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• In formal utilitarian voting, voters assign a real number to each alternative.
• The alternative with the highest total score wins.
• Range voting is the same, only each score must be between zero and one.
• We give axiomatic characterizations via reinforcement and overwhelming majority.
• We also use two new axioms: maximal expressiveness, and ‘‘no minority overrides’’.
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a b s t r a c t

In formal utilitarian voting, each voter assigns a numerical value to each alternative, and society chooses
the alternative with the highest total value. Range voting is similar, except that each voter’s values
are constrained to lie in the interval [0, 1]. We characterize these rules via the axioms of anonymity,
neutrality, reinforcement, overwhelming majority, and two novel conditions: maximal expressiveness,
and an absence of ‘‘minority overrides’’.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classical utilitarianism is based on the principle that social
decisions should bemade so as tomaximize the ‘‘net benefit’’ to the
society, where this ‘‘net benefit’’ is the sum of the benefits accruing
to all members of that society. In modern welfare economics, this
principle is embodied by the utilitarian social welfare function,
which has a variety of appealing axiomatic characterizations
(Blackorby et al., 2002). However, these axiomatizations assume
some form of interpersonally comparable cardinal utility, which is
regarded by many people as being metaphysically dubious, or at
least, highly impractical.

In the setting of Arrovian preference aggregation, ‘‘positional’’
rules such as the Borda rule are attractive in part because they ap-
peal to the same ‘‘net benefit’’ intuition as utilitarianism, but they
assume only ordinal and noncomparable preferences. But these
rules effectively impose a cardinal utility representation, by assign-
ing a numerical value to each position in each agent’s preference
order. This cardinalization might not be appropriate in all cases.
For example, in one social decision, a voter Alice might have a very
mild preference w ≻ x, and a very mild preference y ≻ z, but a
very strong preference for either of w or x over either of y or z. In
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another social decision, Alicemight have a clear favorite alternative
w′, which she strongly prefers over any of x′, y′, or z ′, and relatively
weak preferences x′

≻ y′
≻ z ′. But the Borda rule (for example)

does not recognize such nuances; it will impute to Alice the utility
function u(w) = u(w′) = 3, u(x) = u(x′) = 2, u(y) = u(y′) = 1
and u(z) = u(z ′) = 0. As long as we remain within the framework
of Arrovian preference aggregation, Alice has no way of expressing
the relative intensity of different preferences.

Once we leave the Arrovian framework, other options become
available. One option is formal utilitarianism, where each person
votes by assigning a numerical ‘score’ to each alternative, and soci-
ety picks the alternativewith the highest average score.1 However,
this rule is obviously vulnerable to strategic preference exaggera-
tion, unless we impose upper and lower bounds on the scores that
voters are allowed to assign. Once we impose such limits, we have
a voting rule called range voting (Smith, 2000; Gaertner and Xu,
2012; Macé, 2013).2

1 ‘Formal’ utilitarian voting corresponds to the trueutilitarian socialwelfare order
only if the scores assigned by each voter are given by her cardinal utility function.
But these scores could also be some monotone transform of her cardinal utility
function (e.g. theNash SWO is obtained by adding the logarithms of voters’ utilities).
Or these scores could be completely unrelated to cardinal utility data. Hence the
qualifier ‘formal’.
2 Range voting is very similar to the relative utilitarian social choice function

introduced by Dhillon (1998) and Dhillon and Mertens (1999). But there are two
subtle differences. First, Dhillon and Mertens interpret each voter’s preference
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This note will characterize formal utilitarianism and range vot-
ing, using the axioms of anonymity, neutrality, reinforcement, and
overwhelming majority. The first two axioms are standard. Re-
inforcement means that, if two disjoint subpopulations both in-
dependently select the same alternative, then the union of these
two subpopulations should also select that alternative; this con-
dition appears frequently in axiomatic characterizations of posi-
tional preference aggregation rules,3 and abstract scoring rules,4
as well as characterizations of the Borda rule,5 approval voting
rule,6 and the relative utilitarian rule.7 Overwhelming majority is
an Archimedean or continuity condition, which means that a suf-
ficiently large subpopulation of voters can determine the outcome
and ‘‘overwhelm’’ any small minority; it also appears in much of
the aforementioned literature. I will also impose two novel condi-
tions: maximal expressiveness, and no minority overrides. The first
of these captures the idea that Alice should be able to express the
difference in the intensity of her preferences w ≻ x ≻ y ≻ z,
compared to the intensity of her preferences w′

≻ x′
≻ y′

≻

z ′. (We do not need to take a specific position on exactly what
such preference intensities mean, operationally speaking, or how
they should be interpersonally compared—the claim ismerely that
voters should havemaximal expressive freedom.) The second con-
dition captures the idea that Alice should not be able to single-
handedly control the outcome of the election by claiming that, for
her, u(w) − u(z) = 10100.

Theorem 1 (below) states that formal utilitarianism is the most
expressive variable-population voting rule satisfying the axioms of
anonymity, neutrality, reinforcement, andoverwhelmingmajority.
Theorem 2 states that range voting is the most expressive rule if
we impose, in addition, the requirement of no minority overrides.
The proofs of these theorems depend on results and concepts in-
troduced in Pivato (2013). That paper studies two abstract classes
of voting rules: balance rules and scoring rules. The present paper
first uses results from Pivato (2013) to prove a key technical result,
Proposition A.1 (in the Appendix), which can be seen as a general-
ization of themain result ofMyerson (1995). PropositionA.1 is then
used to prove Theorems1 and2. Thepresent paper can thus be seen
as a concrete application of the abstract results of Pivato (2013).

Thenext sectionwill formally state the axioms andmain results.
Appendix A contains the proofs of the main results. Appendix B
discusses the independence of the axioms.

