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Abstract We distinguish between (i) voting systems in which voters can rank candidates

and (ii) those in which they can grade candidates, using two or more grades. In approval

voting, voters can assign two grades only—approve (1) or not approve (0)—to candidates.

While two grades rule out a discrepancy between the average-grade winners, who receive

the highest average grade, and the superior-grade winners, who receive more superior

grades in pairwise comparisons (akin to Condorcet winners), more than two grades allow

it. We call this discrepancy between the two kinds of winners the paradox of grading

systems, which we illustrate with several examples and whose probability we estimate for

sincere and strategic voters through a Monte Carlo simulation. We discuss the tradeoff

between (i) allowing more than two grades, but risking the paradox, and (ii) precluding the

paradox, but restricting voters to two grades.

Keywords Voting and elections � Grading systems � Ranking systems � Approval voting �
Condorcet winner � Monte Carlo simulation

1 Introduction

For more than 60 years, the standard framework for analyzing voting and social choice,

due to Arrow (1963 [1951]), has been one in which the voters are assumed to rank

candidates, possibly with ties, from best to worst. Consistent with such a framework are
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such well-known voting systems as the Borda count, the Hare system of single transferable

voting (STV)—also known as instant runoff voting (IRV) and ranked choice voting

(RCV)—and many others.

Beginning with the work of Brams and Fishburn (1978) as well as other theorists about

the same time (see Brams and Fishburn 2007 [1983]), an alternative framework, based on

grading candidates, was proposed. Brams and Fishburn championed approval voting (AV),

in which voters can give only two grades—approve (1) or not approve (0)—to candidates,

but other theorists later proposed that voters be allowed to give more grades (Felsenthal

1989; Hillinger 2005; Alcantud and Laruelle 2014 favor three grades, but others, including

Balinski and Laraki 2011, favor four or more).

Only AV rules out a discrepancy between the average-grade (AG) winners, who are

recipients of the highest average grade, and the superior-grade (SG) winners, who receive

more superior grades in pairwise comparisons (akin to Condorcet winners in ranking

systems). But if voters can give more than two grades to candidates, not only may an AG

winner not be an SG winner but, in the extreme case, every voter except one may grade the

SG winner higher than the AG winner. The ability of AV to rule out the AG-versus-SG

discrepancy for grading systems has no counterpart for ranking systems.

If grades are mapped into ranks, with higher grades being given higher ranks, an SG

winner is a Condorcet winner, who is preferred to every other candidate based on rankings.

Just as a winner under the Borda count or the Hare system may not be a Condorcet winner,

an AG winner may not, unsurprisingly, be an SG winner when more than two grades can be

assigned.

When this discrepancy occurs, we say there is a paradox of grading systems, somewhat

but not fully analogous to the paradox that arises when the Borda and Condorcet winners

differ. More precisely, because there may be tied AG winners, or the SG winners may be in

a cycle—in which case we treat all candidates in the cycle as winners—we say that a

paradox of grading systems occurs if and only if the set of AG and the set of SG winners

differ.

We estimate through simulation the probability of this paradox for a type of impartial

culture, in which all voters are equally likely to give each of the possible grades to every

candidate. We start by assuming three grades, with varying numbers of candidates and

voters. Then we allow the number of grades to increase to determine its effect on the

probability of the paradox. We base these calculations on a Monte Carlo simulation but

show, in a simple case, that the precise probability closely approximates the simulated

probability, and the simulated probabilities vary only slightly in different simulation runs.

Implicitly, our impartial-culture model assumes, in its first form, that voters are sincere:

They need not give their top candidate the highest grade nor their bottom candidate the

lowest grade. That is, if there are more than two grades, they may give either one or both of

these candidates an intermediate grade.

Besides assuming that voters are sincere, we also assume, in a second form of the

model, that voters are strategic in the sense that they desire to help and hurt, respectively,

their top and bottom candidates—to the maximum degree possible—by giving their top

candidate(s) the highest grade and their bottom candidate(s) the lowest grade.

To assess the effects of strategic voters on the probability of the paradox, we constrain

the second form of the impartial-culture model to ensure that every voter gives at least one

candidate the top grade and at least one candidate the bottom grade. In fact, the strategic

probabilities do not deviate much from the sincere probabilities.

The paper proceeds as follows. In Sect. 2, we compare ranking systems, like the Borda

count and the Hare system, and grading systems, highlighting their similarities and
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differences. Although SG winners are akin to Condorcet winners when grades are replaced

by ranks, ranking systems and grading systems are not equivalent. In Sect. 3, we analyze

grading systems, giving several examples of the paradox of grading systems.

In Sect. 4, we provide a general method for finding SG winners (determining AG

winners is straightforward). Then we present our simulation results, showing that the

paradox is not an infrequent phenomenon in both the sincere and strategic models,

although our results almost surely overestimate what its actual, real-world frequency would

be. In Sect. 5, we discuss the tradeoff between (i) allowing more than two grades, but

risking the paradox, and (ii) precluding the paradox, but restricting voters to two grades.

2 Ranking versus grading systems

Whether one ranks or grades candidates, the ranks or grades can be aggregated in different

ways. To illustrate for ranking systems, if there are c candidates, the Borda count awards

points to candidates, from 0 for a voter’s lowest-ranked candidate to c - 1 for a voter’s

highest-ranked candidate. It sums these points across all voters, and the candidate with the

most points, or highest score, wins.

