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Let us say that a voting method F is regarded as a pre-tiebreaking voting method
if one regards F (P) as the set of undefeated candidates and regards any further
narrowing of F (P) as “tiebreaking.”

The political significance of this distinction is that if F (P) contains a single
winner, then that winner may be viewed as having a stronger mandate from
voters, as a result of a more unambiguous election, than a candidate who is
among several undefeated candidates in F (P) but wins by some further
tiebreaking process.

2



Let us say that a voting method F is regarded as a pre-tiebreaking voting method
if one regards F (P) as the set of undefeated candidates and regards any further
narrowing of F (P) as “tiebreaking.”

The political significance of this distinction is that if F (P) contains a single
winner, then that winner may be viewed as having a stronger mandate from
voters, as a result of a more unambiguous election, than a candidate who is
among several undefeated candidates in F (P) but wins by some further
tiebreaking process.

2



Since there can be multiple undefeated candidates, the question arises of how to
pick an ultimate winner from among the undefeated.

I non-anonymous tiebreaker (e.g., let the Chair decide)

I non-neutral tiebreaker (e.g., use seniority to decide among the undefeated
candidates)

I non-deterministic tiebreaker (e.g., randomly choose an undefeated
candidate)

I apply an anonymous, neutral, and deterministic tiebreaker before resorting
to tiebreakers that violates one of the above properties.
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I The Condorcet method as a pre-tiebreaking method, then Borda to break
ties

I Top Cycle as a pre-tiebreaking method, then IRV as a tiebreaker

I Copeland as a pre-tiebreaking method, then global/local Borda as a
tiebreaker

I Split Cycle as a pre-tiebreaking method, then global/local Plurality as a
tiebreaker

I Split Cycle as a pre-tiebreaking method, then global/local Beat Path as a
tiebreaker

I · · ·
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What is a good anonymous, neutral and deterministic

tiebreaker?

I No anonymous and neutral method is resolute, but the tiebreaker should be
more resolute than the pre-tiebreaking method.

I Why don’t you use the tiebreaker method from the beginning?
I Choose a method for the tiebreaker that refines the pre-tiebreaking method.
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Sizes of Winning Sets

1 2 3

Plurality
PluralityWRunoff

Ranked Choice
Coombs

Borda
Condorcet

Black
Anti-Plurality

Copeland
Llull

Strict Nanson
Weak Nanson

Baldwin
Minimax

Beat Path
Split Cycle

Uncovered Set
GETCHA

3 Candidates, (1000, 1001) Voters
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Sizes of Winning Sets
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Sizes of Winning Sets

1 2 3 4 5
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Sizes of Winning Sets

1 2 3 4 5 6

Plurality
PluralityWRunoff
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Sizes of Winning Sets

1 2 3 4 5 6 7 8 9 10

Plurality
PluralityWRunoff

Ranked Choice
Coombs

Borda
Condorcet

Black
Anti-Plurality

Copeland
Llull

Strict Nanson
Weak Nanson

Baldwin
Minimax

Beat Path
Split Cycle

Uncovered Set
GETCHA

10 Candidates, (1000, 1001) Voters
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Sizes of Winning Sets

0 4 8 12 16 20 24 28

Plurality
PluralityWRunoff

Ranked Choice
Coombs

Borda
Condorcet

Black
Anti-Plurality

Copeland
Llull

Strict Nanson
Weak Nanson

Baldwin
Minimax

Beat Path
Split Cycle

Uncovered Set
GETCHA

30 Candidates, (1000, 1001) Voters
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Any definition of defeat satisfying Anonymity and Neutrality will yield multiple
undefeated candidates in some profiles.

But some definitions of defeat are still more resolute than others. . .

Definition
A VCCR is asymptotically resolvable if the proportion of profiles with multiple
undefeated candidates approaches 0 as the number of voters approaches ∞.

Examples of asymptotically resolvable VCCRs are Plurality, Borda, and Beat Path.
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Quasi-Resolute

Definition
A voting method F is quasi-resolute if for every uniquely-weighted P ∈ dom(F ),
|F (P)| = 1.

b d

c

a

10

2

12

8

6

4

Both a and c are undefeated according to Split Cycle; Ranked Pairs picks only a;
and Beat Path picks only c .
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Violations of Quasi-Resoluteness

The known methods that satisfy Binary Expansion violate Asymptotic
Resolvability/Quasi-Resoluteness.

