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F. Brandt. Rolling the Dice: Recent Results in Probabilistic Social Choice. Handbook of
Computational Social Choice, 2016.
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Let V be a set of voters, X a set of m alternatives.

The set of all lotteries over X is:

∆(X ) = {p ∈ RX | p(x) ≥ 0 for all x ∈ X and
∑
x∈X

p(x) = 1}

For p ∈ ∆(X ), supp(p) = {x | p(x) > 0}

p is degenerate when |supp(p)| = 1.

We write lotteries as convex combinations of alternatives, e.g., the uniform
lottery on {a, b} where p(a) = p(b) = 1/2 is denoted as 1/2a + 1/2b.
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Probabilistic Voting Methods

A probabilistic social choice function (PSCF) is a map
F : O(X )V → ℘(∆(A)) \ ∅ such that for all P, F (P) is a convex set of lotteries.

Anonymity and neutrality can be defined as usual.
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Random (Serial) Dictator

Random dictatorship: A voter is picked uniformly at random and this voter’s
most-preferred alternative is selected. Thus, the probabilities assigned by RD are
directly proportional to the number of agents who top-rank a given alternative
(or, in other words, the alternative’s plurality score).

Random serial dictatorship (RSD): RSD selects a permutation of the agents
uniformly at random and then sequentially allows agents in the order of the
permutation to narrow down the set of alternatives to their most preferred of the
remaining ones.
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Proportional Borda

Proportional Borda: Assign probabilities to the alternatives that are
proportional to their Borda scores.
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Margin Matrix/Graph
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a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0
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c

94

24

If the output of a neutral PSCF F only depends on the margin matrix/graph M ,
F is called pairwise. An advantage of pairwise PSCFs is that they are applicable
even when individual preferences are incomplete or intransitive.
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Maximal Lotteries

G. Kreweras. Aggregation of preference orderings. In Mathematics and Social Sciences I: Pro-
ceedings of the seminars of Menthon-Saint-Bernard, France (1–27 July 1960) and of Gösing,
Austria (3 - 27 July 1962), pages 73 - 79, 1965.

P. C. Fishburn. Probabilistic social choice based on simple voting comparisons. Review of
Economic Studies, 51(4):683-692, 1984.
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Maximal Lotteries

H. Aziz, F. Brandl, F. Brandt, and M. Brill. On the tradeoff between efficiency and strate-
gyproofness. Games and Economic Behavior, 110:1 - 18, 2018.

F. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica,
84(5):1839 - 1880, 2016.

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the incompatibility of efficiency and
strategyproofness via SMT solving. Journal of the ACM, 65(2):1 - 28, 2018.

F. Brandl, F. Brandt, and C. Stricker. An Analytical and Experimental Comparison of Maximal
Lottery Schemes . forthcoming Social Choice and Welfare, 2021.
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Maximal Lotteries
M admits a (weak) Condorcet winner if M contains a nonnegative row, i.e., there
is a standard unit vector v such that

vTM ≥ 0

1 1 1
a b c
b a a
c c b1

0
0

T  0 1 1
−1 0 1
−1 −1 0

 =
(
0 1 1

)
≥ 0
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Maximal Lotteries

A lottery p is maximal if pTM ≥ 0:

I randomized Condorcet winner

I p is “at least as good” as any other lottery:

the expected number of agents who prefer the alternative returned by p to
that returned by q is at least as large as the expected number of agents who
prefer the outcome returned by q to that returned by p
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Maximal Lotteries
A lottery p is maximal if pTM ≥ 0:
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Maximal Lotteries

I always exist due to the Von Neumann Minimax Theorem.