By contrast, the Hare system starts by eliminating candidates with the fewest first-

choice votes. It then transfers the votes of their supporters to their next-highest-ranked

candidates who remain in the race, continuing this elimination-and-transfer process until

one candidate receives a majority of votes and thereby becomes the winner.

Formally, a grading system is a voting system in which a voter can give any of g grades,

{w1, w2,…, wg}, to each candidate. Grades need not be equally spaced; for example,

(wg - wg-1) could be large in relation to other differences between adjacent grades. Here,

however, we assume that the grades are given by the natural numbers, starting with a

lowest grade of 0 and ending with a highest grade of g - 1. While sincere voters need not

give either a lowest or a highest grade to any of the candidates, strategic voters give at least

one lowest grade and one highest grade to candidates.

Like ranking systems, grading systems can differ in how the grades are aggregated to

determine a winner. The average-grade (AG) system we analyze here is one in which the

grades of each candidate are summed across all voters and averaged, with the candidate

with the highest average grade becoming the AG winner.

This grading system is sometimes referred to as range or score voting (Center for

Election Science 2015; Center for Range Voting 2015) or evaluative or utilitarian voting

(Baujard et al. 2014, and references therein). Other methods for aggregating grades to

determine a winner, such as choosing a candidate with the highest median grade, have been

proposed (Balinski and Laraki 2011).1 It turns out that a median-grade system also is

vulnerable to the paradox of grading systems, as we will illustrate with an example in

Sect. 4, but we focus on AG and how the frequency of the paradox of grading systems—

when the AG and SG winners differ—depends on the numbers of candidates, grades, and

voters.

1 Because ties for highest median grade are common when relatively few grades can be assigned, Balinski
and Laraki (2011) propose a method for breaking ties in a system they call ‘‘majority judgment.’’ Cumu-
lative voting, in which voters can allocate a fixed number of votes to one or more candidates, effectively
allows voters to grade candidates, though it is not usually thought of as a grading system. It is used to elect
multiple winners, unlike the systems analyzed here, and affords parties or factions the opportunity to elect
candidates in proportion to their share in the electorate. For analyses of its properties and experience with it,
see Brams (2003 [1975]) and Bowler et al. (2003).
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To determine an SG winner, we compare each candidate’s grades with the grades of all

other candidates. Candidate X beats candidate Y if the number of voters who grade X higher

than Y exceeds the number who grade Y higher than X. If one candidate beats each rival in a

pairwise comparison with each, then he or she is the unique SG winner. But as with

Condorcet winners, SG winners may be in a top cycle, whereby they each beat all can-

didates not in the cycle—because more voters give them more higher grades—but no

smaller set of candidates exists, all of whom beat everyone else. Members of the top cycle

can either be beaten or be tied by at least one other candidate in the cycle. A paradox of

grading systems arises if and only if the sets of AG winners and SG winners differ.

Before we analyze the paradox of grading systems, we show that AV precludes the

paradox:

Proposition 1 With two grades, the sets of AG and SG winners are identical.2

Proof Because an AG winner—when averaging the candidates’ grades of 1 and 0—has,

by definition, the highest average grade, he or she must have been approved of by more

voters than any other candidate. Thus, in pairwise comparisons, more voters give the AG

winner a grade of 1, and other candidates a grade of 0, than vice versa—ignoring 0–0 and

1–1 ties—so an AG winner is also an SG winner. The proof extends easily if the winner

sets contain more than one candidate. h

We will shortly suggest an analogue of Proposition 1 (Proposition 2 below) for the

median-grade, Borda, and Hare systems. But first we specify precisely how we determine

winners under each of these systems:

1. Median grade When voters can assign only two grades, 0 and 1, all candidates will

have a median grade of either 0 or 1 (or occasionally �, based on the standard

definition of median), so there may often be ties for the median-grade winner, as noted

in footnote 1. We assume the method of Balinski and Laraki (2011, pp. 224–225) to

break ties,3 which ensures that the candidate receiving the largest number of 1s is the

median-grade winner.

2. Borda When a voter ranks candidates as tied under the Borda system, each of them

receives the mean of the corresponding strict ranks (see footnote 6 below for an

example). Thus, with the Borda system restricted to two grades, if there are

c candidates and a voter assigns a 0 (do not approve) to k of them (1 B k B c - 1) and

2 Merrill and Nagel (1987) distinguish a balloting method, such as one that allows two grades, from a
method for aggregating the ballots (what they call ‘‘decision rules’’), such as one that elects the candidate
with more superior grades in pairwise comparisons—or, equivalently, in the case of AV the highest average
grade. As we will show, using a different aggregation method can produce a winner different from the AG-
SG winner, even when only two grades are possible (the Hare system is an example). However, systems that
choose as winners the candidates with the highest median grade or the highest Borda score duplicate AV in
always selecting AG–SG winners for the case of two grades.
3 For any g, the method breaks ties as follows: Order the grades for each candidate from low to high; for an
even number of grades, treat the grade just below the middle, rather than the average of the two middle
grades, as the median; delete each candidate’s (tied) median grade; obtain the median for each candidate
from the new (smaller) sets of grades; and if a tie still exists, continue to delete grades successively, one at a
time, in the same way as before, until the tie is broken. As an example for g = 2, suppose the ordered grades
from six voters are 0 0 1 1 1 1 for candidate X and 0 1 1 1 1 1 for Y, with the remaining candidates receiving
more 0s than 1s (the medians, as just defined, are underscored). Deleting both underscored medians yields 0
0 1 1 1 for X and 0 1 1 1 1 for Y. The new medians are again tied, so they are deleted, giving 0 0 1 1 for X and
0 1 1 1 for Y. The tie is now broken in favor of Y as the median-grade winner, who indeed did receive
more 1s.
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a 1 (approve) to the remaining (c - k), then the scores will be (k - 1)/2—the mean of

(0, 1,…, k - 1)—for each of the former candidates, and (c ? k - 1)/2—the mean of

(k, k ? 1,…, c - 1)—for each of the latter.