Voting Method 3 4 5 6 7 8 9 10 20 30
Split Cycle 1 1.01 1.03 1.06 1.08 1.11 1.14 1.16 1.42 1.62
Uncovered Set 1.17 1.35 1.53 1.71 1.9 2.09 2.26 2.46 4.56 6.82
Top Cycle 1.17 1.44 1.8 2.21 2.72 3.31 3.94 4.68 13.55 22.94

Figure: Estimated average sizes of winning sets for profiles with a given number of
candidates (top row) in the limit as the number of voters goes to infinity, obtained
using the Monte Carlo simulation technique in M. Harrison Trainor, “An Analysis of
Random Elections with Large Numbers of Voters,” arXiv:2009.02979.
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Stability for Winners

If wins and wins

then wins .
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Stability for Winners
Definition
A VCCR satisfies Stability for Winners if for any profile P and a, b ∈ X (P), if
a is undefeated in P−b and MarginP(a, b) > 0, then a is undefeated in P.

Example violations:

I arguably the 2000 US Presidential Election in Florida, run with Plurality
Voting, where a was Al Gore and b was Ralph Nader.

I definitely the 2009 mayoral election in Burlington, Vermont, run with Instant
Runoff Voting, where a was the Democrat and b was the Republican.

I there are also violations in profiles with no Condorcet winner.

Proposition
Anonymity, Neutrality, Monotonicity (for two-candidate profiles), and Coherent IIA
together imply Stability for Winners.
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The Cost of Quasi-Resoluteness

Theorem (W. Holliday, EP, and S. Zahedian)
There is no Anonymous and Neutral voting method that satisfies Binary
Expansion and Quasi-Resoluteness.

Moral: Making room for tiebreaking (runoff, lottery, etc.) is necessary and
sufficient to find voting methods that satisfy Binary Expansion.
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Multiple claims based on stability
The basic problem is that inevitably there are profiles with multiple candidates
who have the same kind of claim to winning based on stability for winners:

wins and wins

wins and wins

In such a situation—and only such a situation—it is legitimate to violate stability
for winners for one of red or green in the name of tiebreaking between them.
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Condorcetian candidates

Definition
Given a voting method F , profile P, and a ∈ X (P), we say that a is
Condorcetian for F in P if there is some b ∈ X (P) such that a ∈ F (P−b) and
MarginP(a, b) > 0.
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I There are two Condorcetian candidates a and c

I Beat Path elects c

I Ranked Pairs elects a
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Stability for Winners with Tiebreaking

Definition
A voting method satisfies Stability for Winners with Tiebreaking if for any
profile P and a, b ∈ X (P), if a wins in P−b and MarginP(a, b) > 0,

then either

I a wins in P or

I there are a′, b′ ∈ X (P) such that a′ wins in P−b′ , MarginP(a′, b′) > 0, and
a′ wins in P ′.

That is, all winners are Condorcetian.
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Recursion to the Rescue: Stable Voting

Our proposed voting method is Stable Voting, defined recursively as follows:

I If only one candidate a appears on all ballots, then a wins.

I Otherwise list all head-to-head matches a vs. b, where a is undefeated
according to Split Cycle, in order from the largest to the smallest margin of
a vs. b.

Find the first match such that a wins according to Stable Voting after b is
removed from all ballots; this a is the winner for the original set of ballots.

W. Holliday and EP. Stable Voting. arXiv:2108.00542 [econ.TH].
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a wins after removing e. Hence a is elected.
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Stable Voting

Good news: Stable Voting satisfies Stability for Winners with Tiebreaking
and Quasi-resoluteness.

In fact, SV has a remarkable ability to avoid ties even in elections with small
numbers of voters that can produce tied margins.
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Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

22



Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

22



Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

22



Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).

22



Costs of Stable Voting

For truth in advertising, there are some costs of Stable Voting:

1. Computing the SV winners using our current recursive implementation can
be computationally expensive above 20 candidates.

2. There are some violations—in an extremely small fraction of profiles—of
voting criteria satisfied by some other voting methods, such as monotonicity.

Re 1, we can handle larger profiles that are uniquely weighted with up to 20
candidates in the “Smith set.” This covers many voting contexts.

Re 2, the frequency with which Stable Voting violates monotonicity is minuscule
compared to the frequency for Instant Runoff (in use in the Bay Area and NYC).
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Demo

stablevoting.org
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Since there can be multiple undefeated candidates, the question arises of how to
pick an ultimate winner from among the undefeated.

I non-anonymous tiebreaker (e.g., let the Chair decide)

I non-neutral tiebreaker (e.g., use seniority to decide among the undefeated
candidates)

⇒ non-deterministic tiebreaker (e.g., randomly choose an undefeated
candidate)

X apply an anonymous, neutral, and deterministic tiebreaker before resorting
to tiebreakers that violates one of the above properties.
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Even-Chance Tiebreaking

All anonymous and neutral voting methods F may select more than one winner
in a profile P.

