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• A utility profile is ‘‘concordant’’ if the Condorcet winner maximizes utilitarian social welfare.
• Several stochastic models yield concordant utility profiles, for large populations.
• This includes utility functions drawn from a multivariate normal distribution.
• It also includes ‘‘spatial voting’’ models with multivariate normal ideal points.
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a b s t r a c t

We show that if the statistical distribution of utility functions in a population satisfies a certain condition,
then a Condorcet winner will not only exist, but will also maximize the utilitarian social welfare function.
We also show that, if people’s utility functions are generated according to certain plausible random
processes, then in a large population, this condition will be satisfied with very high probability. Thus,
in a large population, the utilitarian outcome will be selected by any Condorcet consistent voting rule.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the origins of modern social choice theory, one can distin-
guish two radically different approaches. One approach, due to
Condorcet, focused onmajority voting. The other, due to Bentham,
focused on themaximization of social welfare, in the form of a util-
itarian sum. The flaws of these two approaches are well-known.
Utilitarianism requires complete knowledge of the utility functions
of all individuals in society, and assumes a well-defined and un-
ambiguous systemof cardinal interpersonal utility comparisons. In
the absence of this information, the utilitarian ideal is impossible
to realize. But any procedure to acquire this information (e.g. via
surveys) seems vulnerable to strategic manipulation. Finally, if the
utilitarian choice is opposed by a largemajority, then it may not be
politically feasible.

Condorcet’s approach does not suffer from these problems.
Condorcet argued that society should choose a social alternative
which is capable of beating any other single alternative in a major-
ity vote. Such an alternative (if it exists) is called a Condorcet win-
ner. A voting rulewhich always selects a Condorcetwinner is called
Condorcet consistent. Many well-known voting rules are Condorcet
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consistent, including the Copeland rule, the Simpson–Kramer rule,
the Slater rule, the Kemeny rule, and any agenda of pairwise ma-
jority votes. Furthermore, if a Condorcet winner exists, then it will
be the subgame-perfect Nash equilibrium outcome in any binary
voting agenda (Miller, 1977, Proposition 8’), and many other mul-
tistage elimination procedures (Bag et al., 2009).1 So Condorcet’s
approach is quite resistant to strategic voting. However, not all
profiles of ordinal preferences admit a Condorcet winner. Further-
more, in general, there is no relationship between Condorcet con-
sistency and social welfare.2 So from a normative point of view, it
is difficult to justify.

However, given a mild assumption (called ‘‘concordance’’)
about the statistical distribution of voter’s preferences, we will
show that the Condorcet winner actually maximizes utilitarian so-
cial welfare. We will then show that, if the voters’ utility functions
arise from certain plausible random processes, then a sufficiently
large population of voters will have a concordant distribution of
utility functions, with very high probability. In other words, in a

1 This assumes each voter has perfect information, and uses only weakly
undominated strategies.
2 Indeed, it is easy to construct examples where the Condorcet winner does not

maximize social welfare Lehtinen (2007, Section 3).
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large population satisfying certain statistical regularities, not only
is the Condorcet winner almost guaranteed to exist, but it is almost
guaranteed to also be the utilitarian social choice. So for such pop-
ulations, Condorcet and Bentham agree.

The remainder of this paper is organized as follows. Section 2
introduces basic notation and terminology, and states the founda-
tional result: for ‘‘concordant’’ utility profiles, the Condorcet win-
ner is the utilitarian social choice. Section 3 considers a model
where the utility functions of the voters are independent, iden-
tically distributed (i.i.d.) random variables drawn from a mul-
tivariate probability distribution with certain properties (e.g. a
normal distribution). We show that, in a large population, the re-
sulting profile of utility functions has a high probability of being
concordant. Section 4 considers spatial voting models, where the
ideal points of the voters are i.i.d. random variables; again, un-
der certain conditions, the resulting profile of utility functions has
a high probability of being concordant for a large population. Fi-
nally, Section 5 reviews related literature. All proofs are in the
Appendix.

2. Condorcet winners and concordant utility profiles

Let A be a finite set of social alternatives, let I be a set of
voters, and let I := |I|. For every voter i in I, let ui : A −→

R be i’s cardinal utility function over A. We refer to the set
U := {ui}i∈I as a cardinal utility profile. We will suppose that the
utility functions {ui}i∈I admit one-for-one cardinal interpersonal
comparisons.3 Thus, a utilitarian would seek the social alternative
whichmaximizes the utilitarian social welfare function UI defined
by

UI(a) :=
1
|I|


i∈I

ui(a), for every alternative a in A. (1)

For every voter i in I, let ≻i be the preference order induced by
ui on A. We refer to the set P := {≻i}i∈I as an ordinal preference
profile. Let a ∈ A. We say that a is a Condorcet winner for P if, for
every other alternative b inA, somemajority prefers a over b—that
is, #{i ∈ I; a≻i b} ≥ I/2.

Let U = {ui}i∈I be a cardinal utility profile, and let P be the
corresponding ordinal preference profile. We will say that U is
concordant if P admits a Condorcet winner, and furthermore this
Condorcetwinnermaximizes the utilitarian socialwelfare function
UI in Eq. (1). Such a fortunate coincidencemay seems unlikely. But
the rest of this paper will show that it is actually quite plausible,
under certain hypotheses. We will suppose that the voters’ utility
functions are randomly generated by some stochastic process.
Under certain conditions, we shall see that, in a large population,
such a randomly generated utility profile will be concordant, with
very high probability.