3. Hare When a voter ranks candidates as tied under the Hare system, and m ways of

resolving the aggregate of ties are possible, we specify that the voter’s ballot is to be

counted as a fraction of a ballot, 1/m, for each of those m ways, e.g., with two grades,

m is equal to k! 9 (c - k)! if a ballot has k 0s and (c - k) 1s. For instance, under Hare

with three candidates and two grades, if a ballot gives a 1 to candidates X and Y and a 0

to candidate Z, then it is tallied as half a ballot ranked (X, Y, Z) and half a ballot ranked

(Y, X, Z).

Proposition 2 With two grades, the sets of median–grade and Borda winners are each

identical to the set of AG (and therefore also SG) winners. But the set of Hare winners can

differ from the other four sets of winners.

Proof Median-grade winner The candidate with the most 1s is the median-grade winner.

But that candidate is also the AG winner.

Borda winner On a given ballot with k 0s and (c - k) 1s, the score difference between

an approved and a non-approved candidate is [(c ? k - 1)/2 - (k - 1)/2], or c/2. The key

to the proof for Borda is that this difference, c/2, does not depend on k, the number of

candidates not approved. Ballots with the AG winner approved, and any other candidate

Z not approved, are more numerous than those of the opposite type, so the AG winner’s

score surplus of c/2 for each of the former ballots exceeds Z’s surplus of c/2 for each of the

latter, thereby making the Borda and AG winners the same.

The proofs for median-grade and Borda winners extend easily if the winner sets contain

more than one candidate.

Hare winner The following counterexample, with three candidates and 27 voters,

establishes that the Hare winner set may differ from the AG winner set (and thus also from

the SG, median–grade, and Borda winner sets):

2 voters: Approve of A only

6 voters: Approve of both A and B

6 voters: Approve of both A and C

7 voters: Approve of B only

6 voters: Approve of C only

The AV totals are 2 ? 6 ? 6 = 14 for A, 6 ? 7 = 13 for B, and 6 ? 6 = 12 for C, so

average grades are 1/27 of those values, and A is the AG winner. But the number of top ranks

(i.e., first-place votes) is 2 ? (� 9 6) ? (� 9 6) = 8 for A, (� 9 6) ? 7 = 10 for B, and

(� 9 6) ? 6 = 9 for C. Thus, Hare eliminates A on the first round, after which B becomes

the Hare winner by beating C, 6 ? 7 = 13 votes to 6 ? 6 = 12 (or 14 to 13 if the two voters

who voted for A only split evenly between B and C). Note that, as must be the case, A is (i) the

SG winner, beatingB by 8 to 7 andC by 8 to 6 (these numbers disregard indeterminate voters);

(ii) the median-grade winner, with a median of 1, versus 0 for bothB andC; and (iii) the Borda

winner, with points equal to 28�, versus 27 for B and 25� for C. h

Thus, when only two grades can be assigned, AG, SG, median-grade, and Borda mimic

AV in rendering the same winners, whereas Hare does not.

To forge a link between grading systems like AV or median grade, and ranking systems

like Borda or Hare, assume that the higher is the grade a voter gives to a candidate, the
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higher is his or her rank. If, as under AV, only two grades are possible, voters express

dichotomous preferences: They prefer approved to nonapproved candidates, but they do

not make finer distinctions within their approved and nonapproved subsets.

If voters have dichotomous preferences, under AV each voter has a dominant strategy of

approving only the candidates in his or her preferred subset of candidates, which yields an

outcome at least as good as and sometimes better than any other strategy. If all voters

choose their dominant strategies, then a candidate wins under AV if and only if he or she is

a Condorcet winner (Brams and Fishburn 1978). If voter preferences are not dichotomous,

winners under the Borda count or the Hare system may differ from Condorcet winners; and

AG winners may differ from SG winners, as we will show in Sect. 3.

If a Condorcet paradox occurs because of a top cycle, different Condorcet completion

methods have been proposed for choosing one candidate from among the candidates in the

top cycle. For example, the Black procedure chooses the Borda winner. Another possibility

is to choose the AV winner, using a ballot that captures not only ranks but also approval

votes, the latter to be used only if needed (Potthoff 2013, 2014).

We do not propose a ‘‘solution’’ for choosing among candidates in a top cycle when

more than two grades can be assigned. Instead, as Proposition 1 shows, AV offers a

solution: It renders identical the AG and SG winners—and, per Proposition 2, also the

median-grade and Borda winners—in the case of two grades. This is decidedly not true for

more than two grades, as we show in the next section, wherein we focus on differences

between the AG and the SG winners.

3 The paradox of grading systems

We next present several examples of the paradox of grading systems. Except for one

example with two candidates, we assume three candidates but varying numbers of voters

and grades.