2. Model and main results

LetXbe a finite set of social alternatives, and letV be a (possibly
infinite) set of possible ‘signals’ which could be sent by each voter.
Let N := {0, 1, 2, 3, . . .} and Z := {±n; n ∈ N}. For any n ∈ ZV ,
let ∥n∥ :=


v∈V |nv|. Define N⟨V⟩

:= {n ∈ NV
; ∥n∥ < ∞}. If

n ∈ N⟨V⟩, then n represents an anonymous profile of voters: for
each v ∈ V , we interpret nv as the number of voters sending the
signal v, while ∥n∥ is the size of the whole population. Note that

data as a von Neumann–Morgenstern (vNM) utility function, normalized to range
over the interval [0, 1]. But range voting does not propose any particular utility
interpretation, either vNM or otherwise. Second, relative utilitarianism requires
each voter’s utility scores to span the entire interval [0, 1] (i.e. her minimum score
must be 0, her maximummust be 1); range voting does not require this.
3 See Smith (1973) (who calls this condition ‘separability’) and Young (1974b,

1975) (who calls it ‘consistency’).
4 See Myerson (1995) or Pivato (2013).
5 See Young (1974a, 1975) and Nitzan and Rubinstein (1981).
6 See Fishburn (1978), Morkelyunas (1981), Alós-Ferrer (2006), and Alcantud and

Laruelle (2013).
7 See Dhillon (1998) and Dhillon andMertens (1999), who refer to reinforcement

as ‘extended Pareto’.
we do not fix ∥n∥ in advance. Let 0 = (0, 0, . . . , 0) be the all-zeros
vector in N⟨V⟩. A variable population, anonymous voting rule is a
correspondence F : N⟨V⟩ ⇒ X such that F(0) = X. Thus, for all
n ∈ N⟨V⟩, the outcome F(n) ⊆ X is a nonempty set (typically a
singleton).

This paper is concerned with two voting rules. In the formal
utilitarian voting rule, V := RX. In other words, each voter’s signal
assigns a real-valued ‘‘score’’ to each alternative. We compute the
total score which each alternative receives from all voters.8 Then,
the alternative(s) with the highest total score wins. Range voting
is a very similar procedure, except that V := [0, 1]X. Let us now
consider the axiomswhichwill be the basis of our characterization
results.
Reinforcement. A voting rule F : N⟨V⟩ ⇒ X satisfies reinforcement 9

if the following is true: for any n,m ∈ N⟨V⟩, if F(n) ∩ F(m) ≠ ∅,
then F(n+m) = F(n)∩F(m). Here, the profile (n+m) represents
a union of two disjoint subgroups, represented by profiles n and
m. Reinforcement says: if x ∈ X and both n and m endorse x
(i.e. x ∈ F(n) and x ∈ F(m)), then we should have x ∈ F(n + m).
Furthermore, in this case, F(n + m) should consist of only those
x ∈ X which receive this joint endorsement.
Neutrality. LetΠV be the set of all permutations ofV . This set forms
a group under the operation of function composition.10 For any
n ∈ N⟨V⟩ and π ∈ ΠV , we define π(n) := m, wheremv := nπ−1(v)

for all v ∈ V . Let ΠX be the set of all permutations of X; again it is
a group under composition. A voting rule F : N⟨V⟩ ⇒ X is neutral
if there exists a group homomorphism11 ν : ΠX −→ ΠV (the neu-
tralizer ) such that, for all π ∈ ΠX, if π := ν(π), then F (π(n)) =

π (F(n)) for all n ∈ N⟨V⟩. Thus, every alternative in X is treated
equally: for any x, y ∈ X, and every profile n ∈ N⟨V⟩ such that
x ∈ F(n), there exists somepermutationn′ ofn such that y ∈ F(n′).
Overwhelming majority. A voting rule F satisfies overwhelming ma-
jority 12 if, for any n,n′

∈ N⟨V⟩, there exists some M ∈ N such
that, for all m > M , we have F(mn + n′) ⊆ F(n). This means: if
one sub-population of voters (represented by mn) is much larger
than another sub-population (represented by n′), then the choice
of the combined population should be determined by the choice of
the larger sub-population—except that the smaller sub-population
may act as a ‘tie-breaker’ in some cases.
Maximal expressiveness. Let V and W be two sets of ‘signals’, and
let α : V −→ W be a (‘translation’) function. Define α∗ :

N⟨V⟩
−→ N⟨W⟩ as follows: for any n ∈ N⟨V⟩, and any w ∈ W ,

let α∗(n)w :=


{nv; v ∈ V and α(v) = w} (in particular, if
α(v) ≠ w for all v ∈ V , then α∗(n)w = 0). Given two voting rules
F : N⟨V⟩ ⇒ X and G : N⟨W⟩ ⇒ X, we say that G is at least as ex-
pressive as F if there is some function α : V −→ W such that, for
all n ∈ N⟨V⟩,G[α∗(n)] = F(n). Thus, for any v ∈ V , voting for v in
the rule F is effectively equivalent to voting for α(v) in G. Thus, the

8 Formally, denote a generic element of V by v = (vx)x∈X , where vx ∈ R for all
x ∈ X. Then for any profile n ∈ N⟨V⟩ and alternative x ∈ X, the total score of x is

v∈V nvvx .
9 Sometimes this is called consistency.

10 Formally, a group is an ordered pair (G, ∗), whereG is a set and ∗ : G×G −→ G
is an associative binary operation, such that (1) there exists a (unique) identity
element e ∈ G is such that e∗g = g = g ∗ e for all g ∈ G, and (2) for all g ∈ G, there
is a (unique) inverse element g−1 such that g−1

∗ g = e = g ∗ g−1 . Often, we will
abuse notation and refer to ‘‘the group G’’, when ∗, e, and the inversion operation
are clear from context. See Dummit and Foote (2004) for a good introduction to
group theory.
11 If (G, ∗) and (G′, ∗′) are two groups, then a group homomorphism is a function
φ : G −→ G′ such that φ(g1 ∗ g2) = φ(g1) ∗

′ φ(g2) for all g1, g2 ∈ G. It follows that
φ(e) = e′ and φ(g−1) = φ(g)−1 for all g ∈ G (Dummit and Foote, 2004). In the
present example, this means that ν(π1 ◦ π2) = ν(π1) ◦ ν(π2) for all π1, π2 ∈ ΠX .
12 Sometimes this is called continuity or the Archimedean property .
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voters can express any profile of opinions via G which they could
have expressed via F .

For example, ifV ⊂ W , thenN⟨V⟩ can be regarded as a subspace
of N⟨W⟩. In this case, if F is just the restriction of G to N⟨V⟩, then G
is at least as expressive as F (to see this, let α : V −→ W be the
inclusion map). In particular, the formal utilitarian rule is at least
as expressive as the range voting rule, which in turn is at least as
expressive as the approval voting rule, which in turn is at least as
expressive as the plurality rule. Likewise, the range voting rule is
at least as expressive as the Borda rule.

