defeat.
Y. Ding, W. Holliday and EP (2022). An Axiomatic Characterization of Split Cycle. manuscript.

Distinguishing Split Cycle from other definitions of defeat

Split Cycle is distinguished from other definitions of defeat by:

1. responding in a reasonable way to new candidates joining the election; \Rightarrow Stability for Winners
2. responding in a reasonable way to new voters joining the election.
\Rightarrow Positive Involvement

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

Any definition of defeat satisfying Anonymity and Neutrality will yield multiple undefeated candidates in some profiles.

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

Any definition of defeat satisfying Anonymity and Neutrality will yield multiple undefeated candidates in some profiles.

But some definitions of defeat are still more resolute than others...

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

Any definition of defeat satisfying Anonymity and Neutrality will yield multiple undefeated candidates in some profiles.

But some definitions of defeat are still more resolute than others...

Definition

A VCCR is asymptotically resolvable if the proportion of profiles with multiple undefeated candidates approaches 0 as the number of voters approaches ∞.

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

Any definition of defeat satisfying Anonymity and Neutrality will yield multiple undefeated candidates in some profiles.

But some definitions of defeat are still more resolute than others...

Definition

A VCCR is asymptotically resolvable if the proportion of profiles with multiple undefeated candidates approaches 0 as the number of voters approaches ∞.

Examples of asymptotically resolvable VCCRs are Plurality, Borda, and Beat Path.

A problem for this optimistic story?

Problem: what if there are multiple undefeated candidates, but we must select a single winner?

Any definition of defeat satisfying Anonymity and Neutrality will yield multiple undefeated candidates in some profiles.

But some definitions of defeat are still more resolute than others...

Definition

A VCCR is asymptotically resolvable if the proportion of profiles with multiple undefeated candidates approaches 0 as the number of voters approaches ∞.

Examples of asymptotically resolvable VCCRs are Plurality, Borda, and Beat Path.

Proposition

Split Cycle is not asymptotically resolvable.

Violations of Quasi-Resoluteness

The known methods that satisfy Binary Expansion violate Asymptotic Resolvability/Quasi-Resoluteness.

Voting Method	3	4	5	6	7	8	9	10	20	30
Split Cycle	1	1.01	1.03	1.06	1.08	1.11	1.14	1.16	1.42	1.62
Uncovered Set	1.17	1.35	1.53	1.71	1.9	2.09	2.26	2.46	4.56	6.82
Top Cycle	1.17	1.44	1.8	2.21	2.72	3.31	3.94	4.68	13.55	22.94

Figure: Estimated average sizes of winning sets for profiles with a given number of candidates (top row) in the limit as the number of voters goes to infinity, obtained using the Monte Carlo simulation technique in M. Harrison Trainor, "An Analysis of Random Elections with Large Numbers of Voters," arXiv:2009.02979.

Sizes of Winning Sets

3 Candidates, $(1000,1001)$ Voters

Sizes of Winning Sets

4 Candidates, $(1000,1001)$ Voters

Sizes of Winning Sets

5 Candidates, $(1000,1001)$ Voters

Sizes of Winning Sets

6 Candidates, $(1000,1001)$ Voters

Sizes of Winning Sets

10 Candidates, $(1000,1001)$ Voters

Sizes of Winning Sets

30 Candidates, $(1000,1001)$ Voters

The Cost of Quasi-Resoluteness

Theorem (W. Holliday, EP, and S. Zahedian)
There is no Anonymous and Neutral voting method that satisfies Binary Expansion and Quasi-Resoluteness.

Moral: Making room for tiebreaking (runoff, lottery, etc.) is necessary and sufficient to find voting methods that satisfy Binary Expansion.

Multiple claims based on stability

The basic problem is that inevitably there are profiles with multiple candidates who have the same kind of claim to winning based on stability for winners:

Multiple claims based on stability

The basic problem is that inevitably there are profiles with multiple candidates who have the same kind of claim to winning based on stability for winners:

wins

and

Multiple claims based on stability

The basic problem is that inevitably there are profiles with multiple candidates who have the same kind of claim to winning based on stability for winners:

wins

and

Multiple claims based on stability

The basic problem is that inevitably there are profiles with multiple candidates who have the same kind of claim to winning based on stability for winners:

wins

and

wins

In such a situation-and only such a situation-it is legitimate to violate stability for winners for one of red or green in the name of tiebreaking between them.

Condorcetian candidates

Definition

Given a voting method F, profile P, and $a \in X(P)$, we say that a is Condorcetian for F in P if there is some $b \in X(P)$ such that $a \in F\left(P_{-b}\right)$ and $\operatorname{Margin}_{P}(a, b)>0$.

- There are two Condorcetian candidates a and c
- Beat Path elects c
- Ranked Pairs elects a

Stability for Winners with Tiebreaking

Definition

A voting method satisfies Stability for Winners with Tiebreaking if for any profile P and $a, b \in X(P)$, if a wins in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$,

Stability for Winners with Tiebreaking

Definition

A voting method satisfies Stability for Winners with Tiebreaking if for any profile P and $a, b \in X(P)$, if a wins in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then either

Stability for Winners with Tiebreaking

Definition

A voting method satisfies Stability for Winners with Tiebreaking if for any profile P and $a, b \in X(P)$, if a wins in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then either

- a wins in P or

Stability for Winners with Tiebreaking

Definition

A voting method satisfies Stability for Winners with Tiebreaking if for any profile P and $a, b \in X(P)$, if a wins in P_{-b} and $\operatorname{Margin}_{P}(a, b)>0$, then either

- a wins in P or
- there are $a^{\prime}, b^{\prime} \in X(P)$ such that a^{\prime} wins in $P_{-b^{\prime}}, \operatorname{Margin}_{P}\left(a^{\prime}, b^{\prime}\right)>0$, and a^{\prime} wins in P^{\prime}.
That is, all winners are Condorcetian.

Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

- If only one candidate \boldsymbol{a} appears on all ballots, then \boldsymbol{a} wins.

Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

- If only one candidate a appears on all ballots, then a wins.
- Otherwise list all head-to-head matches \boldsymbol{a} vs. \boldsymbol{b}, where \boldsymbol{a} is undefeated according to Split Cycle, in order from the largest to the smallest margin of \boldsymbol{a} vs. \boldsymbol{b}.

Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

- If only one candidate a appears on all ballots, then a wins.
- Otherwise list all head-to-head matches \boldsymbol{a} vs. \boldsymbol{b}, where \boldsymbol{a} is undefeated according to Split Cycle, in order from the largest to the smallest margin of \boldsymbol{a} vs. \boldsymbol{b}.

Find the first match such that \boldsymbol{a} wins according to Stable Voting after \boldsymbol{b} is removed from all ballots; this \boldsymbol{a} is the winner for the original set of ballots.

Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

- If only one candidate a appears on all ballots, then a wins.
- Otherwise list all head-to-head matches \boldsymbol{a} vs. \boldsymbol{b}, where \boldsymbol{a} is undefeated according to Split Cycle, in order from the largest to the smallest margin of \boldsymbol{a} vs. \boldsymbol{b}.

Find the first match such that \boldsymbol{a} wins according to Stable Voting after \boldsymbol{b} is removed from all ballots; this \boldsymbol{a} is the winner for the original set of ballots.
W. Holliday and EP. Stable Voting. arXiv:2108.00542 [econ.TH].

Stable Voting winner: a
Beat Path winner: a Ranked Pairs winner: a

Stable Voting winner: a
Beat Path winner: a Ranked Pairs winner: a

Stable Voting winner: a Beat Path winner: b
Ranked Pairs winner: c

Stable Voting winner: a Beat Path winner: a Ranked Pairs winner: a

Stable Voting winner: a
Beat Path winner: b
Ranked Pairs winner: c

On the right, SV chooses the winner by going down the list of matches:

Stable Voting winner: a Beat Path winner: a Ranked Pairs winner: a

Stable Voting winner: a
Beat Path winner: b
Ranked Pairs winner: c

On the right, SV chooses the winner by going down the list of matches:

- a vs. e: margin of 20 .

Stable Voting winner: a Beat Path winner: a Ranked Pairs winner: a

Stable Voting winner: a
Beat Path winner: b
Ranked Pairs winner: c

On the right, SV chooses the winner by going down the list of matches:

- a vs. e: margin of 20.
\boldsymbol{a} wins after removing \boldsymbol{e}. Hence \boldsymbol{a} is elected.

Stable Voting winner: a

Stable Voting winner: a

Stable Voting winner: a

Stable Voting winner: a

On the right, SV chooses the winner by going down the list of matches:

Stable Voting winner: a

Stable Voting winner: a

On the right, SV chooses the winner by going down the list of matches:

- c vs. e: margin of 20 .

Stable Voting winner: a

Stable Voting winner: a

On the right, SV chooses the winner by going down the list of matches:

- c vs. e: margin of 20.
\boldsymbol{c} loses after removing \boldsymbol{e}. Continue to next match:

Stable Voting winner: a

Stable Voting winner: a

On the right, SV chooses the winner by going down the list of matches:

- c vs. e: margin of 20.
c loses after removing e. Continue to next match:
- a vs. e: margin of 18.

Stable Voting winner: a

Stable Voting winner: a

On the right, SV chooses the winner by going down the list of matches:

- c vs. e: margin of 20.
c loses after removing e. Continue to next match:
- a vs. e: margin of 18.
\boldsymbol{a} wins after removing \boldsymbol{e}. Hence \boldsymbol{a} is elected.

Stable Voting

Good news: Stable Voting satisfies Stability for Winners with Tiebreaking and Quasi-resoluteness.

Stable Voting

Good news: Stable Voting satisfies Stability for Winners with Tiebreaking and Quasi-resoluteness.

In fact, SV has a remarkable ability to avoid ties even in elections with small numbers of voters that can produce tied margins.

- Stable Voting
- Plurality

Instant Runoff
Beat Path
$(100,101)$ voters

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can be computationally expensive above 20 candidates.

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can be computationally expensive above 20 candidates.
2. There are some violations-in an extremely small fraction of profiles-of voting criteria satisfied by some other voting methods, such as monotonicity.

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can be computationally expensive above 20 candidates.
2. There are some violations-in an extremely small fraction of profiles-of voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1 , we can handle larger profiles that are uniquely weighted with up to 20 candidates in the "Smith set." This covers many voting contexts.

Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can be computationally expensive above 20 candidates.
2. There are some violations-in an extremely small fraction of profiles-of voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1 , we can handle larger profiles that are uniquely weighted with up to 20 candidates in the "Smith set." This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

Monotonicity

Demo

stablevoting.org