To see how concordance could occur, let a and b be two
alternatives inA, and for every voter i in I, let ui

a,b := ui(a)−ui(b).
Thus, UI(a) ≥ UI(b) if and only if the mean of the set Ua,b :=

{ui
a,b}i∈I is positive. Meanwhile, a strict majority prefers a over b if

and only if themedian ofUa,b is positive. Thus, a strictmajoritywill
choose the UI-maximizing element of the pair {a, b} if and only if
sign[median(Ua,b)] = sign[mean(Ua,b)]. In this case, we say that
the utility profile {ui

}i∈I is {a, b}-concordant.4

3 That is, for any alternatives a, b, c, d ∈ A and any voters i, j ∈ I, if ui(b) −

ui(a) = uj(d) − uj(c), then the welfare that i gains in going from a to b is the same
as the welfare that j gains in going from c to d.
4 If I is odd, then median[Uab] is the unique point m in Ua,b such that #{i ∈

I; ui
a,b ≥ m} > I/2 and #{i ∈ I; ui

a,b ≤ m} > I/2. However, if I is even, then
median[Uab] is generally an interval[m,m] with m ≤ m, such that #{i ∈ I; ui

a,b ≥
Example 1. If
mean(Ua,b)

 exceeds the standard deviation of the
set Ua,b (i.e. if the social welfare gap between the alternatives
a and b is large enough), then the utility profile {ui

}i∈I is {a, b}-
concordant. To see this, note that Chebyshev’s inequality implies
that

median(Ua,b) − mean(Ua,b)
 ≤ std dev(Ua,b). �

The following simple observation is the basis for most of the
later results in the paper.

Observation 2. Let U = {ui}i∈I be a cardinal utility profile, and
let P be the corresponding ordinal preference profile. If U is {a, b}-
concordant for all a, b ∈ A, then U is concordant.

Proof. For any a, b ∈ A, write a ≻ b if a majority prefers a to b.
The relation ≻ might not be transitive. But if it is transitive, then
its maximal element is the Condorcet winner. If the profile {ui}i∈I

is {a, b}-concordant for all a, b ∈ A, then ≻ is just the utilitarian
social welfare order, hence transitive. �

3. Random utility functions

Suppose A is a finite set, so that utility functions correspond
to vectors in RA. In this section, we will suppose that the voters’
utility functions are i.i.d. random vectors. Here is an illustrative
preliminary result.

Proposition 3. Let ρ be any multivariate normal probability mea-
sure on RA with meanm ∈ RA such that ma ≠ mb for any distinct a
and b in A. Suppose that the utility functions {ui}i∈I are independent,
ρ-random variables. Then

lim
I→∞

Prob (The utility profile {ui}i∈I is concordant) = 1. (2)

Thus, in a large enough population of voters with independent
normally distributed utility functions, the Condorcet winner will
exist, and will maximize utilitarian social welfare.

Proposition 3 raises two questions. First, how largemust I be to
ensure that the utility profile is concordant with some probability
(say, 95%)? Second, for what other probability distributions canwe
obtain a similar result? We will now answer these questions.

Let ρ be a probability measure on RA. For any distinct alter-
natives a and b in A, let ρa,b be the distribution of the quantity
xa − xb, where x is a ρ-random variable. We will say that the mea-
sure ρ is concordant if ρ has finite variance, and if mean[ρa,b] and
median[ρa,b] are nonzero and have the same sign, for all distinct
alternatives a and b inA. (For example, if ρ is anymultivariate nor-
mal distribution satisfying the hypothesis in Proposition 3, then ρ
is concordant.) The next result generalizes Proposition 3; it says
that concordant measures generate concordant utility profiles.

Theorem 4. Let A be a finite set, let ρ be a concordant probability
measure on RA, and suppose that the utility functions {ui}i∈I are
independent, ρ-random variables. Then the limit (2) holds. To be
precise, there are constants q ∈ (0, 1) and C > 0 (determined by
the structure of ρ) such that, if I is large enough, then

Prob ({ui}i∈I is not concordant)

< (|A| − 1)

2
√
I qI +

C
I


−−−→
I→∞

0. (3)

m} ≥ I/2 and #{i ∈ I; ui
a,b ≤ m} ≥ I/2. In this case, we will say median[Uab] is

positive if m ≥ m > 0, and we will say median[Uab] is negative if m ≤ m < 0. If
m ≤ 0 ≤ m, then we consider the ‘‘sign’’ of median[Uab] to be undefined (in this
case, the voters are evenly split between a and b). Our definition of ‘‘concordant’’
specifically excludes this last possibility.
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Remark 5. (a) Inequality (3) tells us how large I must be to ensure
some probability that {ui}i∈I is concordant. Note that qI → 0 very
rapidly as I → ∞. Thus, inequality (3) is dominated by the term
(|A| − 1) C/I . For example, suppose that A = {1, 2, 3, 4}, and ρ is
a four-dimensional normal distribution with mean and covariance
matrix

m =

4
3
1
0

 and

6 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

 . (4)

Then q ≈ 0.9968 and C = 10. (See Appendix for details.) If
I = 10 000, then 2

√
I qI = 200 · (0.9968)10 000

≈ 3.2 × 10−12,
so we can ignore it. Meanwhile, C/I = 10/10 000 = 0.001, and
|A| − 1 = 3. Thus, inequality (3) yields

Prob ({ui}i∈I is not concordant)

< 3

2
√
I qI +

C
I


≈ 3 ×


3.2 × 10−12

+ 0.001


≈ 0.003.

Thus, a ρ-random utility profile of ten thousand voters will be
concordant with probability at least 99.7%.

(b) The condition that ma ≠ mb for all a, b ∈ A is not really
essential in Proposition 3; it is for technical convenience. If ma =

mb for some a, b ∈ A other than the maximizer of UI, then the
Condorcet winner will still maximize UI. If ma = mb and one of
them is the maximizer of UI, then UI(a) and UI(b) will be very
close, and one of themwill be the Condorcetwinner (with very high
probability, when I is large). Thus, even if the Condorcet winner
does not maximize UI, it will still ‘‘almost’’ maximize it. (The same
is true if there are three or more alternatives a, b, c, . . . such that
ma = mb = mc = · · · , and one of them maximizes UI.)

Similarly, the condition mean[ρa,b] ≠ 0 is only for technical
convenience in Theorem 4. Even if ρ violates this condition, the
Condorcet winner will either maximize or almost-maximize UI

(with very high probability, when I is large).

