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1. INTRODUCTION 

Lotteries in social choice date at least from the first group which agreed 
to draw lots or flip a coin to settle an issue of concern to the group. They 
are by no means a modern invention: The lot puts an end to disputes and 
decides between powerful contenders [Proverbs 18: 18. RSV]. 

More recently, thanks largely to the expected-utility theory of von 
Neumann and Morgenstern [28] after the fashion of Bernoulli [3], several 
theoretical excursions connecting chance and social choice have been 
made. One approach, pursued by Hildreth [ 171 and Harsanyi [ 141 and 
further examined by Vickrey [27], Diamond [8], Pattanaik [22] and 
Sen [25], among others, involves the use of Bernoullian utilities to deter- 
mine a social choice on the basis of maximum sums of individual utilities. 
Adopting a somewhat different emphasis, Coleman [6] and Riker and 
Ordeshook [23] look at voter behavior and strategy on the basis of the 
voters’ expected utilities. 

However, most of this work does not presume that a lottery or chance 
device might actually be used in making the social choice. A clear excep- 
tion to this is Zeckhauser’s study [29, p. 691, which explores the relation- 
ship between simple majorities and lotteries and “demonstrates that 
unattractive social choices may result whenever lotteries are not allowed 
to compete. However, it also shows that whenever lotteries need to be 
considered as serious contenders, intransitivities in social choice will always 
arise. To avoid such difficulties, there must be a certain alternative that 
defeats not only all certain alternatives, but all lotteries as well”. 

To illustrate this, suppose that a three-member committee must select 
one of four certain alternatives from {a, b, c, d} and that the members 
feel as follows: 
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1. a is terrific; d is all right and is slightly better than b and c, which 
are satisfactory; 

2. b is terrific; d is all right and is slightly better than a and c, 
which are satisfactory; 

3. c is terrific; d is all right and is slightly better than a and b, 
which are satisfactory. 

Thus d has a simple majority over each of a, b and c and would therefore 
be the choice under Condorcet’s criterion [7; 4, p. 571 when lotteries do 
not compete. However, it so happens that each member prefers an even- 
chance lottery on {a, b, c} to d; each would rather gamble for his favorite 
and settle the issue in that way. Hence the Condorcet alternative is 
Pareto-dominated by a lottery. This lottery is not itself dominated by 
another lottery although there are other lotteries (e.g., an even-chance 
lottery on {a, b}) that will be preferred to it by a majority of the committee. 
Indeed, no lottery will have a simple majority over every other lottery, 
provided that certain assumptions about individual preferences hold true. 
This may or may not be cause for alarm. My present feelings, which are 
related to the discussions in [I 1, 121, are that it is not as serious a matter 
as some would take it to be. 

The present paper, motivated by the preceding example and by the 
work of Hausner [15], Aumann [l, 21, Kannai [20] and Fishburn [9, 131 
in utility theory, considers lotteries in social choice under assumptions 
about individuals’ preferences that are considerably weaker than the 
assumptions [9, 16, 21, 281 which imply the existence of a Bernoullian or 
von Neumann-Morgenstern utility function for each individual. We shall 
focus on two main aspects of social choice in this setting. The first is the 
existence of admissible or undominated lotteries. The second is the con- 
nection between simple majorities and lotteries, which supplements results 
of Zeckhauser [29] and Shepsle [26]. 

2. SUMMARY OF RESULTS 

To provide an indication of the technical developments in succeeding 
sections I shall summarize the main results of the paper. 

Each individual is presumed to have a preference relation on the set 
of lotteries defined from a set of basic alternatives. The key notion of the 
paper is a form of Pareto dominance. We shall say that lottery x dominates 
lottery y if and only if each individual either prefers x to y or is “strongly 
indifferent” between x and y (for all z, x is indifferent to z if and only if 
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y is indifferent to z), and at least one individual prefers x to y. An admis- 
sible (Pareto optimal) lottery is a lottery that is not dominated by another 
lottery. 

The weakest assumption that is used for an individual’s preference 
relation on the lottery set says that this relation is transitive and irreflexive 
and that preference [strong indifference] between lotteries x and y 
implies preference [strong indifference] between the compound lotteries 
hx + (1 - h)z and ~JJ + (1 - h)z, 0 < h < 1. Theorem 1 shows that if 
this holds for each individual and if the set of basic alternatives is Unite 
then the set of admissible lotteries contains a basic alternative and is 
describable in a fairly simple manner. Moreover, if the set of inadmissible 
lotteries is not empty then it is convex. Using the same individual assump- 
tion, we show later that the only type of lottery that can have a strict 
simple majority over every other lottery is a lottery that assigns probabil- 
ity one to a basic alternative (Theorem 3). In addition, if individual prefer- 
ences on the basic alternatives are single peaked with a one-point peak 
for each individual, and if one basic alternative has a strict simple majority 
over every other basic alternative, then it is admissible in the lottery set 
(Theorem 4). This is in sharp contrast to the non-single-peaked example 
in the introduction where the Condor& basic alternative d is inadmis- 
sible. 