Two voting rules are equivalent if each is at least as expressive
as the other. For example, let V := RX and let FU be the formal
utilitarian voting rule. Let V+ be the non-negative orthant of the
vector space V , and let F+ be the restriction of FU to N⟨V+⟩. Then
F+ is equivalent to FU .13 Likewise, let V0 be the hyperplane of all
vectors inV whose entries sum to zero, and let F0 be the restriction
of FU to N⟨V0⟩. Then F0 is equivalent to FU .14

The rule F is themost expressive member of some class of rules
if it is at least as expressive as every other element of that class.
Clearly, such a rule, if it exists, is unique up to equivalence.We now
come to our first main result.

Theorem 1. Let X be a finite set. Formal utilitarian voting is the
most expressive X-valued voting rule which satisfies reinforcement,
neutrality, and overwhelming majority.

Minority overrides. Unfortunately, formal utilitarian voting suffers
from an obvious flaw. For any v ∈ V , define 1v

∈ N⟨V⟩ by (1v)v
:= 1, whereas (1v)w := 0 for all w ∈ V \ {v}. A voting rule F :

N⟨V⟩ ⇒ X admits minority overrides if, for any n ∈ N⟨V⟩, there
is some v ∈ V such that F(n + 1v) ≠ F(n). Thus, regardless of
the size of the populace and the weight of existing public opinion,
a single voter can always cast a vote which changes the outcome.
Such ‘overrides’ not only generate political instability; they are ar-
guably undemocratic. It might be better if F did not admit minor-
ity overrides.15 IfV is finite, then any rule satisfying overwhelming
majority will not admit minority overrides.16 However, we will be
interested in the casewhenV is infinite. For neutral voting rules, an
absence of minority overrides is effectively equivalent to imposing
upper and lower bounds on the scores which voters can assign to
alternatives (see Lemma A.8). For example: formal utilitarian vot-
ing admits minority overrides, but range voting does not. Here is
our second main result.

Theorem 2. Let X be a finite set. Range voting is the most expressive
X-valued voting rule which satisfies reinforcement, neutrality, over-
whelming majority, and does not admit minority overrides.

We have already noted that the most expressive voting rule
in a particular class of rules is only unique ‘‘up to isomorphism’’.
This means that it is possible that two different scoring systems
both yield the maximally expressive rule. The formal utilitarian
and range voting rules both use rather large sets of signals (RX

and [0, 1]X, respectively). This raises the question: is there a voting
rule with a much smaller (e.g. countable or finite) signal set which
is equivalent to one of these rules? The next result answers this
question in the negative.

13 Proof : FU is at least as expressive as F+ because V+ ⊂ V . To see the converse,
for any v = (vx)x∈X ∈ V , let v := minx∈X vx , and then defineα(v) := (vx−v)x∈X ∈

V+ . This defines a function α : V −→ V+ . For any n ∈ N⟨V⟩ , it is easy to see that
F+[α(n)] = FU (n).
14 Proof : FU is at least as expressive as F0 because V0 ⊂ V . To see the converse, let
α : V −→ V0 be the orthogonal projection function. For any n ∈ N⟨V⟩ , it is easy to
see that F+[α(n)] = FU (n).
15 Of course, there will always be some profiles where a single voter can change
the outcome; the point is that this should not be true for all profiles.
16 Proof. Find n ∈ N⟨V⟩ such that |F(n)| = 1. If M ∈ N is large enough, then
overwhelming majority protects the profileMn from minority overrides.
Proposition 3. There is no voting rule with a countable signal set
which is as expressive as either formal utilitarianism or range voting.

It is also easy to see that there is nomaximality result compara-
ble to Theorems 1 or 2 if we restrict ourselves to the class of voting
rules with finite or countable signal sets.17 However, for practical
purposes, an ‘‘approximation’’ of range voting using a very large
but finite set of scores is probably sufficient. (It seems unlikely that
many voters really need scores with more than five decimal places
of precision to express their political preferences, much less that
they require irrational numbers.) Furthermore, there is a sense in
which, for strategic voters, the approval voting rule is already the
‘‘maximally’’ expressive rule in the class of voting rules which sat-
isfy reinforcement, neutrality, overwhelming majority, and do not
admit minority overrides. Núñez and Laslier (in preparation) have
shown that, in a large population of strategic voters, approval vot-
ing is strategically equivalent to range voting, meaning that, for a
given profile of voter utility functions, the two rules will always
produce the same outcomes in strategic voting equilibrium. Thus,
from a strategic voting perspective, it seems that the extra expres-
siveness offered by range voting is redundant.

However, this judgment may be too hasty. Núñez and Laslier
have also shown that, in a small population, the two rules are not
strategically equivalent. Furthermore, many voters are not strate-
gic; they regard voting as an act of political expression, as well as a
chance to influence the outcome. For such voters, the extra expres-
siveness offered by range voting may be valuable for non-strategic
reasons.
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Appendix A. Proofs

For any vector s = (sv)v∈V ∈ RV , we define a function s :

N⟨V⟩
−→ R by setting s(n) :=


v∈V nv sv for all n ∈ N⟨V⟩.18 A

real-valued score system on (X, V) is an X-indexed collection of
vectors S := {sx}x∈X ⊂ RV . The scoring rule determined by S is
the voting rule FS : N⟨V⟩ ⇒ X defined as follows:

FS(n) := argmax
x∈X

sx(n), for all n ∈ N⟨V⟩. (A.1)

Intuitively, sx(n) is the ‘score’ which alternative x receives from the
profile n; each voter who sends the signal v contributes sxv ‘points’
to this score. The alternative with the highest score wins. For ex-
ample, the Borda rule, the plurality rule, the formal utilitarian rule,
range voting, and approval voting are all scoring rules. Myerson
(1995) showed that, if V is finite, and F : N⟨V⟩ ⇒ X is neutral,
and satisfies reinforcement and overwhelming majority, then F is
a scoring rule.

For any π ∈ ΠV and any r = (rv)v∈V ∈ RV , we define rπ ∈ RV

by setting (rπ)v := rπ(v) for all v ∈ V . Let ν : ΠX −→ ΠV be
a group homomorphism. A real-valued score system S = {sx}x∈X

is ν-neutral if, for all π ∈ ΠX and x, y ∈ X, if π(y) = x andπ := ν(π), then sx π = sy. More generally, we say S is neutral
if it is ν-neutral for some group homomorphism ν : ΠX −→

ΠV . For example, all the scoring rules mentioned in the previous

17 Proof sketch. Given any scoring rule F1 with a countable signal set S, it is always
possible to construct another scoring rule F2 which is strictly more expressive, by
deploying a countable signal set S2 which is a strict superset of S1 .
18 If V was finite, then we could simply write s(n) = s • n, where ‘•’ is the inner
product operation on RV .
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paragraphhaveneutral score systems,with the obvious neutralizer
homomorphisms.