4. Spatial voting with random ideal points

Spatial voting models are very common in the theoretical polit-
ical science literature.5 In these models, we regard RN as a space of
policies described by N distinct parameters. For example, different
coordinates of RN might represent interest rates, tax rates, expen-
diture levels for various public goods or income support mecha-
nisms, and/or the inflation and unemployment rates. Suppose that
each voter i in I has some ‘‘ideal point’’ xi in RN . In this section, we
will suppose that the voters’ ideal points are i.i.d. random vectors,
and that the utility that each voter assigns to a policy is a decreasing
function of the distance from that policy to her ideal point. Thus,
the voter prefers policies which are closer to her ideal point. Let
0 := (0, 0, . . . , 0). Here is an illustrative preliminary result.

Proposition 6. Let ρ be any multivariate normal probability distri-
bution on RN with mean 0, and let {xi}i∈I be independent ρ-random
points. Let A ⊂ RN be a finite set of alternatives such that ∥a∥ ≠ ∥b∥

for any distinct a, b in A,6 and suppose that ui(a) = −∥a − xi∥2 for
every voter i inI and every alternative a inA. Then the limit (2) holds.

5 See e.g. Hinich and Munger (1997) or Enelow and Hinich (2008) for
introductions to this literature.
6 Here, ∥•∥ is the Euclidean norm on RN .
Proposition 6 has two limitations. First, it assumes a normal
distribution of ideal points, and second, it assumes negative
quadratic utility functions. In the rest of this section, we will
work to relax these assumptions. We now let ρ be an arbitrary
continuous probability measure on RN . We will use ρ to randomly
generate the ideal points of the voters. We will suppose that each
voter has a distance-based utility function of the form ui(a) =

−φ(∥a − xi∥) for some increasing function φ : [0, ∞) −→ R.

Proposition 7. Let N ≥ 2. Let ρ be a continuous probabilitymeasure
on RN that is rotationally symmetric around 0, and let {xi}i∈I be
independent ρ-random points. Suppose φ : [0, ∞) −→ R is strictly
convex and increasing (e.g. φ(x) = xp, for some p > 1), and

RN
φ (∥y − x∥) dρ[x] < ∞ for all y in RN . (5)

Let A ⊂ RN be a finite set of alternatives such that ∥a∥ ≠ ∥b∥ for
any distinct a, b in A. Suppose ui(a) = −φ (∥a − xi∥) for every i in
I and a in A. Then the limit (2) holds.

For simplicity, we have stated Propositions 6 and 7 for
distributions centred at 0. However, analogous results are true
for distributions centred around any other point in RN . If ρ is a
standard normal distribution, then Proposition 6 is a consequence
of Proposition 7. However, neither result is consequence of
the other in general (because not all normal distributions are
rotationally symmetric). In fact, Propositions 6 and 7 are both
consequences of a single, more general result, as we now explain.

Let ρ be a continuous probabilitymeasure onRN . For any vector
v in RN , a v-median hyperplane of ρ is any hyperplane H

ρ
v ⊂ RN

which is orthogonal to v, and such that at least half the mass of ρ
lies on each side of H

ρ
v .7Such a hyperplane always exists,8 but it

might not be unique for some vectors v in RN . However, if there is
a v-median hyperplaneH

ρ
v which intersects the support of ρ, then

H
ρ
v is the only v-median hyperplane.9
Let φ : [0, ∞) −→ R be any convex increasing function.

The φ-median of ρ is the set of global minima for the function
Φρ : RN

−→ R defined by

Φρ(m) :=


RN

φ (∥m − x∥) dρ[x], for allm in RN . (6)

(For example, if N = 1 and φ(x) = x for all x ≥ 0, then the
φ-median of ρ is the classical median of ρ: the point(s) in R which
cut the distribution of ρ into two equal halves.) We will say that ρ
is φ-balanced if:
(B1) The function Φρ is well-defined by the integral (6)10;
(B2) The φ-median of ρ is a single point,mφ

ρ ;
(B3) Φρ is rotationally symmetric aroundmφ

ρ ; and
(B4) For every vector v in RN , there is a unique v-median

hyperplane Hv
ρ , andmφ

ρ ∈ Hv
ρ .

For example, suppose φ(x) = x2 for all x ≥ 0. If ρ has finite
variance, then (B1) and (B2) are satisfied, and mφ

ρ is the mean of
the distribution ρ. Indeed, a straightforward computation yields
Φρ(x) = var[ρ] +

x − mφ
ρ

2 for any x in RN .11 Thus, condition

7 If N = 1, then the vector v is irrelevant, and a median ‘‘hyperplane’’ of ρ

is actually a single point—it is any point h in R such that ρ(−∞, h] ≥
1
2 and

ρ[h, ∞) ≥
1
2 .

8 To see this, apply the Intermediate Value Theorem to the function f defined by
f (r) := ρ{x ∈ RN

; v • x ≤ r} (for all r ∈ R), which is continuous because ρ is
continuous.
9 A point x in RN is in the support of ρ if ρ[U] > 0 for any open set U ⊆ RN

which contains x. Thus, Hρ
v intersects the support of ρ if and only if ρ[U] > 0 for

any open set U ⊆ RN which contains H
ρ
v .

10 This is equivalent to inequality (5); it means that ρ(x) → 0 fast enough as
∥x∥ → ∞.
11 This result is sometimes attributed to Christiaan Huygens.
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(B3) is also satisfied. Thus, ρ is φ-balanced if and only if the mean
of ρ lies in every median hyperplane of ρ. In particular:

• Any multivariate normal probability measure (with any mean)
is φ-balanced. (See Lemma A.2.)

• If ρ is a φ-balanced measure on RN , and F : RN
−→ RM is

any affine transformation, then F(ρ) is a φ-balanced measure
on RM . (Proof : F maps the mean of ρ to the mean of F(ρ).
Meanwhile, the F-preimage of any median hyperplane of F(ρ)
is a median hyperplane of ρ.)

• If N = 1, then ρ is φ-balanced if ρ has finite variance and
is symmetrically distributed about some point m contained in
the support of ρ. (For example, a uniform distribution on an
interval is φ-balanced. So is the Laplace double-exponential
distribution.)

Our last result says that, if any φ-balanced measure is used to
generate a random collection of ideal points, which in turn is used
to obtain a profile of distance-based utility functions, then this
utility profile will be concordant, with very high probability.