Several other results are derived when the individual preference assump- 
tions of the preceding paragraph are supplemented with the condition 
that preference [strong indifference] between compound lotteries 
hx + (1 - X)z and hv + (1 - h)z, 0 < h < 1, implies preference [strong 
indifference] between x and y. When these assumptions hold for each 
individual and the basic set is finite, we obtain the von Neumann-Morgen- 
stern solution property which says that each inadmissible lottery is domin- 
ated by some admissible lottery (Theorem 2). An example preceding 
Theorem 2 shows that this can be false under the preference assumptions 
used for Theorem 1, where an inadmissible lottery might be dominated 
only by other inadmissible lotteries. The final theorem of the paper shows 
that if individual preferences satisfy slightly stronger conditions, including 
transitive indifference, if preferences on the basic alternatives are single 
peaked (with no restriction on the number of peak alternatives for each 
individual), and if one basic alternative has a strict simple majority 
over every other basic alternative, then it is admissible in the lottery 
set. 

The next section discusses the individual preference assumptions. 
Admissibility is examined in Section 4, the notion of a convex choice set 
is mentioned briefly in Section 5, and simple majority is analyzed in 
Section 6. 
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3. INDIVIDUAL ASSUMPTIONS 

Throughout, B denotes the set (a, b, c,...} of basic feasible alternatives 
in the situation at hand, and X denotes the set {x, y, z,...) of all simple 
probability distributions on B. Each x E X is a function from B 
into [0, l] with x(b) 3 0 for all b E B, C {x(b): b E B} = 1, and 
C {x(b): b E A} = 1 for somefinite subset A C B. 

The elements in X are the obvious abstract forms of the lotteries that 
might be used to select a basic alternative. No notational distinction will 
be made between a basic alternative and the distribution that assigns 
probability 1 to it. That is, b E B is a basic alternative, and b E X is the 
probability distribution that assigns probability 1 to b E B. 

If x, y E X and if h is a real number then Xx + (1 - h) y is the function 
from B into Re (the real numbers) for which (hx + (1 - h)y)(b) = 
Ax(b) + (1 - A) y(b) for all b E B. If 0 < h < 1 then hx + (1 - X) y E X. 
More general linear combinations are formed in the obvious way: If 
X~ E X and h, E Re for k = l,..., K, and if C X, = 1, then Cle &xl, is the 
function from B into Re for which (Ck hkxk)(b) = C X,xk(b) for all 
bEB.IfO<Xk<lforallkthen&X,x,EX. 

A binary relation > on X is a strict partial order if it is irreflexive (not 
x > x) and transitive (x > y & y > z =+ x > z). We will generally assume 
that each individual’s preference relation is a strict partial order: the 
preference relation for individual i (i = l,..., n) will be written as >i . 

Several other relations are defined from > as follows: 

x-y~not(x>y)&not(y>x) 

x>yax>y or x-y 
x w y 0 (x ‘V z 0 y - z, for all z E X) 

xkyox>y or x a? y. 

In usual terminology, - denotes indifference, and > is a preference-or- 
indifference relation. When > is a strict partial order, - may be intransi- 
tive, but w is transitive and is therefore an equivalence. The relation w 
might be thought of as a “strong indifference” relation. We shall call > 
a weak order (in the strict sense) if and only if it is a strict partial order 
and - is transitive: in this case, > is transitive and complete (x > y or 
y>x, for all x,yEX) and - = m, so that indifference is tantamount 
to strong indifference. Proofs of these things are given in Fishburn [9, 
Chap. 21. 

The typical axioms for the lottery context assume that > is a weak 
order in addition to other properties specified below in Definition 3. 
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Throughout most of this paper we shall use only the properties in the 
following definition. 

DEFINITION 1. A binary relation > on X satisfies the weak individual 
axiom if and only if, for all x, y, z E X and all X E (0, l), 

1. > on X is a strict partial order, 
2. x>ytiL~+(l-A)z>hy+(l -A)z,and 

x R3 y * xx + (1 - X)z % hy + (1 - h)z. 