A voting rule F : N⟨V⟩ ⇒ X is trivial if F(n) = X for alln ∈ N⟨V⟩;
otherwise F is nontrivial . The proofs of Theorems 1 and 2 both de-
pend on the next result, which extends Myerson’s theorem to the
case when V is infinite.

Proposition A.1. Let X be a finite set, and let V be an arbitrary set. If
a voting rule F : N⟨V⟩ ⇒ X satisfies reinforcement and overwhelming
majority, and is neutral and nontrivial, then F = FS, where S is a
neutral, real-valued score system on (X, V).

The proof of Proposition A.1 requires several preliminary lem-
mas, which build on previous results from Pivato (2013) con-
cerning scoring rules, balance rules, and linearly ordered Abelian
groups.

A linearly ordered Abelian group is a triple (R, +, >), where R
is a set, ‘+’ is an Abelian group operation,19 and ‘>’ is a complete,
antisymmetric, transitive binary relation such that, for all r, s ∈ R,
if r > 0, then r + s > s. For example: the set R of real numbers
is a linearly ordered Abelian group, with the standard ordering
and addition operator. So is any subgroup of R. For any nonzero
N ∈ N, let RN

lex denote the group RN with vector addition and the
lexicographic order; then RN

lex is a linearly ordered Abelian group.
For any r = (rv)v∈V ∈ RV , we define a function r : N⟨V⟩

−→ R
by setting r(n) :=


v∈V nvrv for alln ∈ N⟨V⟩. AnR-valued balance

system on (X, V) is an X2-indexed collection B := {bx,y
}x,y∈X ⊂

RV such that bx,y
= −by,x for all x, y ∈ X (in particular, bx,x

= 0
for all x ∈ X). We then define FB : N⟨V⟩ ⇒ X as follows: for all
n ∈ N⟨V⟩, we set FB(n) := {x ∈ X; bx,y(n) ≥ 0 for all y ∈ X}

(this set might be empty). We say that FB is a perfect balance rule
if, for all n ∈ N⟨V⟩, we have FB(n) ≠ ∅, and furthermore, for any
x ∈ FB(n) and any y ∈ X \ FB(n), we have bx,y(n) > 0. This
class of voting ruleswas introduced byMyerson (1995) and further
explored by Pivato (2013), with the following result:

Lemma A.2. Let X and V be arbitrary sets, and let F : N⟨V⟩ ⇒ X be
a variable population anonymous voting rule. If F satisfies reinforce-
ment, then F is a perfect balance rule.

Proof (Pivato, 2013, Lemma B2). �

Given any linearly ordered Abelian groupR, an R-valued score
system on (X, V) is an X-indexed collection S := {sx}x∈X ⊂ RV .
The scoring rule FS : N⟨V⟩ ⇒ X again defined by formula (A.1).
For any π ∈ ΠV and any r ∈ RV , we define rπ ∈ RV by setting
(rπ)v := rπ(v) for all v ∈ V . Let ν : ΠX −→ ΠV be a group
homomorphism. An R-valued score system S = {sx}x∈X is ν-
neutral if, for all π ∈ ΠX and x, y ∈ X, if π(y) = x andπ := ν(π),
then sx π = sy. More generally, S is neutral if it is ν-neutral for
some group homomorphism ν : ΠX −→ ΠV .

Proposition A.3. Let R be a linearly ordered Abelian group. Let X be
a finite set, let V be any set, and let F : N⟨V⟩ ⇒ X be a balance rule
determined by a perfect R-valued balance system. Then F is neutral if
and only if F is a scoring rule with an R-valued neutral score system.

Proof (Pivato, 2013, Proposition B9). �

A voting rule F : N⟨V⟩ ⇒ X is nondegenerate if, for all x ∈ X, there
is some n ∈ N⟨V⟩ with F(n) = {x}.

19 That is, (R, +) is a group, and the operation + is commutative: r + s = s + r
for all r, s ∈ R. Typically, the identity of an Abelian group is denoted by ‘‘0’’, and
the inverse of the element r ∈ R is denoted by ‘‘−r ’’ (Dummit and Foote, 2004).
Again, we normally abuse notation and refer to ‘‘the linearly ordered Abelian group
R’’, when the operation + and order > are clear from context.
Lemma A.4. SupposeX is finite. If a voting rule F : N⟨V⟩ ⇒ X is neu-
tral, nontrivial, and satisfies reinforcement, then F is nondegenerate.

Proof. Let N := |X| (finite).
Claim 1: Let n ∈ N⟨V⟩, and let M := |X\F(n)| (so |F(n)| = N−M).

(a) If |F(n)| ≤ N/2, then there exists n′
∈ N⟨V⟩ with |F(n′)| = 1.

(b) If |F(n)| > N/2, then there exists n′
∈ N⟨V⟩ with |F(n′)| =

N − 2M .

Proof. Let Y := F(n) ⊆ X. If |Y| ≤ N/2, then there exists some
Y′

⊆ X such that |Y′
| = |Y| and |Y ∩ Y′

| = 1.
If |Y| > N/2, then there exists some Y′

⊆ X such that
|Y′

| = |Y| and X \ Y′ is disjoint from X \ Y, and thus,

|X \ (Y′
∩ Y)| = |(X \ Y′) ⊔ (X \ Y)| = |X \ Y′

| + |X \ Y|

= 2|X \ Y| = 2M.

Thus, |Y′
∩ Y| = |X| − 2M = N − 2M .

In either case, |Y′
| = |Y|, so there exists π ∈ ΠX with π(Y) =

Y′. Letπ ∈ ΠV be the image of π under the neutralizer homomor-
phism. Thus, F [π(n)] = Y′, by neutrality. Let n′

:= n + π(n). By
construction Y′

∩ Y ≠ ∅; thus, n′
∈ N⟨V⟩ and F(n′) = Y′

∩ Y, by
reinforcement. ♦ Claim 1

Claim 2: There exists n′
∈ N⟨V⟩ with |F(n′)| = 1.