Example 1 3 grades, {2, 1, 0}, and 9 voters

2 A voters: Grades of (2, 1, 0) to (A, B, C)

3 B voters: Grades of (0, 2, 1) to (A, B, C)

4 C voters: Grades of (1, 0, 2) to (A, B, C)

A, B, and C voters are those who give the highest grade (i.e., 2) to, respectively,

candidates A, B, and C. Multiplying the numbers of A, B, and C voters by the grades they

give to each candidate, and dividing by the total number of voters, the AG winner is C,

whose average grade is

ð2 � 0Þ þ ð3 � 1Þ þ ð4 � 2Þ
9

¼ 11

9

compared with average grades of 8/9 for A and B.

To determine the SG winner(s), we ask which candidate(s) receive more higher grades

in the three pairwise contests:

• A v. B: 2 A and 4 C voters (total: 6) grade A higher; 3 B voters grade B higher

• B v. C: 2 A and 3 B voters (total: 5) grade B higher; 4 C voters grade C higher

• C v. A: 3 B and 4 C voters (total: 7) grade C higher; 2 A voters grade A higher

These contests generate a cycle of winners,
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A[B[C[A;

in which a majority of voters grades each of A, B, and C higher than the candidate to his or

her right, in the cycle. Thus, whether a candidate wins or loses in a pairwise contest

depends on whom he or she is paired against.

If a subset of candidates is in a top cycle (in Example 1, all candidates are in the top

cycle, so there are no ‘‘bottom’’ candidates), we consider all candidates in the cycle to be

SG winners. Because the set of three candidates differs from the single AG winner (C), a

paradox of grading arises.4

There cannot be a paradox under AV (Proposition 1). To see why in the case of

Example 1, assume that each of the A, B, and C voters collapse their three grades into two

by giving the candidate who receives the highest grade of 2 a grade of 1, and the candidate

who receives the lowest grade of 0 a grade of 0. As for the candidates who receive the

middle grade of 1, voters may or may not approve of them.

For concreteness, assume that the A and B voters approve only of their first choices, but

the C voters also approve of their second choice, A:

2 A voters: Grades of (1, 0, 0) to (A, B, C)

3 B voters: Grades of (0, 1, 0) to (A, B, C)

4 C voters: Grades of (1, 0, 1) to (A, B, C)

This would occur if the C voters view A as ‘‘close enough’’ to C to be acceptable, too.

Observe that A is the AG winner with an average grade of 6/9, trailed by B and C with

average grades of 3/9 and 4/9, respectively (recall that before the dichotomization, C was

the AG winner). Because A is graded

• higher than B by the 2 A and 4 C voters (total: 6), and lower by the 3 B voters

• higher than C by the 2 A voters, and the same by the 3 B voters (both 0s) and the 4

C voters (both 1s)

A is also the SG winner, as guaranteed by Proposition 1, although A is the candidate with

the fewest first-choice supporters.

To illustrate situations in which a candidate like C with the most first-choice support

might be displaced under AV, consider the 1912 US presidential election, though it does

not mirror Example 1 exactly. It is reasonable to suppose that Theodore Roosevelt, the

Progressive (‘‘Bull Moose’’) candidate who received 27 % of the popular vote, was

acceptable to many supporters of the Republican candidate, William Howard Taft, who

received 24 % of the popular vote. Roosevelt, after all, had been a Republican when he

was president earlier and was, presumably, more acceptable to Taft supporters than

Woodrow Wilson, the Democratic candidate who received 41 % of the popular vote. If

Roosevelt had been approved of by both Progressive and Republican voters,5 then he

4 The Borda count gives rise to the same paradox in Example 1 if the grades of 2, 1, and 0 are interpreted as
ranks, because the Borda winner, C, is different from the three candidates in the Condorcet cycle. In our later
examples, however, the grades do not necessarily correspond to Borda scores, including tied scores, and the
Borda and AG winners can differ, illustrating that ranking systems like Borda are categorically different
from grading systems.
5 Taft, also, would have benefited from the approval of both his supporters and Roosevelt supporters, but
probably not to the extent of Roosevelt for two reasons: Roosevelt (i) edged him out in the plurality vote and
(ii) probably would have drawn more support from Wilson voters, and even supporters of Eugene Debs, the
Socialist candidate who received 6 % of the vote, because he generally was perceived to be less conservative
than Taft.
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would have easily beaten with 51 % approval the Democratic candidate, Woodrow Wilson,

the candidate with the most first-choice support.

Example 1 illustrates the occurrence of the paradox of grading systems in the presence

of a top cycle, in which a single AG winner (C) is different from the set of candidates in the

cycle. When, as here, AG and SG winners overlap but do not coincide, we call the

condition a weak paradox of grading systems. The paradox is starker when the AG and SG

winners do not overlap, which we call a strong paradox of grading systems, as in our next

example:

Example 2 4 grades, {3, 2, 1, 0}, and 3 voters

1 voter: Grades of (3, 0, 0) to (A, B, C)

1 voter: Grades of (2, 3, 3) to (A, B, C)

1 voter: Grades of (0, 1, 1) to (A, B, C)

The AG winner is A, with an average grade of 5/3, whereas B and C each receive an

average grade of 4/3. But B and C receive higher grades than A from the second and third

voters, so they are the SG winners.

Example 2 also differs from Example 1 in showing that the paradox can occur with only

3 voters, though we assume in Example 2 that there are 4 rather than 3 grades. Note that the

second voter does not give a bottom grade (0), and the third voter does not give a top grade

(3) to any of the candidates, so they are sincere—or at least not strategic—in the sense

defined earlier.