Part 2 of this definition states that when two distributions are diluted 
by a third in the same way, then > or = holds for the dilutions when 
> or = holds initially. From a psychological viewpoint, the iu part seems 
unexceptionable. But if h is sufficiently near to zero then the two combina- 
tions in the > part may be so overwhelmed by the dilution term (1 - h)z 
that they will be virtually indistinguishable and hence indifference might 
hold between them even though x > y. The normative argument in sup- 
port of x > y 2 Xx + (1 - h)z > hy + (1 - X)z follows the usual two- 
stage interpretation of the combinations, and need not be repeated here. 

One of the results that we wish to obtain (Theorem 2) does not follow 
from the weak individual axiom. It requires the following stronger set of 
assumptions. 

DEFINITION 2. A binary relation > on X satisfies the moderate 
individual axiom if and only if, for all x, y, z E X and x E (0, l), 

1. > on X is a strict partial order, 
2. x>yt>xX+(l -h)z>Xy+(l -A)z,and 

x w y 0 Ax + (1 - h)z w Ay + (1 - h)z. 

This adds two antidilution statements to the weak individual axiom, 
namely hx + (1 - X)z > hy + (1 - x)z 3 x > y, and hx + (1 - h)z w 
xy + (1 - h)z =S X % y. The first of these simply says that if one distri- 
bution is preferred to another and if both have a “common” part, namely, 
(1 - h)z, then the preference must be a result of their “different” parts. 
The second seems more vulnerable than its converse, since a h near 0 
might cause Xx + (1 - X)z w Xy + (1 - X)z because of dilution even 
though x M y is false. 

Finally, for comparison and later illustrations, we mention a typical set 
of assumptions for von Neumann-Morgenstern expected utility. 

DEFINITION 3. A binary relation > on X satisfies the strong individual 
axiom if and only if, for all x, y, z E X and all h E (0, l), 
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1. > on X is a weak order, 
2. x>y*h++1 -h)z>hy+(l -h)z, 
3. x>y&y>z*~+(l -a)z>y and y>px+(l -fl)z 

for some 01, j? E (0, 1). 

Although it may appear that several aspects of the weak and moderate 
individual axioms are missing from Definition 3, the addition of the 
so-called Archimedean axiom (part 3) allows the derivation of the weak 
and moderate axioms from the strong axiom. This will be clear from 
Lemma 3 given below, proofs of which are given by Jensen [18] and 
Fishbum [9, Chap. 81. Proofs of Lemmas 1 and 2 are given in the Appendix 
of this paper. 

LEMMA 1. Suppose that > on X satisfies the weak individual axiom; 
thatxk,yk~X,xk~ykandhk>Ofork= l,...,K;andthatCf==,X,= 1. 
Then 

(1) xk = yk for aIi k * CL1 hkxk = c”,, hkyk , 

(2) xk > yk for SOme k for which h, > 0 * c”,, X&k > c”,, h, y, . 

For the next lemma, L = (Ax + (1 - h) y: X E Re} with x # y can be 
viewed as a line in a finite-dimensional Euclidean space since x(b) and 
y(b) are nonzero for only a finite number of b E B. If x’, y’ E L then the 
sense from x’ to y’ is the same as the sense from x to y if and only if 
01 > fi when x’ = 01x + (1 - CI) y and y’ = ,6x + (1 - p) y. As noted 
later, the conclusion of Lemma 2 does not hold under the weak individual 
axiom. 

LEMMA 2. Suppose that > on X satisfies the moderate individual axiom, 
and that x, y E X and x # y. Let L = {Ax + (1 - h) y: X E Re), and let 
L’ = L n X. If x > y then x’ > y’ whenever x’, y’ E L’ and the sense 
from x’ to y’ is the same as the sense from x to y; tf x w y then x’ M y’ 
for all xl, y’ E L’. 

An appropriate form of the usual expected-utility theorem is given in 
the next lemma. 

LEMMA 3. Suppose that > on X satisfies the strong individual axiom. 
Then there exists u: B -+ Re such that, for all x, y E X, 

(1) 
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Moreover, v: B -+ Re satis$es this in place of u if and only if there are 
r, s E Re with r > 0 such that v(b) = ru(b) + s for all b E B. 

In contrast to this, the moderate individual axiom does not imply a 
unidimensional expected-utility result [with 3 replacing o in (l)] since it 
has no Archimedean condition. For further discussion on this point see 
Hausner [15], Chipman [5], Aumann [l, 21, Kannai [20] and Fishburn 
[13; 9, Chap. 91. 

4. ADMLWBLE DISTRIBUTIONS 

We presume that there are n voters or individuals in the situation at 
hand and that >* is the preference order for individual i. The purpose of 
this section is to investigate the following dominance notion: 

x *> yox &y for i = l,..., n, and X>~Y forsomei. 