Proof. Since F is nontrivial, there exists some n ∈ N⟨V⟩ with |F(n)|
< N . Now applying Claim 1(b) repeatedly, we can obtain some
n′′

∈ N⟨V⟩ with |F(n′′)| ≤ N/2. Then apply Claim 1(a) to obtain
some n′

∈ N⟨V⟩ with |F(n′)| = 1. ♦ Claim 2

Now, let n′
∈ N⟨V⟩ be from Claim 2. Thus, F(n′) = {x} for some

x ∈ X. Let y ∈ X. Find π ∈ ΠX such that π(x) = y. Let π ∈

ΠV be the image of π under the neutralizer homomorphism. Then
F [π(n′)] = π [F(n)] = {y}, by neutrality. This works for any
y ∈ X; thus, F is nondegenerate. �

Lemma A.5. For any b ∈ RV,n ∈ N⟨V⟩ and π ∈ ΠV , we have
(bπ)(n) = b (π(n)).

Proof.

(bπ)(n) =


v∈V

nv(bπ)v =


v∈V

nvbπ(v) =
(∗)


v′∈V

nπ−1(v′)bv′

=


v∈V

π(n)v′bv′ = b(π(n)).

Here, (∗) is the change of variables v′
:= π(v). �

A voting rule F : N⟨V⟩ ⇒ X satisfies the tie condition (TC) if, for all
distinct x, y ∈ X:

(TC1) There exists some n ∈ N⟨V⟩ with F(n) = {x, y}.
(TC2) For any finite W ⊆ V , there exists somem ∈ N⟨V⟩ such that

mw > 0 for all w ∈ W , and F(m) ⊇ {x, y}.

Lemma A.6. Suppose X is finite, and let F : N⟨V⟩ ⇒ X be a voting
rule.

(a) If F is neutral, then F satisfies (TC2) of the tie condition.
(b) If F is neutral, nontrivial, and satisfies reinforcement, then F

satisfies (TC1).

Proof. (a) Fix x, y ∈ X. Let W ⊆ V be finite, and define n ∈ N⟨V⟩

by nw := 1 for all w ∈ W , while nv := 0 for all v ∈ V \ W . Define
n :=


π∈ΠX

π(n) (here, for all π ∈ ΠX, we use π ∈ ΠV to de-
note the image ofπ under the neutralizer homomorphism). Thenn
is ΠX-fixed, so neutrality implies that F(n) is a ΠX-invariant sub-
set of X. Since F(n) ≠ ∅, this means that F(n) = X. In particular,
{x, y} ⊆ F(n). Finally, for all w ∈ W , we have nw ≥ nw = 1 ≥ 0,
as required by (TC2).
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(b) If F : N⟨V⟩ ⇒ X satisfies reinforcement, then Lemma A.2
says F is a perfect balance rule. If F is also neutral, then Proposi-
tion A.3 says that F is a scoring rule with a neutral scoring system
S. Meanwhile, Lemma A.4 yields some n ∈ N⟨V⟩ with |F(n)| = 1.
Let F(n) = {x} for some x ∈ X. There are now two cases: either
|X| = 2, or |X| ≥ 3.

• If |X| = 2, then let y be the only other element in X besides
x, and let π ∈ ΠX be the permutation such that π(x) = y and
π(y) = x.

• If |X| ≥ 3, then, since X is finite, there exists y ∈ X such that

sx(n) > sy(n) ≥ sz(n), for all z ∈ X \ {x, y}. (A.2)

In this case, let π ∈ ΠX be the permutation such that π(x) = y
and π(y) = x, while π(z) = z for all other z ∈ X \ {x, y}.
In either case, π2

= Id. Let π ∈ ΠV be the image of π under the
neutralizer homomorphism. Define n := n + π(n).
Claim 1: F(n) = {x, y}.

Proof. Note that

sx(π(n)) =
(∗)

(sxπ)(n) =
(Ď)

sπ
−1(x)(n) = sy(n), (A.3)

and sy(π(n)) =
(∗)

(syπ)(n) =
(Ď)

sπ
−1(y)(n) = sx(n). (A.4)

Here, both (∗) are by Lemma A.5, and both (Ď) are by neutrality.
Thus,

sx(n) = sx (n + π(n)) = sx (n) + sx (π(n))
=
(∗)

sx (n) + sy (n) , (A.5)

and sy(n) = sy (n + π(n)) = sy (n) + sy (π(n))
=
(Ď)

sy (n) + sx (n) . (A.6)

Here, (∗) is by Eq. (A.3), and (Ď) is by Eq. (A.4). Eqs. (A.5) and (A.6)
imply that sx(n) = sy(n). If X = {x, y}, then this implies that
F(n) = {x, y}.

On the other hand, if |X| ≥ 3, then for any z ∈ X \ {x, y}, we
also have

sz(n) = sz (n + π(n)) = sz (n) + sz (π(n)) , (A.7)

and sz(π(n)) =
(∗)

(szπ)(n) =
(Ď)

sπ
−1(z)(n) ≤

(♦)

sy(n) <
(♦)

sx(n). (A.8)

Here, (∗) is by Lemma A.5, (Ď) is by neutrality, and both (♦) are
by inequality (A.2). Combining Eqs. (A.5)–(A.7) with inequalities
(A.2) and (A.8), we conclude that sz(n) < sx(n) = sy(n), for all
z ∈ X \ {x, y}. Thus, F(n) = {x, y}, as desired. ♦ Claim 1

Now, let x′, y′
∈ X. Find π ∈ ΠX such that π(x) = x′ and π(y) =

y′. Letπ ∈ ΠV be the image of π under the neutralizer homomor-
phism. Then

F [π(n)] =
(N)

π [F(n)] =
(∗)

π{x, y} = {x′, y′
},

as desired. Here, (N) is by neutrality, and (∗) is by Claim 1. �

Let (R, +, >) be a linearly ordered Abelian group, and let r, s ∈

R be positive. We say r is infinitesimal relative to s if N r < s
for all N ∈ N. We say (R, +, >) is Archimedean if it has no in-
finitesimal elements. For example R (with the standard ordering)
is Archimedean, but RN

lex is not, if N ≥ 2. We state the next result
for future reference.

Hölder’s theorem. (R, +, >) is Archimedean if and only if it is iso-
morphic to a subgroup of (R, +, >).