Of course, the first voter may also be sincere if he or she believes that A genuinely is

deserving of a top grade and both B and C of a bottom grade. Although we are not able to

distinguish in a case like this whether a voter is acting sincerely or strategically if he or she

gives no middle grades, we require in our strategic model that all voters give at least one

candidate a top grade and one candidate a bottom grade. This is not the case for the second

and third voters in Example 2.

Example 2 illustrates how a grading system differs from a ranking system like the Borda

count, which in general requires that different ranks be given to each candidate (i.e., the

ranking is strict).6 A more significant difference is that, unlike ranking systems, wherein

the ranks have the same meaning for all voters when they are aggregated, this is not true of

grades.

To illustrate, the top grade of the first two voters (3) has triple the effect in helping a

favorite candidate as the top grade of the third voter (1). Similarly, the bottom grade of the

first and third voters (0) is much more significant in hurting a least favorite candidate than

the bottom grade of the second voter (2). These statements apply only in an absolute sense,

though. In a relative sense, the first voter has triple the effect of each of the last two,

because (3 - 0) is thrice (3 - 2) or (1 - 0).

While the ranks of a ranking system like the Borda count can be interpreted as grades

(see footnotes 4 and 6), a grading system allows voters to express levels of satisfaction or

dissatisfaction that a ranking system does not. In this sense, a grading system offers a richer

menu of choices for voters.

6 If a voter’s ranking is not strict, the usual convention is to give all tied candidates the mean of the ranks as
if the ranking were strict. To illustrate in Example 2, with ranks of 2, 1, and 0 for the three candidates, the
Borda scores of the first voter would be (2, �, �), of the second voter (0, 1�, 1�), and of the third voter (0,
1�, 1�). In this example, B and C would be the tied winners, and no paradox of grading systems would
occur, because these candidates are preferred by two of the three voters. In general, when translating ranks
into grades or grades into ranks, ranking systems and grading systems may yield different outcomes.
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Of course, AV limits this menu to two grades. Translating the grades of the voters in

Example 2 into 1 and 0 in the obvious way (observe that each voter has dichotomous

preferences, based on the grades), the AG and SG outcomes yield the same pair of can-

didates, showing that AV produces no paradox.

It is worth pointing out that even when only two candidates are on the ballot, a strong

paradox of grading systems may crop up, as our next example demonstrates:

Example 3 3 grades, {2, 1, 0}, and 5 voters

2 voters: Grades of (2, 0) to (A, B)

3 voters: Grades of (0, 1) to (A, B)

The AG winner is A, with an average grade of 4/5, whereas B receives an average grade

of 3/5. But B receives a higher grade from 3 of the 5 voters and so is the SG winner.

But with only two candidates, strategic voters will always have an incentive to give the

top grade to their preferred candidate and the bottom grade to their nonpreferred candidate,

making implausible the choice of a middling grade (1 in this example).7 Accordingly, we

assume in our simulation later that there are always at least three candidates in both the

sincere and strategic models.

Our next example illustrates an extreme example of the strong paradox—that all voters

except one may grade the SG winner higher than the AG winner.8

Example 4 6 grades, {5, 4, 3, 2, 1, 0}, and 5 voters

1 voter: Grades of (5, 0, 0) to (A, B, C)

4 voters: Grades of (0, 1, 1) to (A, B, C)

The AG winner is A, with an average grade of 5/5, whereas B and C each receive

average grades of 4/5. But B and C receive higher grades than A from 4 of the 5 voters, so

they are the SG winners.

One can blame the election of A on the 4 voters who give B and C, their preferred

candidates, only the next-lowest grade of 1. But independent of their choices, this strong

paradox of grading systems would be nullified if, as under AV, the maximum grade that the

first voter can give A is 1.

A paradox can occur when there are three candidates, three voters, and three grades—

even when voters are strategic, and each voter gives at least one candidate a maximum

grade of 2, and at least one candidate a minimum grade of 0—as the following example

demonstrates:

Example 5 3 grades, {2, 1, 0}, and 3 voters

1 voter: Grades of (2, 1, 0) to (A, B, C)

1 voter: Grades of (0, 2, 0) to (A, B, C)

1 voter: Grades of (0, 0, 2) to (A, B, C)

The AG winner is B, with an average grade of 3/3, whereas A and C each receive an

average grade of 2/3. But one finds a cycle of winners,

7 Such a dichotomization is effectively what AV forces, and not just for two candidates. In the presence of
two candidates only, plurality voting suffices to enable a voter to vote for just his or her preferred candidate.
8 This was also true in Example 2, but ‘‘all except one’’ meant only 2 of the 3 voters rather than, as in
Example 4, 4 of the 5 voters.
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where ‘‘*’’ denotes a tie—that is, candidates on each side of this sign receive higher

grades than each other from the same number of voters (one each in this example). A

(weak) paradox of grading systems occurs because the AG winner (A) and the SG winners

(A, B, C) are not identical.

One might argue in this example that B is the most deserving SG winner because he or

she is the only candidate to have more higher grades (2) than one of the other candidates

(C). On the other hand, each candidate can, as a result of the cycle, win or tie against

another candidate.