I almost always unique

I set of profiles with multiple maximal lotteries has measure zero

I always unique for odd number of voters with strict preferences

I does not require asymmetry, completeness, or even transitivity of individual
preferences
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20 20 60
c a b
a b c
b c a

a b c( )a 0 −40 −60
b 40 0 60
c 60 −60 0

a b

c

40

6060

a b c( )a 0, 0 −40, 40 −60, 60 −60
b 40,−40 0, 0 60,−60 40
c 60,−60 −60, 60 0, 0 −60

−60 40 −60

Nash equilibrium: (b, b)
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49 48 3
c a b
a b c
b c a

a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0

a b

c

94

24

a b c( )a 0, 0 94,−94 −4, 4
b −94, 94 0, 0 2,−2
c 4,−4 −2, 2 0, 0

There is no pure strategy Nash equilibrium

There is a mixed Nash equilibrium: 2/100a + 4/100b + 94/100c .
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Maximal Lotteries can be efficiently computed via linear programming

https://voting.ml
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Population-Consistency

Population-Consistency: Whenever two disjoint electorates agree on a lottery,
this lottery should also be chosen by the union of both electorates.

1 1
a b
b c
c a

P
1
2
a + 1

2
b

1 1
a b
c c
b a

Q
1
2
a + 1

2
b

1 1 2
a a b
b c c
c b a

P + Q
1
2
a + 1

2
b
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Saari’s argument, Balinski and Laraki (2010, pg. 77); Zwicker (2016, Proposition
2.5): Multiple districts paradox, f cancels properly.

2 2 2
a b c
b c a
c a b

1 2
a b
b a
c c

I no Condorcet winner in the left profile

I b is the Condorcet winner in the right profile

I a is the Condorcet winner in the combined profiles
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I Population-consistency: f (P) ∩ f (Q) ⊆ f (P + Q)
I Reinforcement/Consistency: if f (P) ∩ f (Q) 6= ∅, then

f (P) ∩ f (Q) = f (P + Q)

I Every scoring rule satisfies reinforcement (and hence
population-consistency). In fact, reinforcement is the key axiom used in the
characterization of scoring rules.

I No Condorcet consistent voting method satisfies population-consistency.

I Reinforcement is also used in the Condorcet consistent Kemeny rule that
maps profiles to sets of linear orders.

I Maximal Lotteries, Random Dictatorship, and Proportional Borda all satisfy
population-consistency
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Composition-Consistency

22



Composition-Consistency

Composition-Consistency: Decomposable preference profiles are treated
component-wise. (In particular, alternatives are not affected by the cloning of
other alternatives)

2 1 3
a a b
b′ b b′

b b′ a

P
1
2
a + 1

3
b + 1

6
b′

3 3
a b
b a

P |{a,b}
1
2
a + 1

2
b

2 4
b′ b
b b′

P |{b,b′}
2
3
b + 1

3
b′
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I Many Condorcet extensions satisfy composition-consistency.

I No Pareto-optimal scoring rule satisfies composition-consistency.

I Random Dictatorship, Proportional Borda do not satisfy
composition-consistency

I Maximal Lottery satisfies composition-consistency
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Theorem (Brandl et al. 2016) Population-consistency and
composition-consistency are incompatible in non-probabilistic social choice.

Theorem (Brandl et al. 2016) A probabilisitic social choice function satisfies
population-consistency and compositional consistency if, and only if, it returns all
maximal lotteries.

F. Brandl, F. Brandt, and H. G. Seedig. Consistent probabilistic social choice. Econometrica,
84(5):1839-1880, 2016.
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Efficiency, Strategyproofness

Pareto Efficiency: no voter can be made better off without making another voter
worse off.

Strategyproofness: no voter can be made better off by misrepresenting their
preferences.