Theorem 8. Let φ : [0, ∞) −→ R be a convex increasing function,
and let ρ be a φ-balanced probability measure on RN with φ-median
point mφ

ρ . Let A ⊂ RN be a finite set of alternatives, such thata − mφ
ρ

 ≠
b − mφ

ρ

 for any distinct a, b inA. Finally, let {xi}i∈I

be a set of independent ρ-random points in RN . Suppose ui(a) =

−φ (∥a − xi∥) for every voter i in I and every a in A. Then the
limit (2) holds.

Remark. (a) The condition ‘‘∥a∥ ≠ ∥b∥ for all a, b ∈ A’’ is
not really necessary in Propositions 6 and 7; it is for technical
convenience. The same is true for requirement in Theorem 8 thata − mφ

ρ

 ≠
b − mφ

ρ

 for all a, b ∈ A. If these conditions are
violated for some a, b ∈ A other than the maximizer of UI, then
the Condorcet winner will still maximize UI. If one of a or b is the
maximizer of UI, then UI(a) and UI(b) will be very close, and one
of them will be the Condorcet winner (with very high probability,
when I is large). Thus, the Condorcet winner will either maximize
UI, or almost-maximize it.

(b) In a general spatial voting model, McKelvey et al. (1980,
Theorem 2) give a necessary and sufficient condition for the
existence of a Condorcet winner, which is similar to condition
(B4).12 The difference is that they apply this condition to the actual
distribution of ideal points, whereas we apply it to the underlying
probability distribution from which these ideal points are drawn.
In their model, the Condorcet winner is the median point mφ

ρ ,
whereas in our model, (B4) implies that the Condorcet winner is
the alternative in A which is closest to mφ

ρ , while (B1)–(B3) imply
that this same alternativemaximizes the utilitarian SWF (with high
probability, as I → ∞).

5. Related literature

The results in this paper complement those in Pivato (2014a,b).
Like the present paper, Pivato (2014a) considers conditions under
which ordinal voting rules maximize the utilitarian social welfare
function (SWF) in a large population. But whereas this paper
focused on Condorcet consistent rules, Pivato (2014a) focuses on
scoring rules such as the Borda rule or approval voting.Meanwhile,
Pivato (2014b) considers a broader problem: how canwe compute
(and maximize) the utilitarian SWF when we have only very
imprecise information about people’s utility functions and the
correct system of interpersonal utility comparisons, and when

12 I thank Michel le Breton for pointing out this connection.
people can be strategically dishonest? Under plausible conditions,
Pivato (2014b) shows that, in a large population, we can accurately
estimate the utilitarian SWF despite these difficulties. Indeed, this
can be done in a strategy-proof way, using a modified version of
the Groves–Clarke pivotal mechanism.

The results in this paper are also reminiscent of the Condorcet
Jury Theorem (CJT), and the literature it has generated.13 Like the
CJT, this paper says that, under certain statistical assumptions, a
large population using a certain voting rule is likely to make the
‘‘correct’’ decision. But the goal of the CJT is to find the correct
answer to an objective factual question, whereas the goal in the
present paper is to maximize social welfare.

The utilitarian analysis of majority votingwas pioneered by Rae
(1969) and Taylor (1969). Assuming voters had i.i.d. {0, 1}-valued
utility functions over two alternatives, they showed that, amongst
all anonymous voting rules, simple majority vote maximized
the expected value of the utilitarian SWF. This result has been
extended to simple games and weighted majority rules by Badger
(1972), Curtis (1972), Schofield (1972), Straffin (1977), Dubey and
Shapley (1979), Bordley (1985), Bordley (1986), Fleurbaey (2009),
and Laruelle and Valenciano (2010).

More recently, Schmitz and Tröger (2012) have shown that
‘‘weak’’ majority voting rules yield the highest expected value for
the utilitarian SWF amongst all dominant-strategy rules. As in the
present paper, Schmitz and Tröger (2012) assume all voters are ex
ante identical in the distribution of their utility functions. Azrieli
and Kim (2014) relax this assumption, so that different voters may
have different preference intensities, ex ante. Assuming voters have
independent (but not identically distributed) random utilities,
they show that the rule which maximizes ex ante utilitarian
social welfare over the class of all incentive compatible rules is
a weighted majoritarian rule (where the weight of each voter is
determined by the expected value of her utility function). Finally
(Krishna and Morgan, 2011, 2012) have shown that, when voting
is costly and participation is voluntary, simple majority vote will
maximize utilitarian social welfare, because voters with weaker
preferences will abstain from voting.

All of the aforementioned papers deal only with dichotomous
decisions. However, Tangian (2000) considered a setting with
many alternatives, and proved a result which anticipates some of
the ideas in this paper. Tangian treated each voter’s utility func-
tion u as a random variable which, for each pair of alternatives
a, b ∈ A, could be decomposed into two components: the ‘‘ordi-
nal’’ part (namely, whether u(a) > u(b)) and the ‘‘intensity’’ part
(namely, |u(a) − u(b)|). He assumed these two components were
independent random variables for each voter and each pair of al-
ternatives (and that all voters were independent of one another).
Under these assumptions, he obtained a conclusion similar to The-
orem 4: in the large-population limit, the Condorcet winner will
exist, and will maximize the utilitarian social welfare, with very
high probability. To compare Tangian’s result to Theorem 4, let ρa,b
be the probability distribution of the randomvariable u(a)−u(b).14
Tangian’s independence assumption is equivalent to requiring that
there is some constant ca,b > 0 such that ρa,b(−r) = ca,b ρa,b(r)
for all r ∈ R+.15 This obviously implies that the mean and median
of ρa,b have the same sign, which is the condition necessary for the

13 SeeNitzan (2009, Chapters 11–12) or Pivato (2013) for surveys of this literature.
14 In fact, Tangian allowed different probability distributions for the utility
functions of different voters, but this is not important.
15 To be precise, ca,b = p/(1 − p), where p = Prob[u(a) < u(b)]. Tangian’s
hypotheses require p to be bounded away from 1/2, which means c is bounded
away from 1.
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distribution of utility functions to be ‘‘concordant’’, in the sense of
Theorem 4. Thus, Theorem 4 implies Tangian’s result.16

We now turn to the question of strategic voting. Recently,
assuming voterswith independent (but not identically distributed)
random utility functions over any number of alternatives, Kim
(2014) characterized the rules which are ex ante Pareto efficient
in the class of ordinal voting rules: they are ‘‘non-anonymous’’
scoring rules (where each voter has perhaps a different score
vector). He further showed that, if the alternatives are ex ante
interchangeable, then such rules are truth-revealing in Bayesian
Nash equilibrium (BNE). A special case are the scoring rules which
maximize expected utilitarian social welfare over all ordinal rules.
Kim also constructed a rule which obtains a higher expected
utilitarian social welfare than any ordinal rule in BNE.