Recall that x 2; y if and only if x >i y or x mi y. Since it seems reason- 
able that the group would not want to implement a dominated distribu- 
tion, we shall be concerned with the existence of undominated or admis- 
sible distributions. 

DEFINITION 4. The distribution y E X is admissible if and only if 
x*>yfornoxEX. 

Other definitions of admissibility may suggest themselves. One of these 
takes y as “admissible” if there is no x for which x >i y for all i. This is 
weaker than the given definition and would be handled by methods like 
those used below. A stronger definition takes y as “admissible” if (x >i y 
for all i, and x >i y for some i) for no x. This seems too strong for the 
strict partial orders context since its associated “dominance” relation can 
be cyclic. 

Simple examples show that, even when the strong individual axiom 
holds for each >i , there may be no admissible distribution when B is 
infinite. Therefore the rest of this section is mainly concerned with 
finite B. 

In stating our main theorem for admissibility we shall use some subsets 
of X, two of which are 

X,, = {x: x E X and x is not admissible}, 
X1 = {x: x E X and x is admissible}. 

Clearly, X = X,, u X, and X,, n X1 = E?. Under the weak individual 
axiom, these spaces of admissible and inadmissible distributions will be 
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composed of unions of subsets of X which are delved in the following 
way. Let C be a nonempty subset of B. Then 

X(C) = {x: x E X and Cc x(b) = 11, 
X[C] = {x: x E X(C) and x(b) > 0 for all b E C}. 

For a given C c B, both X(C) and X[C] are convex subsets of X: X(C) 
is the space of all distributions that assign probability 1 to C, and X[C] 
is the subset of X(C) on which x(b) is positive for all b E C. It is natural 
to refer to X[C] as the interior (or relative interior) of X(C) when C is 
finite. The boundary (or relative boundary) of X(C) is then X(C) - X[C]. 
If C is a unit subset of B, say C = {a}, then X(C) = X[C] = {a} and the 
boundary of {a} is empty. 

A concrete example will help to illustrate these sets. Take B = {a, b, c}, 
n = 2, and suppose that each of >1 and >z satisfies the strong individual 
axiom. We consider two situations, whose utility functions, which satisfy 
(1) of Lemma 3, are shown in the following matrices. In situation I, 

a 
b 
c 

b is dominated by $a $ 

% u2 4 u2 

3 0 3 0 
1 1 it2 2 
03 co3 

I II 

kc, but b is not dominated in situation II. 
To illustrate things graphically, we represent x E X by the vector 

(x(a), x(b), x(c)) E Re3, so that X can be viewed as the planar simplex 
shown at the top of Fig. 1. The admissible distributions in X1 for each of 

I II 

FIG. 1 Admissible distributions with three basic alternatives. 
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situations I and II are enclosed by the dashed lines. For situation I, 
X1 = X({a, c}): that is, x E X is admissible if and only if x(u) + x(c) = 1, 
or x(b) = 0, as is easily shown from the ui values. In addition 
x0 = x - x, = X[{a, b, c}] u X[{a, b}] u X[{b, c}] u X[{b}]. 

In general, a subset Y of X is convex if and only if x, y E Y and 
h E 10, l] Z- Ax + (1 - A) y E Y. Both X0 and X, are convex in sit- 
uation I. However, only X0 is convex in situation II where X0 = 
JXa, b, 41 u x[{a, 41 and x1 = Wb, 6) u .Wb, 4% 

We now state our main theorem for admissibility. 

THEOREM 1. Suppose that B is nonempty andfinite and that each >i 
satisfies the weak individual axiom. Then there is a nonempty set 9t1 of 
nonempty subsets of B such that 

(1) C,C’E9YIandC#C’-not(CCC’)undnot(C’CC), 
(2) x, = U{X(C): c E 9&>. 

Moreover, tf X0 # (? then there is a nonempty set L%,, of nonempty subsets 
of B such that 

(3) CE9?0andCCC’CB*C’ESY0, 
(4) Co E i& and C, E aI S- not (C, _C C,), 
(5) X0 is convex, and X0 = u(X[Cl: C E .G@,,>. 

The following aspects of the theorem should be noted. First, (2) and the 
structure of g1 say that X1 # 0, and b E X, for some b E B. Since 
X(C) C X(C’) if C C C’, (1) restricts &?1 to the minimal set of subsets of the 
form X(C) whose union equals X, . We know already that X, may not be 
convex. It wiil be shown later that there may be C, C’ E a1 for which 
CnC’= 0. 

Second, if X,, is not empty then it is convex and is equal to the union of 
the interiors of the X(C) for C E go. If C # C’ then X[C] n X[C’] = 0. 
Parts (3) and (5) say that if x is inadmissible and if y(b) > 0 for every b 
for which x(b) > 0 then y is inadmissible. Part (4) simply reflects the fact 
thatX,nX, = ia. 