We adopt an inclusive definition of SG winners by including all candidates in a top

cycle linked by either ties or wins. This definition avoids the problem of determining,

especially in complex cycles in which the candidates may have different numbers of ties or

wins, which candidates in the cycle deserve to be called the SG winners.

We have given several examples of both the weak paradox and the strong paradox of

grading systems. Such paradoxes can afflict any grading systems with more than two

grades. While two grades preclude these paradoxes, we recognize that AV does limit a

voter’s choices—compared with grading systems that allow more than two grades—which

is a tradeoff that we discuss in the concluding section.

We turn next to assessing the probability of the paradox under different conditions. But

first we describe how we make our calculations and then present the results of our

simulation.

4 The probability of the paradox of grading systems

Although it is straightforward to determine AG winners, the determination of SG winners

requires a more complex procedure. We begin with a list of voters’ grades, as illustrated by

the sub-table in the top half of Table 1, in which 4 voters—shown along the rows {I, II, III,

IV}— give 4 candidates—shown across the columns {A, B, C, D}—4 grades {0, 1, 2, 3},

which are the entries in the sub-table. Thus, for example, voter I gives candidate C a grade

of 1.

We call this the data table. Note that voter II does not satisfy the constraint of the

strategic model, because he or she does not give a lowest grade of 0 or a highest grade of 3

to any candidate.

Let c be the number of candidates. From the data table, we construct a c 9 c matrix

whose entries, (i, j), are 1 if more voters give the row candidate i a higher grade than the

column candidate j, � if the same number of voters give candidates i and j higher grades,

and 0 if more voters give candidate j a higher grade than candidate i. (Voters who give

i and j the same grade are not counted in this comparison.) We call this the win matrix. Its

diagonal elements are all 0.

To illustrate the derivation of the win matrix from the data table, consider entry (1, 3) of

the win matrix, which is based on comparing how many of the four voters grade A higher

than C versus grade C higher than A. Voters I, III, and IV grade A higher, and none grade

C higher (voter II grades the two candidates the same), so the (1, 3) entry is 1, indicating

that more voters grade A higher.

The set of SG winners is derived from the win matrix. One method is as follows. Obtain

the column totals in the win matrix—�, 2�, 2�, � for candidates A, B, C, D (respec-

tively) in the example. Order the candidates, low to high, according to their column

202 Public Choice (2015) 165:193–210

123



totals—A, D, B, C here (the order does not matter when there are ties). Rearrange the

columns of the data table so that they are in this same order—columns 1–4 for candidates

A, D, B, C, respectively. Now use this new data table to create a new win matrix (actually,

it is just the original one rearranged). Finally, examine successively the 1 9 1, 2 9 2,

3 9 3,… sub-matrices in the upper left corner of the new win matrix until reaching the first

such sub-matrix that has nothing but 0s directly below it. The candidates associated with

the columns (or rows) of that sub-matrix constitute the SG winner set. In the example, the

first qualifying sub-matrix in the upper left corner is 2 9 2, so the SG winner set is {A, D}.

We next analyze the probability of the weak paradox of grading systems for different

numbers of candidates (c), voters (v), and grades (g). We begin by assuming g = 3 and let

c and v vary. Then we let g vary as well.

Our results are based on a computer simulation using Python, in which we ran 10,000

trials to estimate the probability of the weak paradox for different values of (c, v, g).9 The

simulation is necessitated by the fact that even for very small parameter values, an

exhaustive calculation can be infeasible. Each of the cv cells in the data table can be filled

with any of the g grades. For example, assume that (c, v, g) = (3, 4, 5). Then for each of

the 3 candidates, each of the 4 voters can assign him or her one of 5 grades, giving

gcv ¼ 53�4 ¼ 512 ¼ 244; 140; 625

different combinations for sincere voting. (Our simulation samples less than 0.0041 % of

these possibilities.10) If the number of voters is as few as 20, the number of combinations is

astronomical.

We present our simulation results for an impartial culture, in which each voter is

assumed to be equally likely to give each possible grade to each of the candidates, which is

what we earlier called the sincere model. The strategic model is one in which we constrain

each voter to giving at least one candidate a bottom grade and at least one candidate a top

grade.

We define and implement the strategic model as follows. Our definition specifies that all

voter grade assignments that have at least one top grade and one bottom grade are equally

Table 1 Data table and win matrix for 4 candidates, 4 voters, and 4 grades

Candidate A Candidate B Candidate C Candidate D

Data table

Voter I 2 0 1 3

Voter II 1 1 1 2

Voter III 3 0 0 0

Voter IV 3 1 0 0

Win matrix

Candidate A 0 1 1 �

Candidate B 0 0 � 0

Candidate C 0 � 0 0

Candidate D � 1 1 0

9 We are grateful to Sean J. Vasquez for writing the computer program to do the simulation.
10 The sampling is carried out with replacement, so in general it may include duplicate combinations, but
that is unlikely for this example.
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likely. Other definitions are possible, but ours seems reasonable, need not cause pro-

gramming problems, and (at least for moderate parameter values) does not lead to com-

putational infeasibility. To implement, we draw as for the sincere model, but, generally,

some of the voter grade combinations that we draw will not satisfy the constraint of the

strategic model. Then we replace each of the non-conforming voters by voters who do

satisfy the constraint, drawing at random as many voters as is necessary until v voters are

found. Because of the need to replace voters who do not give both a bottom grade to one

candidate and a top grade to another candidate, probabilities based on the strategic model

take considerably longer to compute for the 10,000 trials (though a different technique

could possibly reduce the time required).