Kim’s rules do not always choose the utilitarian-optimal
alternative—they just yield the highest expected utilitarian social
welfare amongst all BNE-truth-revealing rules. In contrast, Obser-
vation 2 says that any Condorcet consistent rule will choose the
utilitarian-optimal alternative in any profile with certain statistical
properties. Theorem4 shows that this is highly likely in a large pop-
ulation of voters with i.i.d. random utility functions—a model very
similar to Kim’s. One difference is that Kim’s voters are not nec-
essarily identically distributed ex ante, but they all have the same
preference intensity ex post (i.e. every utility function ranges from
0 to 1). In contrast, our voters are i.i.d. ex ante, but may have differ-
ent preference intensities ex post. Another difference is that the hy-
potheses of Theorem 4 contain a built-in asymmetry between the
alternatives, whereas in Kim’s model they are ex ante interchange-
able.17

In effect, Observation 2 yields an implementation of utilitari-
anism with informational assumptions diametrically opposite to
Kim’s. In an environment with independent random voters, a BNE
means that each person votes in complete ignorance of the prefer-
ences of everyone else. In contrast, the Condorcet winner (when it
exists) will be the subgame-perfect Nash equilibrium outcome of
any agenda of pairwise votes (and several other ‘‘successive elim-
ination’’ rules) when voters have perfect information about each
other’s preferences (Miller, 1977; Bag et al., 2009).18 Thus, Theo-
rem 4 implies that, in a large population, with a distribution of util-
ity functions similar to Kim (2014), any of these voting rules will
provide a subgame-perfect implementation of utilitarianism. Of
course, neither of these extreme informational assumptions may
be realistic. However, Lehtinen (2007, 2015) has considered agen-
das of pairwise votes involving any number of alternatives; using
computer simulations, he showed that strategic voting generally
improves the utilitarian social welfare of the outcome, in settings
with incomplete information.

6. Conclusion

This paper shows that, if the statistical distribution of utility
functions in a large society satisfies certain conditions, then, with
very high probability, a Condorcet winner will exist, and will
maximize the utilitarian SWF. But in reality, does the distribution
of utility functions in a particular society satisfy these conditions?

16 Note, however, that Tangian’s hypotheses imply that ρa,b has a discontinuity at
zero (unlessρa,b(0) = 0). This rules outmost of the natural probability distributions
for the voters’ utility functions, such as the multivariate normal distributions
considered in Proposition 3.
17 But as noted in Remark 5(b), this asymmetry is not essential to obtain close-to-
optimal social welfare.
18 Actually, a voter does not need perfect information; she just needs enough to
reliably predict the outcome of each pairwise vote, so that she can correctly perform
backwards induction. It is enough to have statistics about other voters’ preferences,
which could be obtained from public opinion polls.
This is an empirical question, and the answer probably depends
on both the society and the particular policy problem under
consideration. This suggests a two-stage approach to utilitarian
social choice. In the first stage, use a survey or some other method
to estimate the utility functions of a statistically representative
sample of the population (measured, e.g. in terms of willingness-
to-pay). Using this survey data, we can determine whether the
distribution of utility functions is, in fact, concordant. If it is
concordant, then in the second stage, we can deploy any strategy-
proof, Condorcet consistent social choice rule (e.g. an agenda
of pairwise votes) to find the alternative which maximizes the
utilitarian SWF. Otherwise,wemust resort to some othermethod—
e.g. the methods explored in Pivato (2014a,b) or Kim (2014).

In the models of Sections 3 and 4, one possibly questionable
assumption is that the cardinal utility profile is a set of indepen-
dent random variables.19 This neglects the fact that voters belong-
ing to the same community or subculture may exhibit correlations
in their preferences. Empirical evidence suggests that the inde-
pendence hypothesis is false (Gelman et al., 2004). However, full
independence is not required for our results. The stochastic pro-
cess generating the utility profile can have correlations, as long as
the sample mean and sample medians converge to the mean and
medians of the underlying distribution as I → ∞. For example,
this is true for any ergodic stochastic process. It will also happen
if the correlations between voters are sufficiently weak; see Pivato
(2014b) for an illustration of this approach.

If a utility profile U is not concordant, then there may be no
Condorcet winner, and even if there is, the Condorcet winner is not
guaranteed to be a utilitarian optimum. However, if U is ‘‘close’’
to concordant, then a suitably chosen Condorcet-consistent voting
rule may still have a high probability of selecting a utilitarian
optimum. For example, consider the Copeland rule, which chooses
the alternative with the highest Copeland score. (The Copeland
score of an alternative a is defined as #{b ∈ A; some majority
prefers a over b} − #{b ∈ A; some majority prefers b over a}.)
Suppose that, for every a, b ∈ A, there is a small probability
that the profile U will fail to be {a, b}-concordant, and that this
probability is decreasing as a function of the average utility gap
between a and b (as suggested by Example 1). Also suppose that
these concordance failures are independent random variables.
Then the Copeland score of each alternative should be a good
estimator of the ‘‘true’’ ranking of that alternative by the utilitarian
social welfare order. Thus, the Copeland winner should either be
optimal or close-to-optimal with respect to the utilitarian social
welfare order. By a similar argument, the ordering ofA determined
by the Slater rule should be a good estimate of the ordering of
A determined by the utilitarian social welfare order. These are
interesting questions for future research.
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Appendix

Proposition 3 is a special case of Theorem 4, so it suffices to
prove the latter result.