Proof. See Theorem 1 on p. 45, Chapter IV.1 of Fuchs (2011). �
LetZ⟨V⟩
:= {n ∈ ZV

; ∥n∥ < ∞}; thenZ⟨V⟩ is anAbelian group.
If R is another Abelian group, then there is a bijective correspon-
dence between RV and the set of group homomorphisms from
Z⟨V⟩ into R. To see this, note that any vector b = (bv)v∈V ∈ RV

defines a group homomorphism b∗
: Z⟨V⟩

−→ R by setting b∗(z)
:=


v∈V zvbv for all z ∈ Z⟨V⟩. Conversely, for all v ∈ V , let 1v ∈

Z⟨V⟩ be the vectorwith a 1 in the v coordinate, and 0 in all other co-
ordinates. Then given any group homomorphism β : Z⟨V⟩

−→ R,
we can define a vector b = (bv)v∈V ∈ RV by setting bv := β(1v)
for all v ∈ V . We then have b∗

= β .
Thus, we can equivalently define a balance system {bx,y

}x,y∈X as
a collection ofR-valued group homomorphisms onZ⟨V⟩, rather than
as a collection of vectors in RV . This convention should be kept in
mind when reading the next proof.

The next result is a key step in the proof of Proposition A.1. It
shows how the axiom of overwhelming majority causes a balance
rule (or scoring rule) to be real-valued, by forcing the underlying
group R to be Archimedean.

Proposition A.7. Let F : N⟨V⟩ ⇒ X be a perfect balance rule satisfy-
ing TC. Then F satisfies overwhelming majority if and only if F = FB
for some R-valued balance system B.

Proof. ‘‘⇐H’’ is straightforward.
‘‘H⇒’’ By hypothesis, F = FB for some balance system B :=

{bx,y
}x,y∈X taking values in some linearly ordered Abelian groupR. Fix x, y ∈ X. Let R′

x,y := bx,y(Z⟨V⟩) ⊆ R. Then R′
x,y is also

a linearly ordered Abelian group, and we can treatbx,y as a group
homomorphism from Z⟨V⟩ into R′

x,y.

Claim 1: R′
x,y = bx,y(N⟨V⟩).

Proof. Let r ∈ R′
x,y; then r = bx,y(z) for some z ∈ Z⟨V⟩. Let

W := {v ∈ V; zv ≠ 0} (a finite set). Condition (TC2) yields some
n ∈ N⟨V⟩ with nw > 0 for allw ∈ W , such that F(n) ⊇ {x, y}. Thus,bx,y(n) = 0, so n ∈ ker(bx,y). Thus,Mn ∈ ker(bx,y) for allM ∈ N.

Let M = 1 + max{|zw|/nw; w ∈ W} (so M is finite, because
|W | < ∞). Thus,Mnw+zw > 0 for allw ∈ W . Thus,Mn+z ∈ N⟨V⟩,
and clearly,bx,y(Mn + z) = M ·bx,y(n) +bx,y(z) = M · 0 + r = r ,
as desired. ♦ Claim 1

Claim 2: R′
x,y is Archimedean for all x, y ∈ X.

Proof. Let r1, r2 ∈ Rx,y, with r1 > 0. We must find some N ∈ N
such that N · r1 > −r2. By Claim 1, there exist n1,n2 ∈ N⟨V⟩ such
that r1 = bx,y(n1) and r2 = bx,y(n2). Condition (TC1) yields some
n0 ∈ N⟨V⟩ such that F(n0) = {x, y}. By overwhelming majority,
there exists some M ∈ N such that F(n1 + Mn0) ⊆ {x, y}. Let
n′

1 := n1 + Mn0. Then bx,y(n′

1) = bx,y(n1) + M · bx,y(n0) =bx,y(n1) = r1, becausebx,y(n0) = 0 because F(n0) = {x, y}. Thus,
F(n′

1) = {x}, becausebx,y(n′

1) = r1 > 0 and F(n′

1) ⊆ {x, y} by
construction. By overwhelming majority, there exists some N ∈ N
such that F(N n′

1 +n2) = {x}. But this means that 0 < bx,y(N n′

1 +

n2) = Nbx,y(n′

1) + bx,y(n′

2) = N r1 + r2. Thus, N r1 > −r2, as
desired. ♦ Claim 2

For all x, y ∈ X, Hölder’s theorem and Claim 2 imply that R′
x,y is

isomorphic to some ordered subgroup of R; thus, we can regardbx,y as a real-valued function, so that B is a real-valued balance
system. �

Proof of Proposition A.1. If F : N⟨V⟩ ⇒ X satisfies reinforcement,
then Lemma A.2 says F is a perfect balance rule. If F is also
neutral and nontrivial, then Lemma A.6 says that F satisfies the
tie condition. Thus, if F also satisfies overwhelming majority, then
Proposition A.7 says F is a real-valued perfect balance rule. Since
F is neutral, Proposition A.3 then says that F = FS, where S is a
neutral, real-valued score system. �
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Proof of Theorem 1. Let F be the class of neutral, X-valued vot-
ing rules which satisfy reinforcement and overwhelmingmajority;
we seek themost expressivemember ofF (if it exists). LetG be any
nontrivial, neutral, X-valued scoring rule with a real-valued score
system (e.g. approval voting). Then G is in F . Thus, if F is the most
expressivemember ofF , then F must be at least as expressive asG,
which means F itself must be nontrivial. However, Proposition A.1
says that any nontrivial rule in F must be a scoring rule with a
neutral, real-valued score system. Thus, it suffices to confine our
attention to such scoring rules.

So, consider a scoring rule FS, where S is a neutral, real-valued
score system on (X, V) (for some signal set V). For any v ∈ V , let
sv := (sxv)x∈X, a vector in RX. Let SĎ

:= {sv}v∈V ; then SĎ
⊆ RX.

Claim 1: Suppose FS is the most expressive scoring rule with SĎ
⊆ RX.

Then either SĎ
= RX, or FS is equivalent to a scoring rule FS with a

score systemS such that SĎ
= RX.

Proof. If SĎ
= RX, then we are done. So, suppose that SĎ ( RX.