In Table 2 we present the results of our simulation for three grades (g = 3) and different

numbers of voters (v) and candidates (c). It may seem incongruous that the number of

candidates can exceed the number of voters, but this situation is not as unusual as it sounds.

It occurs, for example, when members of a small governing board or search committee

(e.g., v = 3 in Table 2) must choose from among several candidates (e.g., c = 10). More

common for elections that political scientists study is that the number of voters (e.g.,

v = 50 in Table 2) substantially exceeds the number of candidates (e.g., c = 3).

We have estimated through simulation the probabilities for the sincere and strategic

models in all cases except v = 25 and 50. To calculate these probabilities for the strategic

model without reducing the number of trials from 10,000 would have required an inor-

dinate amount of computer time. Because the probabilities for the strategic model for

v = 3–9 do not differ much from those of the sincere model (generally, by less than 10 %

of the probability), there is not much lost in omitting the strategic probabilities for v = 25

and v = 50.

When exhaustive calculations needed to compute exact results can be made, one finds

that the simulated probabilities are generally accurate to within ±0.01 of the exact results.

This accords with the standard error of a sample probability, which is at most 0.005 (equal

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=2 � 1=2Þ=10; 000
p

).11 For example, when (c, v, g) = (3, 3, 3) for the sincere model,

there are gcv = 3393 = 39 = 19,683 possible combinations. One can examine them all to

determine that the exact probability of a weak paradox of grading systems—to four dec-

imal places—is 4,302/19,683 = 0.2186, compared with a simulated probability of 0.2216,

both of which round to 0.22. For the strategic model, the exact probability is

342/1,728 = 0.1979, compared with a simulated probability of 0.2037, both of which

round to 0.20.

Because of the random element in the choice of 10,000 trials, the simulated probability

will vary from sampling to sampling. Consistent with a standard error not above 0.005 for a

simulated probability and not above
ffiffiffi

2
p

times that for the difference between two such

probabilities, we have found that different samples generally produce simulated proba-

bilities well within 0.02 of each other—and within ±0.01 of the exact probability, as noted

above—demonstrating that the Monte Carlo simulation yields almost exact values. We

summarize our findings from Table 2 for the sincere model when g = 3:

1. Holding v constant, the probability of the paradox increases with the number of

candidates c.

2. Holding c constant, the probability of the paradox increases with the number of voters

up to about v = 5–8 and then declines.

11 For n Bernoulli trials each with success probability p (the binomial distribution), the standard error of the

sample proportion of successes is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 � pÞ=n
p

, which is maximized at p = �.
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3. The probabilities range from a low of 22 % (v = 3, c = 3) to a high of 51 % (v = 6,

c = 10).

These probabilities of the occurrence of the weak paradox, averaging about 40 %, are

high, but recall that they do not mean that the AG and SG winners always will be non-

overlapping. While the sets of AG and SG winners are different, some members may be

common to the two sets. Only when a strong paradox occurs will there be no overlap in the

AG and SG winners (illustrated by Examples 2, 3, and 4), ensuring that the AG and SG

winners are completely different.12

Because every candidate has the same probability of obtaining each grade, on average

he or she will have the same average grade, making the election highly competitive.

Elections with three or more such candidates are rare, though we describe one in the

concluding section.

Suffice it to say here that the probabilities in Table 2 likely overestimate the probability

of a paradox of grading systems substantially in actual elections.13 Nevertheless, it is

probable that they accurately indicate what factors (increases in c; increases in v up to 5–8

voters) increase the probability of the paradox.

In Table 3, we show the probability of the weak paradox for different numbers of grades

(g = 3, 5, 7, 9).14 We chose those values because they enable a voter to assign a median

grade (1, 2, 3 or 4, when grades start at 0) to a candidate that he or she believes falls

squarely in the middle. We summarize our findings from Table 3:

Table 2 Probability of weak paradox of grading systems for sincere (strategic) models with three grades
(g = 3), as a function of the numbers of candidates (c) and voters (v)

#Candidates ?
#Voters ;

c = 3 c = 4 c = 5 c = 6 c = 9 c = 10

v = 3 0.2216
(0.2037)

0.2797
(0.2995)

0.3339
(0.3501)

0.3747
(0.4017)

0.4340
(0.4490)

0.4523
(0.4508)

v = 4 0.2443
(0.2874)

0.3168
(0.3447)

0.3487
(0.3740)

0.3933
(0.4081)

0.4687
(0.4698)

0.4732
(0.4889)

v = 5 0.2526
(0.2315)

0.3157
(0.3393)

0.3663
(0.3757)

0.4179
(0.4194)

0.4847
(0.4807)

0.4970
(0.4909)

v = 6 0.2627
(0.2671)

0.3321
(0.3391)

0.3839
(0.3758)

0.4057
(0.4194)

0.4897
(0.4909)

0.5084
(0.5045)

v = 7 0.2633
(0.2394)

0.3225
(0.3330)

0.3746
(0.3724)

0.4129
(0.4103)

0.4863
(0.4918)

0.4977
(0.4944)

v = 8 0.2658
(0.2555)

0.3284
(0.3372)

0.3854
(0.3708)

0.4097
(0.4055)

0.4900
(0.4891)

0.5016
(0.5131)

v = 9 0.2709
(0.2426)

0.3249
(0.3314)

0.3780
(0.3681)

0.4116
(0.4120)