Proof of Theorem 4. Let m ∈ RA be the mean of the distribution
ρ, and let a ∈ A be such thatma ≥ mb for all other b ∈ A. We will
obtain inequality (3) by estimating the probability that a is both
the utilitarian-optimal alternative and the Condorcet winner of the
profile {ui}i∈I.

For any b ∈ A \ {a}, recall that ρa,b is the distribution of xa − xb,
where x is a ρ-random variable. Thus, ρa,b has finite variance,
because ρ has finite variance. Let ma,b be the mean value of ρa,b;
then ma,b = ma − mb ≥ 0 by the definition of a; hence ma,b > 0
because ρ is concordant. Let pa,b := ρa,b (−∞, 0). Then pa,b < 1

2 ,
because median[ρa,b] > 0, because ma,b > 0 and ρ is concordant.
Let p := max{pa,b; b ∈ A \ {a}}; then p < 1

2 because pa,b < 1
2 for

all b ∈ A\{a}, andA is finite. It follows that p(1−p) < 1
4 (because

the function f (x) = x(1− x) has a unique maximum at x =
1
2 , and

f ( 1
2 ) =

1
4 ). Thus, if we define q := 2

√
p(1 − p), then q < 1. (For

example, if p = 0.4, then q = 2
√
0.4 · 0.6 ≈ 0.98.) For all i ∈ I, let

ui := (ui
b)b∈A ∈ RA be the utility function of voter i (a ρ-random

vector). For any b ∈ A \ {a}, let Ua,b := {ui
a − ui

b}i∈I (a collection
of I independent real-valued random variables).

Claim 1. If I is large enough, then for all b ∈ A \ {a}, we have

Prob

median[Ua,b] < 0


< 2

√
I qI .

Proof. Let J be the smallest integer greater than I/2. (That is: J :=

(I + 1)/2 if I is odd, whereas J := (I/2) + 1 if I is even.) Now,
|Ua,b| = I , so20
median[Ua,b] < 0


⇐⇒


at least J elements of Ua,b are in (−∞, 0)


. (A.1)

Thus, we need to estimate the probability of the right hand side of
(A.1).

Let U′
:= {y1, y2, . . . , y2J} be a set of 2J i.i.d. random variables

with Prob[yk < 0] = p and Prob[yk ≥ 0] = 1 − p, for all
k ∈ [1 · · · 2J]. Thus, for any i ∈ I and k ∈ [1 · · · 2J], we
have Prob[ui

a − ui
b < 0] = pa,b ≤ p = Prob[yk < 0], and these are

independent random events. Furthermore, |U′
| > |Ua,b| (because

2J > I). Thus,

Prob

at least J elements of Ua,b are in (−∞, 0)


≤ Prob


at least J elements of U′ are in (−∞, 0)


, (A.2)

so it suffices to estimate the right hand side of inequality (A.2).
Now, for any n ∈ [0 . . . 2J],

Prob

exactly n elements of U′ are in (−∞, 0)


=


2J
n


pn(1 − p)2J−n. Thus,

Prob

at least J elements of U′ are in (−∞, 0)


≤

2J
n=J


2J
n


pn (1 − p)2J−n

≤
(a)

2J
n=J


2J
J


pJ (1 − p)J

20 See footnote 4 for how to interpret the left-hand side of statement (A.1) when
I is even.
= J

2J
J


pJ (1 − p)J <

(b)
J
(2J)!
(J!)2

(p(1 − p))I/2

=
(c)

J
(2J)!
(J!)2

 q
2

I
≈
(d)

J


2
π I

· 2I+2
 q
2

I

= 4J


2
π I

· qI <
(e)

2I
qI
√
I

= 2
√
I qI . (A.3)

Here, (a) is because p < 1
2 , so the mode of the p-binomial

distribution on [0 · · · 2J]occurs at some n < J , so that
2J
n


pn (1 − p)2J−n <


2J
J


pJ (1 − p)J for all n ∈ [J · · · 2J].

Next, (b) is because J > I/2, and (c) is because
√
p(1 − p) = q/2,

so [p(1− p)]I/2 = (
√
p(1 − p))I = (q/2)I . Next, (d) is via Stirling’s

approximation of the factorial, which says n! ≈
√
2π n (n/e)n as

n → ∞. Thus, if J is large enough, then

(2J)!
(J!)2

≈

√
2π 2J (2J/e)2J

[
√
2π J (J/e)J ]2

=
22J

√
π J

<
2I+2

√
π I/2

=


2
π I

· 2I+2.

Finally, (e) is because 2J ≤ I + 2 and 2 ·
√
2/π ≈ 1.59, so

4J ·
√
2/π ≈ 2J (1.59) ≤ (1.59) (I + 2) < 2I , if I is large enough.

Combining statement (A.1) and inequalities (A.2) and (A.3)
yields the claim. �

Let C := max{ var[ρa,b]
m2

a,b
; b ∈ A \ {a}}; then C < ∞ because

var[ρa,b] < ∞ and ma,b ≠ 0 for all b ∈ A \ {a}, and |A| is finite.

Claim 2. For all b ∈ A \ {a} , Prob

mean[Ua,b] < 0


≤ C/I .

Proof. Let Ma,b := mean[Ua,b] =
1
I


i∈I(u

i
a − ui

b). This is an
average of i.i.d. random variables, each with expected value ma,b
and variance var[ρa,b]. Thus, Ma,b is itself a random variable with
expected valuema,b and variance var[ρa,b]/I . Thus,

Prob

Ma,b < 0


≤ Prob


|Ma,b − ma,b| > ma,b


≤
(∗)

var[ρa,b]

I m2
a,b

≤
C
I
,

as claimed. Here, (∗) is by Chebyshev’s inequality. �

Now, if a is both the utilitarian-optimal alternative and the
Condorcet winner of the profile {ui}i∈I, then the profile {ui}i∈I is
clearly concordant. Thus,

Prob ({ui}i∈I is concordant)
≥ Prob (a is both utilitarian-optimal

and the Condorcet winner for {ui}i∈I) .