Let U := RX
\ SĎ. Assume U is disjoint from V . (This is without

loss of generality, because the elements of V are just abstract ‘‘sig-
nals’’; if some of these signals happen to be elements ofU, thenwe
can just replace themwith other signals which are not elements of
U.) DefineW := V⊔U. Define the score systemS ⊂ RW by settingsxv := sxv for all v ∈ V and x ∈ X, whereassxu := ux for all u ∈ U
and x ∈ X. In other words,sv := sv for all v ∈ V , whilesu := u for
all u ∈ U. Thus,SĎ

= RX, by construction.
Now, let α : V −→ W be the inclusion map, and let α∗ :

N⟨V⟩
−→ N⟨W⟩ be defined as prior to Theorem 1. Then for any

n ∈ N⟨V⟩, and any x ∈ X it is clear thatsx[α∗(n)] = sx(n). Thus,
FS[α∗(n)] = FS(n). Thus, FS is at least as expressive as FS. But by
the hypothesis, FS is the most expressive rule with SĎ

⊆ RX. Thus,
we conclude that FS must actually be equivalent to FS. ♦ Claim 1

Now, suppose FS is themost expressive scoring rulewith SĎ
⊆ RX.

We will show that FS is equivalent to the formal utilitarian voting
rule. Claim 1 implies that we can suppose SĎ

= RX without loss of
generality (becausewe only care about the equivalence class of FS).
For any v, w ∈ V , if sv = sw , then a vote for v has the same effect
as a vote for w, when added to any profile. Thus, we can regard v
and w as the same. Thus, for each r ∈ RX, there exists a unique
v ∈ V with sv = r. At this point it is clear that FS is the formal
utilitarian voting rule. �

The proof of Theorem 2 also requires the next lemma.

Lemma A.8. Let X be a finite set, and let S be a real-valued scoring
system on X.

(a) Suppose there exists R ∈ R+ such that |sxv − syv| ≤ R for all v ∈ V
and x, y ∈ X. Then FS does not admit minority overrides.

(b) Suppose S is neutral and nontrivial. If FS does not admit minority
overrides, then there is some R ∈ R such that |sxv − syv| ≤ R for all
v ∈ V and x, y ∈ X.

Proof. (a) Let M := min{|FS(n)|; n ∈ N⟨V⟩
} (so M ≥ 1). Find

n ∈ N⟨V⟩ with |FS(n)| = M . Fix x ∈ FS(n), and let δ := min{sx(n)−
sy(n); y ∈ X\FS(n)}; then δ > 0 and is well-defined becauseX is
finite. Let K := ⌈R/δ⌉ + 1, and let n′

:= K n; then FS(n′) = FS(n),
by reinforcement.
Claim 1: For any v ∈ V , we have FS(n′

+ 1v) = FS(n).

Proof. For any y ∈ X \ FS(n), we have

sy(n′
+ 1v) = Ksy(n) + sy(1v) = Ksy(n) + syv

≤
(Ď)

Ksx(n) − Kδ + sxv + R <
(∗)

Ksx(n) + sxv

= Ksx(n) + sx(1v) = sx(n′
+ 1v).

(Here, (Ď) is because sy(n) ≤ sx(n) − δ (because y ∈ X \ FS(n)),
while syv ≤ sxv + R, by definition of R. Next, (∗) is because Kδ > R,
by definition of K .) Thus, y ∉ FS(n′
+ 1v). This holds for all y ∈

X \ FS(n), so we conclude that FS(n′
+ 1v) ⊆ FS(n′). But then

FS(n′
+ 1v) = FS(n′), because |FS(n′)| = M is already of minimal

size. ♦ Claim 1

Claim 1 shows that F does not admit minority overrides.
(b) (by contrapositive) Let ν : ΠX −→ ΠV be the neutralizer of

S. Suppose that the conclusion is false; suppose that, for all R ∈ R,
there exists some v ∈ V and x, y ∈ X with |sxv − syv| > R. We will
show that F admits minority overrides.
Claim 2: For all R ∈ R and all x ∈ X, there exist v ∈ V and y ∈ X
with syv − sxv > R.

Proof. Given R ∈ R, there exists some w ∈ V and a, b ∈ X with
|saw − sbw| > R. First suppose sbw > saw , so that in fact sbw − saw > R.
Find π ∈ ΠX such that π(x) = a. Let y := π−1(b), let π := ν(π)
and let v := π−1(w). SinceS is ν-neutral,we have sx = (saπ); thus
sxv = (saπ)v = saπ(v) = saw , and likewise, syv = sbw; thus s

y
v − sxv > R.

Now suppose sbw < saw , so that saw − sbw > R. In this case, find
π ∈ ΠX such that π(x) = b. Let y := π−1(a), let π := ν(π) and
let v := π−1(w). Then by a similar argument we have syv = saw and
sxv = sbw; thus s

y
v − sxv > R. ♦ Claim 2

Let n ∈ N⟨V⟩ be any profile with FS(n) ≠ X. Fix x ∈ FS(n). Let
R := max{sx(n) − sy(n); y ∈ X \ FS(n)}; then R > 0 and is well-
defined because X is finite. Claim 2 yields some v ∈ V and y ∈ X
with syv − sxv > R. There are now two cases: either y ∈ FS(n), or
y ∉ FS(n).

Case 1. If y ∈ FS(n), then

sy(n + 1v) = sy(n) + sy(1v) = sy(n) + syv =
(∗)

sx(n) + syv

>
(Ď)

sx(n) + sxv = sx(n + 1v).

Thus, x ∉ FS(n + 1v), so FS(n + 1v) ≠ FS(n). (Here (∗) is because
sy(n) = sx(n) because {x, y} ∈ FS(n). Meanwhile, (Ď) is because
syv > sxv + R > sxv .)

Case 2. If y ∉ FS(n), then

sy(n + 1v) = sy(n) + syv ≥ sx(n) − R + syv
>
(Ď)

sx(n) − R + R + sxv = sx(n) + sxv = sx(n + 1v).

Thus, again x ∉ FS(n + 1v), so FS(n + 1v) ≠ FS(n). (Here, (Ď) is
because syv > sxv + R.)

This construction works for any n ∈ N⟨V⟩; thus, FS admits
minority overrides. �

Proof of Theorem 2. Let F0 be the class of neutral, X-valued vot-
ing ruleswhich satisfy reinforcement, overwhelmingmajority, and
admit no minority overrides. We seek the most expressive mem-
ber of F0 (if it exists). Let G be any nontrivial, neutral, X-valued
scoring rule with a score system ranging over [0, 1] (e.g. approval
voting). Then G is inF0. Thus, if F is themost expressivemember of
F0, then F must be at least as expressive as G, which means F itself
must be nontrivial. However, Proposition A.1 says that any non-
trivial rule in F0 must be a scoring rule with a neutral, real-valued
score system. Thus, it again suffices to confine our attention to such
scoring rules. So, consider a scoring rule FS, where S is a neutral,
real-valued score system on (X, V) (for some signal set V).
Claim 1: If FS does not admit minority overrides, then there is a real-
valued scoring systemS = {sx}x∈X with 0 ≤ sxv ≤ 1 for all x ∈ X
and v ∈ V , such that FS = FS.