When F (P) is not a singleton set, one option is to use an even-chance lottery on
F (P) to break the tie and select a unique ultimate winner.

Definition
For a voting method F , let F eve be the probabilistic voting method such that for
any profile P and x ∈ X (P), F eve(P)(x) = 1/|F (P)| if x ∈ F (P) and
F eve(P)(x) = 0 otherwise.
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Probabilistic Social Choice
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F. Brandt. Rolling the Dice: Recent Results in Probabilistic Social Choice. Handbook of
Computational Social Choice, 2016.
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Let V be a set of voters, X a set of m alternatives.

The set of all lotteries over X is:

∆(X ) = {p ∈ RX | p(x) ≥ 0 for all x ∈ X and
∑
x∈X

p(x) = 1}

For p ∈ ∆(X ), supp(p) = {x | p(x) > 0}

p is degenerate when |supp(p)| = 1.

We write lotteries as convex combinations of alternatives, e.g., the uniform
lottery on {a, b} where p(a) = p(b) = 1/2 is denoted as 1/2a + 1/2b.
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Probabilistic Voting Methods

A probabilistic social choice function (PSCF) is a map
F : O(X )V → ℘(∆(A)) \ ∅ such that for all P, F (P) is a convex set of lotteries.

Anonymity and neutrality can be defined as usual.
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Random (Serial) Dictator

Random dictatorship: A voter is picked uniformly at random and this voter’s
most-preferred alternative is selected. Thus, the probabilities assigned by RD are
directly proportional to the number of agents who top-rank a given alternative
(or, in other words, the alternative’s plurality score).

Random serial dictatorship (RSD): RSD selects a permutation of the agents
uniformly at random and then sequentially allows agents in the order of the
permutation to narrow down the set of alternatives to their most preferred of the
remaining ones.
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Proportional Borda

Proportional Borda: Assign probabilities to the alternatives that are
proportional to their Borda scores.
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Margin Matrix/Graph

49 48 3
c a b
a b c
b c a

a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0

a b

c

94

24

If the output of a neutral PSCF F only depends on the margin matrix/graph M ,
F is called pairwise. An advantage of pairwise PSCFs is that they are applicable
even when individual preferences are incomplete or intransitive.
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Maximal Lotteries

G. Kreweras. Aggregation of preference orderings. In Mathematics and Social Sciences I: Pro-
ceedings of the seminars of Menthon-Saint-Bernard, France (1–27 July 1960) and of Gösing,
Austria (3 - 27 July 1962), pages 73 - 79, 1965.

P. C. Fishburn. Probabilistic social choice based on simple voting comparisons. Review of
Economic Studies, 51(4):683-692, 1984.
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Maximal Lotteries

H. Aziz, F. Brandl, F. Brandt, and M. Brill. On the tradeoff between efficiency and strate-
gyproofness. Games and Economic Behavior, 110:1 - 18, 2018.

F.. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica,
84(5):1839 - 1880, 2016.

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the incompatibility of efficiency and
strategyproofness via SMT solving. Journal of the ACM, 65(2):1 - 28, 2018.
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Lottery Schemes . forthcoming Social Choice and Welfare, 2021.
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Maximal Lotteries
M admits a (weak) Condorcet winner if M contains a nonnegative row, i.e., there
is a standard unit vector v such that

vTM ≥ 0

1 1 1
a b c
b a a
c c b1

0
0

T  0 1 1
−1 0 1
−1 −1 0

 =
(
0 1 1

)
≥ 0
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Maximal Lotteries

A lottery p is maximal if pTM ≥ 0:

I randomized Condorcet winner

I p is “at least as good” as any other lottery:

the expected number of agents who prefer the alternative returned by p to
that returned by q is at least as large as the expected number of agents who
prefer the outcome returned by q to that returned by p
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Maximal Lotteries
A lottery p is maximal if pTM ≥ 0:
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Maximal Lotteries

I always exist due to the Von Neumann Minimax Theorem.

I almost always unique

I set of profiles with multiple maximal lotteries has measure zero

I always unique for odd number of voters with strict preferences

I does not require asymmetry, completeness, or even transitivity of individual
preferences
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20 20 60
c a b
a b c
b c a

a b c( )a 0 −40 −60
b 40 0 60
c 60 −60 0

a b

c

40

6060

a b c( )a 0, 0 −40, 40 −60, 60 −60
b 40,−40 0, 0 60,−60 40
c 60,−60 −60, 60 0, 0 −60

−60 40 −60

Nash equilibrium: (b, b)
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49 48 3
c a b
a b c
b c a

a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0

a b

c

94

24

a b c( )a 0, 0 94,−94 −4, 4
b −94, 94 0, 0 2,−2
c 4,−4 −2, 2 0, 0

There is no pure strategy Nash equilibrium

There is a mixed Nash equilibrium: 2/100a + 4/100b + 94/100c .
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Maximal Lotteries can be efficiently computed via linear programming

https://voting.ml
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Maximal Lottery Schemes

Every maximal lottery scheme is based on an odd and monotone function
τ : Z→ R with τ(1) = 1.