Proof of Theorem 1. The hypotheses of the theorem are assumed to 
hold. We begin by noting that b E X1 for some b E B. This is stated in 
Lemma 6 below, whose proof will be based on Lemmas 4 and 5. Lemma 4, 
which in the theory of Markov processes guarantees the existence of a 
stationary distribution p in the finite context, will not be proved here: 
one proof is given by Rosenblatt [24, pp. 44-521; other proofs can be 
based on a theorem of the alternative [9] or on Kakutani’s fixed-point 
theorem [19]. 
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LEMMA 4. Suppose that x1 ,..., x, are probability distributions on 
{L..., m}. Then there is a probability distribution p on {l,..., m} such that 

P(k) = F p(i)x,(k) for k = l,..., m. 
j=l 

LEMMA 5. Suppose that xk , yk E X and xk . > y, and A, 3 0 for 
k = l,..., m, with CrXI A, = 1. Then CL, Afix, * > CL, A, ylc . 

Proof. Since xk *> y, for all k, xk & yr for all i and k, and therefore 
C &xk zi C & yk for all i by Lemma 1. For some h, > 0 there is an i 
such that xa >i yk . Hence C hkxk >i C h,y, for this i, by Lemma l(2). 
Hence C Akxk * > C A, yk by the definition of * >. 

LEMMA 6. There exists a b E B such that b is admissible. 

Proof. Let B = {b, ,..., b,}. Contrary to Lemma 6, suppose that every 
bjisdominated,withxjEXandxj.>biforj=1,...,m.LetpEXbeas 
guaranteed by Lemma 4: 

A&J = f P(bj) XAW for k = I,..., m. 
j=l 

Then p = 2 p(bJ bj = C p(bj) xi , SO that p . > p by Lemma 5. But this 
contradicts the irreflexivity of some >i , and hence it is false that every 
bj is dominated. 

If X,, = la then X1 = X and the theorem holds with g1 = {B}. We now 
consider the structure of X0 when it is not empty. 

LEMMA 7. XE&andhE(O,1)=>hx+(l -X)J’E&. 

Proof, Suppose that z . > x and 0 < h < 1. Then, by the proof method 
for Lemma 6, Xz + (1 - X)y *> kx + (1 - x)y. 

Suppose that X0 # 0. Then Lemma 7 says that X,, is convex, and that 

x E x, and x,Y~-wl*Y~&, 

since any y # x that is also in the interior of X(C) equals a nontrivial 
combination of x and a point on the boundary of X(C). Moreover, if 
x E X,, , x E X[C] and C C C’, then some y E X[C’] must be in X,, , and 
hence every y E X[C’] is in X0 . This establishes (3) and (5) of the theorem. 
Parts (I), (2) and (4) then follow readily from the fact that X, = X - X0 . 
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Dominance by Admissible Distributions 

Under the weak individual axiom, it can be false that each y E X0 is 
dominated by some x E X1 . For example, let B = {a, b} and let x E [0, l] 
represent the distribution that has probability x for a and probability 
1 - x for b. Taking n = 1, let > = >1 be as follows: x > y > 1 when- 
ever 0 < x < y < 1, and 0 N x for all x E (0, 11. This is easily seen to 
satisfy the weak individual axiom but not the conclusion of Lemma 2, and 
since 0 is the only undominated point, X, = {b}. But b - > x for no 
x E (0, 11, and no point in X,, is dominated by a point in Xi . 

This anomaly is removed when the moderate individual axiom is 
used. 

THEOREM 2. Suppose that B is nonempty and finite, and that each >* 
satis$es the moderate individual axiom. Then y E X0 * x - > y for some 
XEXl. 

Proof. Let the hypotheses hold and, contrary to the conclusion, sup- 
pose that y1 E X,, and no admissible distribution dominates y, . Beginning 
with yl, we construct a sequence y1 , ya , y3 ,... Notationally, we shall let 
C, C B be such that yK E X[C,]. 

Given y1 , determine y, as follows. If there is an x E X[C,] such that 
x . > y1 , take yz as the point on the line {h + (1 - X) y1 : h E Re} 
that is farthest from y1 on the x side of y1 and is still in X. Then, by 
Lemma 2, yz *> y1 and, by construction with y, E X[C,], C, C C, . [That 
is, yz is on the boundary of X(C,) and hence will be in the interior of 
X(C,) for some C, C C, .] On the other hand, if x * > y1 for no 
x E X[C,], let y2 be any point in X,, that dominates y, . Since X,, is convex, 
C, will not be a subset of C, in this case. 