Proof. Lemma A.8 says that F does not admit minority overrides if
and only if there is someR ∈ R+ such that |sxv−syv| ≤ R for all v ∈ V
and x, y ∈ X. Let r := 1/R; thus, |r sxv − r syv| ≤ 1 for all x, y ∈ X
and v ∈ V . Now, for each v ∈ V , let tv := min{r sxv; x ∈ X}, to
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obtain a vector t := (tv)v∈V (this is well-defined because X is fi-
nite). Now definesx := r sx − t, for all x ∈ X; thenS is an affine
transform of S, so FS = FS.

Now, for any v ∈ V , we have min{sxv; x ∈ X} = 0, by con-
struction. Also, max{sxv −syv; x, y ∈ X} ≤ 1, which implies that
max{sxv; x ∈ X} ≤ 1. Thus, 0 ≤ sxv ≤ 1 for all x ∈ X and v
∈ V . ♦ Claim 1

By replacing S byS from Claim 1 if necessary, we can assumewith-
out loss of generality thatsxv ∈ [0, 1] for all x ∈ X and v ∈ V . For
any v ∈ V , define sv := (sxv), a vector in [0, 1]X. Let SĎ

:= {sv}v∈V ;
then SĎ

⊆ [0, 1]X.
At this point, the argument is very similar to the proof of The-

orem 1. By an argument identical to Claim 1 in that proof, one
can show: If FS is the most expressive rule with SĎ

⊆ [0, 1]X, then
SĎ

= [0, 1]X. So, suppose SĎ
= [0, 1]X. For any v, w ∈ V , if sv =

sw , then a vote for v has the same effect as a vote forw, when added
to any profile. Thus, we can regard v and w as the same. Thus, for
each t ∈ [0, 1]X, there exists a unique v ∈ V with sv = t. At this
point it is clear that FS is the range voting rule. �

Proof of Proposition 3. It suffices to prove the theorem for range
voting, since it is less expressive than formal utilitarian voting. Let
X be a set with at least two elements, let V := [0, 1]X be the
signal space for range voting, and let F : N⟨V⟩ ⇒ X be the range
voting rule. Now, by contradiction, suppose that W is a countable
signal set and G : N⟨W⟩ ⇒ X is another voting rule which is as
expressive as range voting. That is, there exists some translation
map α : V −→ W such that, for any range voting profile n ∈ N⟨V⟩,
we have G[α∗(n)] = F(n). We will derive a contradiction.

Let x ∈ X, and for all t ∈ [0, 1], let vx
t ∈ V be a vote which as-

signs score t to x and zero to every other alternative. Thus, the set
{vx

t ; t ∈ [0, 1]} ⊂ V is uncountable. Since W is countable, there
must exist distinct s, t ∈ [0, 1] such that α(vx

s ) = α(vx
t ). Without

loss of generality, suppose s < t .
Claim 1: There exist some N,M ∈ N such that N s < M < N t .

Proof. Let r be a rational number such that 0 < r < t − s. Thus,
if q = 2/r , then q is also rational, and q (t − s) > 2, which means
there is some k ∈ N such that q s < k < q t . Suppose q = N/m for
some N,m ∈ N. Then we get N s < mk < N t . Now let M := mk.

♦ Claim 1

Let y ∈ X \ {x}, and let vy
1 ∈ V be the vote which assigns score 1 to

y and zero to all other alternatives. Let n ∈ N⟨V⟩ be a range-voting
profile consisting ofN+M voters,whereN voters say vx

s andM vot-
ers say v

y
1. Then x gets a score of N s and y gets a score of M > N s,

and all other alternatives get a score of zero, so F(n) = {y}. Let
n′

∈ N⟨V⟩ be a range-voting profile consisting of N + M voters,
where N voters say vx

t and M voters say v
y
1. Then x gets a score of

N t and y gets a score of M < N t , and all other alternatives get a
score of zero, so F(n′) = {x}. However, α∗(n) = α∗(n′), because
α(vx

s ) = α(vx
t ). Thus, G[α∗(n)] = G[α∗(n′)], which implies x = y.

Contradiction. �

Appendix B. Independence of the axioms

We will now show, via examples, that the axioms appearing in
Theorems 1 and 2 are logically independent.
Neutrality. Let S be a neutral, real-valued scoring rule, with all
scores ranging over [0, 1]. Fix some alternative y ∈ X, and define
a new real-valued scoring rule S such thatsx := sx for all x ∈
X \ {y}, whereassy := 2 · sy. Then FS is an anonymous, variable-
population rule which satisfies reinforcement and overwhelming
majority, and does not admit minority overrides. But FS is not
neutral, because y is treated differently from the other alternatives
in X.
Overwhelming majority. Let FS1 and FS2 be two different neutral,
[0, 1]-valued scoring rules (e.g. the Borda rule and the approval
voting rule). Define a compound voting rule F as follows. First,
apply FS1 ; if this rule yields a unique winner, then stop. Otherwise,
apply FS2 only to break the tie between the winners of FS1 . Then F
is a neutral, anonymous, variable-population rule which satisfies
reinforcement and does not admit minority overrides. But F does
not satisfy overwhelming majority.
Reinforcement. The Copeland (1951) rule is an anonymous, neutral,
variable population rule which satisfies overwhelming majority
and does not admit minority overrides. But it does not satisfy
reinforcement.
Anonymity. Let S1 and S2 be two neutral, [0, 1]-valued score sys-
tems. Let N1 and N2 be two populations of voters. Define the
variable-population voting rule F as follows: voters from N1 send
signals (translated into real-valued scores) using the system S1,
whereas voters in N2 use S2. All the scores from both populations
are added together, and the alternative with the highest score is
chosen. The rule F is neutral, satisfies reinforcement and over-
whelming majority, and does not admit minority overrides. But F
is not anonymous, because voters in N1 and N2 are treated differ-
ently.
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