To define these, we need assumptions about how voters rank lotteries.
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Suppose that �i is voter i ’s weak preference relation.

p �DD′
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

p �DD
i q if and only if x �i y for all x ∈ supp(p) and y ∈ supp(q)

Suppose that a �i b �i c . Then,
2/3a + 1/3b �DD′

i c
2/3a + 1/3b �DD

i 1/2b + 1/2c
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Bilinear Dominance

p �BD
i q if and only if p(x)q(y) ≥ p(y)q(x) for all x , y ∈ X with x �i y

Suppose that a �i b �i c . Then,
1/2a + 1/2b �BD

i 1/3a + 1/3b + 1/3c

(Fishburn 1984): p bilinearly dominates q iff p is preferable to q for every
skew-symmetric bilinear (SSB) utility function consistent with �i
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Stochastic Dominance

p �SD
i q if and only if

∑
y�ix

p(y) ≥
∑

y�ix
q(y) for all x ∈ X

Suppose that a �i b �i c . Then,
1/2a + 1/2c �SD

i 1/2b + 1/2c

p stochastically dominates q iff p is preferable to q for every von
Neumann-Morgenstern utility function consistent with �i
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A lottery p is SD-efficient for a preference profile R if there is no lottery
q ∈ ∆(X ) such that q �SD

i p for all i and q �SD
j p for some j .

strong SD-strategyproofness requires that every misreported preference relation
of a voter will result in a lottery q such that p �SD q.

SD-strategyproofness: no agent can misreport his preferences to obtain a lottery
q such that q �SD p.

(Similar definitions for other preferences over lotteries).
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ex post efficient: whenever there are alternatives x and y such that x �i y for all
i and x �j y for some j , then y should receive probability 0.

Theorem (Gibbard, 1977). Random Dictatorship is the only anonymous,
strongly SD-strategyproof, and ex post efficient probabilistic social choice
function when preferences are strict.

Theorem (Fishburn, 1984) ML is ex post efficient.
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Theorem (Brandl et al., 2016). There is no anonymous, neutral, SD-efficient,
and SD-strategyproof probabilistic social choice function when there are at least
4 voters and at least 4 candidates.

F. Brandl, F. Brandt, and C. Geist. Proving the incompatibility of efficiency and strategyproofness
via SMT solving. Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 116–122. AAAI Press, 2016.
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F. Brandl, F. Brandt, and C. Stricker. An analytical and experimental comparison of maximal
lottery schemes. Social Choice and Welfare, 58(1):5–38, 2022.
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Maximal Lottery Schemes

Every maximal lottery scheme is based on an odd and monotone function
τ : Z→ R with τ(1) = 1.

MLτ (R) = {p ∈ ∆(X ) |
∑
x ,y∈X

p(x)q(y)τ(mxy ) ≥ 0 for all q ∈ ∆(X )}
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C1-ML: ML schemes based on the sign function.

C2-ML: ML schemes based on the identity function.

49 48 3
c a b
a b c
b c a

a b c( )a 0 94 −4
b −94 0 2
c 4 −2 0

a b

c

94

24

C1-ML: 1/3a + 1/3b + 1/3c

C2-ML: 2/100a + 4/100b + 94/100c
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Theorem (Brandl, Brandt and Stricker) For any pair of ML schemes MLτ and
MLσ, there is a preference profile R such that MLτ (R) = {p} and
MLσ(R) = {q} and supp(p) ∩ supp(q) = ∅.

(cf. B. Dutta and J.-F. Laslier. Comparison functions and choice
correspondences. Social Choice and Welfare, 16(4):513-532, 1999)
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An SDS is homogenous when replacing every voter with a fixed number of
identical clones (i.e., voters with the same preferences) does not change the
outcome.

Theorem (Brandl, Brandt and Stricker) MLτ is homogenous if and only if τ is
based on τ ′ where there is a t ≥ 0 such that τ ′(k) = k t for all k ∈ N.
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F. Brandl and F. Brandt. A Natural Adaptive Process for Collective Decision-Making.
manuscript, 2021.
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Consider an urn filled with balls, each labeled with one of several possible
collective decisions. Now, draw two balls from the urn, let a random voter pick
her more preferred as the alternative, relabel the losing ball with the collective
decision, put both balls back into the urn, and repeat. In order to prevent the
permanent disappearance of some types of balls, once in a while, a randomly
drawn ball is labeled with a random alternative.

Brandl and Brandt prove that this process will almost surely converge to the
C2-ML.
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