Given y2 , the same procedure (with y2 replacing y,) is used to obtain 
y, . > y2 . The construction proceeds in the same way for each ylc . Since 
* > is transitive (why ?), yk * > yj whenever k > j. Moreover, since * > is 
irreflexive, yk # yj whenever k # j. 

Suppose we are at yj . Since B is finite, and since C,,, C Ck if x * > yk 
for some x E X[C,], after a finite number of steps we must reach a k > j 
such that x . > yk for no x E X[C,]. And since ym *> yk for m > k, this 
implies that ym $ x[Ck] for a/Z m > k. It follows that there is an infinite 
sequence kl , kz ,... with kl < k, < ... such that, for each r E {I, 2 ,... }, 
ym 4 x[&] for all m > k, . But this implies that no two Ck, are identical 
and hence that their number is infinite. Since B has only a finite number 
of subsets, we have a contradiction. Hence y, E X0 * x - > y1 for some 
XEXl. 
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A Conjecture and Counterexample 

As shown on Fig. 1, X1 need not be convex. However, the first part of 
Theorem 1 states that X1 is the union of several maximal convex sets, 
namely, the X(C) for C E 9$ . It might therefore be conjectured that each 
two subsets of B that are in g1 contain a common basic alternative, or 
C n C’ # % when C, C’ E B1 . 

Simple examples show that this can be false when only the weak indi- 
vidual axiom is used and B has more than one element. Moreover, as we 
shall now show, it can be false even when the strong individual axiom is 
used, provided that B has more than three elements. 

Let B = {a, b, c, d}, n = 2 and suppose the following ui : B + Re 
satisfy (1) of Lemma 3 for i = 1, 2. Then, as you can easily verify, each 
ofa,b,candd 

Ul u2 

5 0 
r:o 5 

3 3 
L 2 

isinX,.Moreover,c.>&a+~b,d.>+a++candc*>&b+~d.R~ 
Theorem 1, this yields X, C X({a, d}) u X({c, d}) U X({b, c-1). In fact, XI 

d 
FIG. 2 Admissible distributions with four basic alternatives. 
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can be shown to equal this union, so that B1 = ({a, d}, {c, d), {b, c}} with 
{a,d)n{b,c}= 0. 

This result is shown on Fig. 2. Since X is effectively 3-dimensional, it 
can be viewed as a regular tetrahedron with c lying above the plane that 
contains a, b and d. As before, the points in Xi , along three edges of the 
tetrahedron, are enclosed by dashed lines. 

5. THE CHOICE SET 

Within the context of this paper, the usual notion of a choice set applies. 
This is to be a nonempty subset of X whose elements are, roughly speaking, 
socially satisfactory. If X* is the choice set from X then some x E X* 
will be implemented. 

As suggested in the preceding section, one reasonable requirement for 
the choice set X* is that X* C X, , provided that X, # o. That is, each 
element in the choice set should be admissible. 

Another condition for X* is that it be convex. Although this does not 
seem as compelling as admissibility, it has some appeal. Suppose for 
example that x, y G X* and x # y. Then the distributions x and y both 
appear “fair” for implementation despite the fact that some individuals 
may prefer x to y while others prefer y to x. Hence hx + (1 - h)y with 
0 < h < 1 might also seem “fair”, since when viewed as a two-stage 
lottery it results in either x or y at the first stage according to the probabil- 
ities A and 1 - X. 

If, under the hypotheses of Theorem 1, both admissibility and convexity 
are imposed on X* then X* will have to be a proper subset of X1 if X1 
is not convex. 

6. SIMPLE MAJORITIES 

Naturally, conditions other than admissibility and convexity will 
usually play a role in determining the choice set X*. For example, let 
xPy mean that more individuals prefer x to y than prefer y to x. Then if 
there is an x E X such that xPy for all y # x in X, it might seem reasonable 
to take X* = {x}. Or if there is a b E B such that bPu for all a # b in B, 
and if b is admissible, then it might be suggested as the social choice. 

We shall conclude this study with three theorems that involve the 
strict simple majority relation P in the lottery context. The weak indi- 
vidual axiom is used in the first two, and a somewhat stronger axiom is 
used in the third. The first theorem shows that if xPy for all y # x in X, 
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then x amounts to a basic alternative. The latter two are concerned with 
single-peaked preferences. It is not assumed that B is finite. 

THEOREM 3. Suppose that each >( on X satisjies the weak individual 
axiom and that x E X is such that xPy for every y E X - {x}. Then x = b 
for some b E B. 

Proof. Let the hypotheses hold, and take C = {b: b E B and x(b) > 0} 
so that C is finite with x E X[C]. We are to show that C is a unit subset 
of B. 