MLτ (R) = {p ∈ ∆(X ) |
∑
x ,y∈X

p(x)q(y)τ(mxy ) ≥ 0 for all q ∈ ∆(X )}
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C1-ML: ML schemes based on the sign function.

C2-ML: ML schemes based on the identity function.

49 48 3
c a b
a b c
b c a

a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0

a b

c

94

24

C1-ML: 1/3a + 1/3b + 1/3c

C2-ML: 2/100a + 4/100b + 94/100c
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Theorem (Brandl, Brandt and Stricker) For any pair of ML schemes MLτ and
MLσ, there is a preference profile R such that MLτ (R) = {p} and
MLσ(R) = {q} and supp(p) ∩ supp(q) = ∅.

(cf. B. Dutta and J.-F. Laslier. Comparison functions and choice
correspondences. Social Choice and Welfare, 16(4):513-532, 1999)
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An SDS is homogenous when replacing every voter with a fixed number of
identical clones (i.e., voters with the same preferences) does not change the
outcome.

Theorem (Brandl, Brandt and Stricker) MLτ is homogenous if and only if τ is
based on τ ′ where there is a t ≥ 0 such that τ ′(k) = k t for all k ∈ N.
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Efficiency

Pareto Efficiency: no voter can be made better off without making another voter
worse off.

To define this, we need assumptions about how voters rank lotteries.
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Suppose that �i is voter i ’s weak preference relation.

p �DD′
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

p �DD
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

p �ST
i q if and only if

(supp(p) \ supp(q)) �i (supp(p) ∩ supp(q)) �i (supp(q) \ supp(p))
and p(x) = q(x) for all x ∈ supp(p) ∩ supp(q)

Suppose that a �i b �i c . Then,
2/3a + 1/3b �DD′

i c
2/3a + 1/3b �DD

i 1/2b + 1/2c
1/2a + 1/2b �ST

i 1/2b + 1/2c
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Bilinear Dominance

p �BD
i q if and only if p(x)q(y) ≥ p(y)q(x) for all x , y ∈ X with x �i y

Suppose that a �i b �i c . Then,
1/2a + 1/2b �BD

i 1/3a + 1/3b + 1/3c

(Fishburn 1984): p bilinearly dominates q iff p is preferable to q for every
skew-symmetric bilinear (SSB) utility function consistent with �i
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Stochastic Dominance

p �SD
i q if and only if

∑
y�ix

p(y) ≥
∑

y�ix
q(y) for all x ∈ X

Suppose that a �i b �i c . Then,
1/2a + 1/2c �SD

i 1/2b + 1/2c

p stochastically dominates q iff p is preferable to q for every von
Neumann-Morgenstern utility function consistent with �i
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�DD′ ⊆ �DD ⊆ �BD �DD′ ⊆ �ST ⊆ �BD �BD ⊆ �SD ⊆ �PC
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A lottery p is SD-efficient for a preference profile R if there is no lottery
q ∈ ∆(X ) such that q �SD

i p for all i and q �SD
j p for some j . (Similar

definitions for other preferences over lotteries).
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Theorem (Fishburn, 1984) Every MLτ is ex post efficient: whenever there are
alternatives x and y such that x �i y for all i and x �j y for some j , then y
should receive probability 0.

Theorem (Brandl, Brandt and Stricker). Every C2-ML schemes is SD-efficient.
No other ML scheme is SD-efficient for all numbers of voters and candidates.

Theorem (Brandl, Brandt and Stricker). Suppose that m is the number of
candidates and n is the number of voters. Every majoritarian and neutral SPSC
violates SD-efficiency for m ≥ 9 (and n = 5, n − 7 or n ≥ 9), even when
preferences are strict.
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F. Brandl and F. Brandt. A Natural Adaptive Process for Collective Decision-Making.
manuscript, 2021.
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Consider an urn filled with balls, each labeled with one of several possible
collective decisions. Now, draw two balls from the urn, let a random voter pick
her more preferred as the alternative, relabel the losing ball with the collective
decision, put both balls back into the urn, and repeat. In order to prevent the
permanent disappearance of some types of balls, once in a while, a randomly
drawn ball is labeled with a random alternative.

Brandl and Brandt prove that this process will almost surely converge to the
C2-ML.
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