Thus,

Prob ({ui}i∈I is not concordant)
≤ Prob (a is not utilitarian-optimal or a

is not the Condorcet winner for {ui}i∈I)

≤ Prob (a is not utilitarian-optimal for {ui}i∈I)

+ Prob (a is not the Condorcet winner for {ui}i∈I) . (A.4)

Let A := |A|. Then

Prob (a is not the Condorcet winner for {ui}i∈I)

= Prob

median[Ua,b] < 0 for some b ∈ A \ {a}


≤


b∈A\{a}

Prob

median[Ua,b] < 0


<
(∗)

(A − 1) 2
√
I qI , (A.5)

whileProb (a is not utilitarian-optimal for {ui}i∈I)

= Prob

mean[Ua,b] < 0 for some b ∈ A \ {a}


≤


b∈A\{a}

Prob

mean[Ua,b] < 0


≤
(Ď)

(A − 1) ·
C
I
. (A.6)
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Here, (∗) is by Claim 1, while (Ď) is by Claim 2. Combining
inequalities (A.4), (A.5), and (A.6), we obtain inequality (3). Finally,
the expression in inequality (3) converges to 0 as I → ∞, by
a straightforward application of l’Hospital’s rule, because 0 <
q < 1. �

Computations for Remark 5(a). Let ρ be a multivariate normal
distribution with mean and covariance matrix as in formula (4).
Using the notation from the proof of Theorem 4, we have a = 1
and:

m1,2 = 4 − 3 = 1, m1,3 = 4 − 1 = 3, and
m1,4 = 4 − 0 = 4

while

var[ρ1,2] = var[ρ1,3] = var[ρ1,4] = 6 + 4 = 10.

Thus, C = max


10
12

, 10
22

, 10
42


= 10. Meanwhile, if x = (x1, x2,

x3, x4) is a ρ-random vector, and Φ is the cumulative distribution
of the standard normal distribution, then

p1,2 = Prob(x1 − x2 < 0) = Φ(−0.1) = 0.4602,
p1,3 = Prob(x1 − x3 < 0) = Φ(−0.3) = 0.3821,
and p1,4 = Prob(x1 − x4 < 0) = Φ(−0.4) = 0.3446.

Thus, p = max{p1,2, p1,3, p1,4} = 0.4602, so that q =

2
√
p · (1 − p) = 0.9968. �

Propositions 6 and 7 are special cases of Theorem 8, so we will
prove that first. The proof of Theorem 8 and Proposition 7, in turn,
use the following lemma.

Lemma A.1. Let ρ be any probability measure on RN , let φ :

[0, ∞) −→ R be any (strictly) convex function, and let Φρ be defined
as in equation (6). Then Φρ is (strictly) convex.

Proof. For any x ∈ RN , define φx : RN
−→ R by setting φx(y) :=

φ (∥x − y∥) for all y ∈ RN . First observe that φx is (strictly) convex.
To see this, let y, z ∈ RN , and let r ∈ (0, 1). Then

∥r y + (1 − r) z − x∥ = ∥r (y − x) + (1 − r) (z − x)∥
≤ r ∥y − x∥ + (1 − r) ∥z − x∥ , (A.7)

by the triangle inequality. Thus,

φx (r y + (1 − r) z) = φ (∥r y + (1 − r) z − x∥)

≤
(∗)

φ (r ∥y − x∥ + (1 − r) ∥z − x∥)

≤
(Ď)

r φ (∥y − x∥) + (1 − r) φ (∥z − x∥)

= r φx(y) + (1 − r) φ(z), as desired. (A.8)

Here, (∗) is by inequality (A.7), because φ is increasing, while (Ď)
is because φ is convex, and becomes a strict inequality in the case
when φ is strictly convex.

Now, for any y ∈ RN , the defining Eq. (6) says Φρ(y) =
RN φx(y) dρ[x]. Thus, for any y, z ∈ RN , and any r ∈ (0, 1), we

have

Φρ (r y + (1 − r) z) =


RN

φx (r y + (1 − r) z) dρ[x]

≤
(∗)


RN

r φx(y) + (1 − r) φx(z) dρ[x]

= r


RN
φx(y) dρ[x]

+ (1 − r)


RN
φx(z) dρ[x]

= r Φρ(y) + (1 − r) Φρ(z),
as desired. Here, (∗) is by inequality (A.8), and is a strict inequality
in the case when φ is strictly convex. �

Proof of Theorem 8. Recall that A ⊂ RN . Let a, b ∈ A. Let v :=

b − a, and define:

Ca :=

r ∈ RN

; ∥r − a∥ < ∥r − b∥

,

Ha,b :=

r ∈ RN

; ∥r − a∥ = ∥r − b∥

,

and Cb :=

r ∈ RN

; ∥r − a∥ > ∥r − b∥

.

Then Ca and Cb are two open halfspaces in RN , separated by Ha,b,
which is the hyperplane orthogonal to v, and passing through the
point (a + b)/2.

Claim 1. If mφ
ρ ∈ Ca, then limI→∞ Prob


A majority of {ui}i∈I

prefer a over b


= 1.

Proof. Let H I
v ⊂ RN be any v-median hyperplane of the collection

{xi}i∈I—that is, H I
v is a hyperplane in RN orthogonal to v, such that

at least half the points in {xi}i∈I lie either in H I
v or on one side of

H I
v, and at least half the points in {xi}i∈I lie either in H I

v or on the
other side of H I

v. (Such a hyperplane may not be unique; if it is not
unique, then just pick one arbitrarily.)

For any i ∈ I, we have ui(a) > ui(b) if and only if xi ∈ Ca. It
follows that

(A majority of {ui}i∈I prefer a over b) ⇐⇒

H I

v ⊂ Ca

. (A.9)

Let H
ρ
v be the (unique) v-median hyperplane of ρ; then condition

(B4) says mφ
ρ ∈ H

ρ
v . Thus, H

ρ
v ⊂ Ca (because mφ

ρ ∈ Ca and H
ρ
v is

parallel to Ha,b). But as I → ∞, the sample median hyperplane
H I

v converges to H
ρ
v in probability (by the Weak Law of Large

Numbers). Thus, since Ca is an open set containing H
ρ
v , we have

lim
I→∞

Prob

H I

v ⊂ Ca


= 1. (A.10)

Combining statement (A.9) with limit (A.10) yields the claim. �

Claim 2. There is a strictly increasing function γ : [0, ∞) −→ R
such that Φρ(x) = γ

x − mφ
ρ


for all x ∈ RN .