To the contrary, suppose that C has more than one element. Because 
x is in the interior of X(C), we can choose y E X[C] sufficiently close to 
but different than x so that there are t, v E X[C] such that 

x = At + (1 - h)y 
y = xv + (1 - A)x 

with X E (0, 1) and small enough that the results to be described will hold. 
h = 0.2 is a satisfactory value. This is shown on Fig. 3, where 
rl = At + (1 - X)X. An appropriate 01 E (0, 1) will give (ark + (1 - CL)V = x, 
and for this cx we take r2 = olx + (1 - 0r)v. As shown in the figure, r, 
is between x and y. Then r3 = ar2 + (1 - OT)V, with rS to the right of y. 

.2tt .8x 
1 .:1+ .8y 

t ‘1 x ‘2 y ‘3 v 

FIG. 3 Construction for proof of Theorem 3. 

Suppose that x >i y. Then, by the weak individual axiom, rl = 
At + (1 - X)x >i At + (1 - X)y = x, so that rl >i x. Conversely, sup- 
pose that rl >i x. Then with the combinations described above, the weak 
individual axiom implies x >i r, , then r2 >: r3, so that x >i r3 by 
transitivity. Since y is a convex combination of x and r3 , the weak indi- 
vidual axiom gives x >i y. Hence x >i y o rl >i x. Reversing >i in 
each step here gives y >i x o x >t rl . Therefore xPy o r,Px. But this 
contradicts the hypothesis that xPy for all y E X - {x}. Therefore C has 
only one element. 

Single-Peaked Preferences 

We shall use the following generalized definition for single-peaked 
preferences on the basic alternatives in B. A binary relation < on B is 
a linear order if and only if it is asymmetric, transitive and weakly con- 
nected (a # b =z- a -C b or b < a). 
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DEFINITION 5. The individual preference orders >1 ,... , >,, on X are 
single-peaked for B if and only if there is a linear order < on B such that, 
for each i E {l,..., n}, there are disjoint subsets Ai , Bi and Ci (one or two 
of which can be empty) of B such that 

(1) Ai u B, U Ci = B 
(2) (u, b) E Ai X Bi U Bi X Ci U Ai X Ci * u < b 

(3a) a,bEAianda<b*b>ia 
(3b) a, b E Bi 3 a -i b 
(3~) a, b E Ci and b < a * b >$ a 
(4) UybE(AiUC<) X Bi*b>ia 
(5) a<b<candaNibandbNicjaNic. 

This definition is designed for the context where each >i is a strict 
partial order, with B finite or infinite. Using proof methods like those in 
Fishburn [lo] it is not hard to show that when individual preferences are 
single-peaked for B and each >i is a strict partial order then P is transi- 
tive on B. Moreover, if II is odd and the restriction of each >i on B 
(i.e., on the distributions with probability 1 for a basic alternative) is 
linear, then the restriction of P on B is linear. In this case some basic 
alternative must have a strict simple majority over every other basic 
alternative, provided that B is finite. 

Our final theorems are concerned with the admissibility of a basic 
alternative that has a strict simple majority over every other basic alter- 
native. As seen by the {a, b, c, d} example of Section 1, where dPa, dPb 
and dPc, such an alternative may be inadmissible. However, it is easily 
checked that individual preferences are not single-peaked for {a, b, c, d) 
in that example. This contrasts with the following results. 

THEOREM 4. Suppose that each >i on X satisfie the weak individual 
axiom and that individual preferences are single-peaked for B under the 
linear order < on B. Suppose further that for each i there is an ai E B such 
that ai >i b for all b E B - (ai>. Then, if there is a b E B such that bPa 
for all a # b in B, b is admissible. 

THEOREM 5. Suppose that each >i on X is a weak order that satisfies 
the moderate individual axiom and that individual preferences are single- 
peaked for B under the linear order < on B. Then, if there is a b E B such 
that bPa for all a # b in B, b is admissible. 

Proof of Theorem 4. Let the hypotheses hold and assume that bPa 
for all a E B - {b}. Suppose first that b = a, for some i so that b >i a for 
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all aEB-{6}. Let XEX with x#b. If x(b)==0 then, by Lemma 1, 
C{x(u)b: a E B} >i C{x(a)a: a E B}, or b >i x. If 0 < x(b) < 1 then 
x = x(b)b + [I - x(b)] x’ with x’(b) = 0. As just shown, b >$ x’. There- 
fore b = [I - x(b)]b + x(b)b >i [l - x(b)] x’ + x(b)b, or b >$ x. Hence 
b >c x for all x # b, so that b cannot be dominated. 

Suppose next that b = a, for no i. Let a, c E (ur ,..., a,> satisfy 
[a < b and a < ui < b for no ai] and [b < c and b < ai < c for no ai]. 
Since bPud for all i, both a and c exist. Let m and n - m be, respectively, 
the number of i for which Ui < b and for which b < ui. Then 
bPu > m > n - m, and bPc => n - m > m, a contradiction. Hence the 
case supposed in this paragraph cannot arise. 

Proof of Theorem 5. Let the hypotheses hold and assume that bPu 
for all a E B - {b}. We shall let 

Z = (i: b >i a for all a E B - {b}}, 

Bi = (a: a E B and a -e’ b} for each i E I. 

Suppose first that Z = % . Then either b is an extreme point of the linearly 
ordered set (B, <), in which case a >i b for all a and i, thus contradicting 
bPa, or else a < b < c for some a, c E B. In this case, with Z = %, let 
m individuals have points < b that are preferred to b, and let n - m 
individuals have points > b that are preferred to b. Then it is easily seen 
that there exist a, c E B such that a < b < c with a >i b >i c for m indi- 
viduals and c >i b >< a for n - m. But this contradicts (bPu and bPc). 
Therefore Z = % must be false. 

Given Z # % , suppose that, contrary to the theorem, x . > b for some 
x E X. Since this requires x >i b for each i, it follows that x(B,) = 
x(x(u): a E Bi} = 1 for each i E I. Therefore, with C = fl{Bi : i E Z}, 
x(C) = 1. Without loss in generality we can take x(b) = 0. Then suppose 
first that c < b for all c E C, or else b < c for all c E C. To have bPc for 
each c E C in the latter case, there must be an i such that b E Bi U Ci 
(see Definition 5) with C c Ci . But then b >i c for all c E C and hence 
b >i x by x(C) = 1 and Lemma 1, thus contradicting x . > b. Suppose 
next that a < b < c for some a, c E C. Then there exist such a and c for 
which a -i b -i c for all iEZ, and u>ib>ic or c>ib>ia for each 
i $ I. But this contradicts (bPc and bPu), and hence it is false that x . > b 
for some x E X. 

APPENDIX 

Proof of Lemma 1. Suppose first that xlc w y, for k = I,..., K. We 
use induction on K. For K = 2, part 2 of the weak individual axiom (see 
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Definition 1) gives h,x, + X,x, M hl yl + &x, m X, y1 + h, y, . Since % 
is transitive when > is a strict partial order, X,x, + h,x, w h, y, + hzy2 . 
(If h, = 1 or X2 = 1, this conclusion is immediate.) Now suppose that (1) 
of Lemma 1 is true for K = 2,..., m - 1. For the case of K = m take 
0 < h, < 1, by resubscripting if necessary. Then by the induction hypoth- 
esis, 

m-1 VIZ-1 

(1 - knF1 c x,x, m (1 - hn-1 c AkYk 7 
k=l k=l 

m-1 

(1 - A,) (1 - A,)-' 1 h,x, 
k=l 1 

WI-1 

+ k&l w (1 - L) (I - An-l c AkYk 
k=l 1 

the latter Of which iS the same as ~l”&xl, % Elm&y, . 
For part (2) of Lemma 1, assume for definiteness that xK > yK and 

0 < h, < 1. (If h, = 1, the conclusion is obvious.) Then, with K = 2, 
the weak individual axiom gives X,x, + h,x, > hi y, + h, y, . Proceeding 
by induction as before, xlrn &xx, > xy hkyk follows in the obvious 
manner when m = K 3 2. 

Proof of Lemma 2. Given x # y, L’ = L n X is the segment of 
L = {Xx + (1 - h)y: h E Re} in X. Let x* and y* be the extreme points 
in L’ so that L’ = {Xx* + (1 - X) y*: 0 < X < l}, with 01 > p when 
x = 01x* + (1 - ol)y* and y = /3x* + (1 - /3)y*. 

Suppose that x > y. With 01 > /3, x > y is the same as 

so that yx* + (1 - y)y* > y* by the moderate individual axiom when 
y = (a - jI)/(l - j3). Another application of the moderate individual 
axiom then gives x* > y*. 

Given x* > y*, let x’ = px* + (1 - p) y* and y’ = qx* + (1 - q) y* 
with 1 3 p > q > 0. Then px* + (1 - p)y* > y* by the weak indi- 
vidual axiom, and if q > 0 then 

(q/P)[Px* + (1 - P)Y*l + (1 - q/P)[Px* + (1 - Ply*1 

> (q/P)[Px* + (1 - Ply*1 + (1 - q/P)Y*p 

or px* + (1 - p)y* > 4x* + (1 - q)y*. 
The proof for % is similar. 

6421512-3 
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