Proof. Condition (B3) implies that there is some function γ :

[0, ∞) −→ R such that Φρ(x) = γ
x − mφ

ρ


for all x ∈

RN . Lemma A.1 says that Φρ is convex; this implies that γ must
be nondecreasing. Furthermore, the only place γ could fail to be
strictly increasing (i.e. be constant) is in a neighbourhood of 0.
But if γ was constant near 0, then Φρ would be constant in a
neighbourhood of mφ

ρ , contradicting (B2). Thus, we conclude that
γ is strictly increasing. �

Let UI :=
1
I


i∈I ui, as in Eq. (1).

Claim 3. If mφ
ρ ∈ Ca, then limI→∞ Prob [UI(a) > UI(b)] = 1.

Proof. Let γ be as in Claim 2. If mφ
ρ ∈ Ca, then

a − mφ
ρ

 <b − mφ
ρ

; thus,Φρ(a) < Φρ(b) (because γ is strictly increasing).
Fix C ∈ R with Φρ(a) < C < Φρ(b).

Let x be a ρ-random variable. From Eq. (6) it is clear that
Φρ(a) is the expected value of φ (∥x − a∥). Meanwhile, −UI(a) =
1
I


i∈I φ (∥xi − a∥) is an empirical estimate of this expected

value, based on the sample set {xi}i∈I. Thus, since Φρ(a) < C , the
Weak Law of Large Numbers says limI→∞ Prob[−UI(a) < C] = 1.
By a similar argument, limI→∞ Prob[−UI(b) > C] = 1. Thus,
limI→∞ Prob [UI(a) > −C > UI(b)] = 1. �
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If mφ
ρ ∈ Ca, then Claim 1 and 3 together imply that

lim
I→∞

Prob (The utility profile {ui}i∈I is {a, b}-concordant) = 1.

We can make a similar argument in the case when mφ
ρ ∈ Cb.

Finally, it is impossible that mφ
ρ ∈ Ha,b, because

a − mφ
ρ

 ≠b − mφ
ρ

 by hypothesis.
This argument holds for any pair a, b ∈ A. Since A is finite,

Observation 2 implies that

lim
I→∞

Prob (The utility profile {ui}i∈I is concordant) = 1. �

Proposition 6 follows from Theorem 8 and the next result.

Lemma A.2. Suppose φ(x) = x2 for all x ≥ 0. Then any multivariate
normal probability measure on RN is φ-balanced.

Proof. Let ρ be a multivariate normal probability measure on RN .
As observed in the text, ρ is φ-balanced if and only if the mean of
ρ lies in every median hyperplane of ρ. Let v ∈ RN , and let ρ ′ be
the orthogonal projection of ρ onto the line L through v. Then ρ ′

is also normal, and the mean of ρ ′ is just the orthogonal projection
of themean of ρ ontoL. Meanwhile, the v-median hyperplaneH

ρ
v

is just the hyperplane in RN orthogonal to L, passing through the
median point of ρ ′. But in a one-dimensional normal distribution,
the mean equals the median. So the mean and median of ρ ′ are
equal. This means that the mean of ρ lies in H

ρ
v , as desired. �

Proposition 7 follows from Theorem 8 and the next result.

Proposition A.3. Let ρ be any probability measure on R which is
symmetrically distributed about some point m in the support of ρ .
Or, let N ≥ 2, and let ρ be any probability measure on RN which is
rotationally symmetric around some point m in RN . Then for every
strictly convex increasing function φ : [0, ∞) −→ R satisfying
inequality (5), the measure ρ is φ-balanced, with mφ

ρ = m.

Proof. First, note that φ satisfies inequality (5) if and only if it
satisfies condition (B1). Thus, the function Φρ is well-defined in
Eq. (6).

Claim 1. m is the unique global minimum of Φρ .

Proof. First suppose N ≥ 2. Since φ is strictly convex, Lemma A.1
says that Φρ is strictly convex. Thus, the global minimum of Φρ is
unique. But if ρ is rotationally symmetric aroundm, then so is the
function Φρ . Thus, so is the set of global minima of Φρ . Thus the
(unique) global minimummust be atm.

The argument in the case N = 1 is similar, except now
‘‘rotationally symmetric around m’’ is changed to ‘‘symmetric
under reflection across the pointm’’. �

Claim 2. For every v ∈ RN , the measure ρ has a unique v-median
hyperplane H

ρ
v , and m ∈ H

ρ
v .

Proof. We will handle the cases N = 1 and N ≥ 2 separately.
In the caseN = 1, amedian ‘‘hyperplane’’ is just amedian point

of ρ (the vector v is irrelevant in this case). The theoremhypothesis
states that ρ is symmetrically distributed about m. Thus, m is a
median point of ρ. But we also assumed thatm is in the support of
ρ; thus,m is the onlymedian point of ρ.

Now suppose N ≥ 2. If ρ is rotationally symmetric around m,
then so is support(ρ). Thus, support(ρ) can be written as a union
of concentric spheres centred at m. Now let v ∈ RN be any vector,
and define

C−

v :=

r ∈ RN

; v • r < v • m

,

Hρ
v :=


r ∈ RN

; v • r = v • m

,

and C+

v :=

r ∈ RN

; v • r > v • m

.

Thus, H
ρ
v is the unique hyperplane in RN orthogonal to v and

containing m. Note that the halfspace C−
v can be transformed into

C+
v by rotating 180 degrees through any axis passing through

m. Since ρ is rotationally symmetric around m, this implies that
ρ[C−

v ] = ρ[C+
v ]; thus, H

ρ
v is a v-median hyperplane for ρ.

However, we have already noted that support(ρ) is a union of
concentric spheres centred at m; thus, Hv intersects support(ρ).
Thus, H

ρ
v is the only v-median hyperplane for ρ. This argument

works for any v ∈ RN . �

By hypothesis, ρ satisfies condition (B1). Claim 1 implies that
ρ satisfies conditions (B2) and (B3), while Claim 2 implies that it
satisfies condition (B4). Thus, ρ is Φ-balanced. �
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