0.4857
(0.4880)

0.4869
(0.5069)

v = 25 0.2518 0.3071 0.3448 0.3873 0.4441 0.4557

v = 50 0.2310 0.2919 0.3253 0.3455 0.4087 0.4273

12 We did not calculate the probability of a strong paradox. It seemed to us that the possibility, not the
certainty, of different AG and SG winners was the first question to address in inquiring whether a dis-
crepancy posed a serious problem.
13 Regenwetter et al. (2006) make a similar point about the probability of the Condorcet paradox, showing
that the paradox turns up much less often than its theoretical probability, based on the impartial-culture
assumption.
14 The first column of Table 3 when g = 3 repeats probabilities from Table 2.
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4. For fixed values of (c, v) for g up to 9, the probability of the paradox increases with the

number of grades, at least up to g = 7.

5. The probabilities of the paradox range from a low of 22 % to a high of 56 %.

As in Table 2, the probabilities of the paradox in Table 3 almost surely are overesti-

mates of the probabilities that would be observed in actual elections. But the fact that AG

and SG winners may differ for all grading systems except AV highlights the issue of how

best to resolve such a discrepancy, which we will turn to in the concluding section.

It is well known that different ranking systems can produce different winners, so it

should come as no surprise that the same is true of different grading systems. While we

have concentrated on differences between AG and SG winners, these differences extend to

median-grade winners, whose election is advocated by Balinski and Laraki (2011). Indeed,

median-grade winners may differ from both AG and SG winners, as our final example

shows:

Example 6 3 grades, {2, 1, 0}, and 9 voters

2 A-B voters: Grades of (2, 2, 0) to (A, B, C)

3 B-C voters: Grades of (1, 2, 2) to (A, B, C)

4 A-C voters: Grades of (1, 0, 1) to (A, B, C)

In fact, there is no overlap at all of the three kinds of winners:

• The AG winner is A, with an average grade of 11/9, whereas B and C have average

grades of 10/9.

• The SG winner is C, because (i) 3 B–C voters grade C higher than A, whereas 2 A–

B voters grade A higher than C (the 4 A–C voters are indifferent); and (ii) 4 A–C voters

grade C higher than B, whereas 2 A–B voters grade B higher than C (3 B–C voters are

indifferent). Hence, C beats A and C beats B.

• The median-grade winner is B, with a median grade of 2, whereas A and C each have

median grades of 1.

In this example, we can ask, and answer, who would have won under AV. Because all 9

voters, based on their grades (two candidates graded equally, and those higher than the

third), have dichotomous preferences, we can translate their grades readily into 1s and 0s.

Doing so yields AV vote totals for (A, B, C) of

½2 � ð1; 1; 0Þ� þ ½3 � ð0; 1; 1Þ� þ ½4 � ð1; 0; 1Þ� ¼ ð6; 5; 7Þ;

so C would be the winner, consistent with voters choosing their dominant strategies under

AV and thereby electing the Condorcet winner, who is also the AG–SG winner under AV.

We can also ask what the probability of the (weak) paradox of grading is (i.e., AG and

SG winner sets not identical) when, as in Example 6, (c, v, g) = (3, 9, 3). From Tables 2

and 3, it is estimated to be 0.2709. We also have estimated through simulation the prob-

ability that the sets of AG, SG, and median-grade winners are all different (using the

standard definition of the median), which is 0.1084 in this example.

But even the latter probability overestimates the chance of a strong paradox (involving

all three of the AG, SG, and median-grade winner sets), because it allows for the overlap of

the winning sets, which does not occur in Example 6. In fact, exhaustive examination of all

19,683 possible combinations, using SAS (and again using the standard definition of the

median), shows that Example 6, except for the labeling of the candidates, is the only

example in which the AG, SG, and median-grade winners all differ, without overlap, for

subsets of 2, 3, and 4 voters whose members give the same grades (with g = 3) to the three
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candidates. These subsets may be thought of as political parties, whose members grade the

candidates in the manner shown in Example 6.

Example 6 throws into sharp relief the normative question of who should win when

different grading systems yield different winners, especially when there is a strong paradox

(even including a different median-grade winner—see Example 6) and, therefore, no

overlap among the different winners. We offer some thoughts on this question in the final

section.

5 Conclusions

Just as different ranking systems, such as the Borda count and the Hare system of single

transferable vote, may produce different winners, so may different grading systems if more

than two grades can be assigned. We gave several examples in which the average-grade

(AG) and superior-grade (SG) winners are different, and one example in which the AG,

SG, and median-grade winners not only differ but also have no overlap. When these

differences occur, a paradox of grading systems arises, becoming a strong paradox when no

overlap exists in the sets of winners (so each system elects a different winner).

The probability of the paradox for the sincere and strategic models increases with the

number of candidates; and with the number of voters up to about 5–8, depending on the

number of candidates. The probability of the paradox also increases with the number of

possible grades, at least up to 7.

The strategic model, in which all voters give at least one candidate a bottom grade and

at least one candidate a top grade, seems a more realistic model than the sincere model

without such a constraint. Giving bottom and top grades to one’s least and most preferred

candidates increases the chances of not electing a least preferred, and electing a most

preferred, candidate.

Table 3 Probability of weak
paradox of grading systems for
sincere model, as a function of
the numbers of candidates (c),
voters (v), and grades (g)

#Grades ?
#Candidates/#Voters ;

g = 3 g = 5 g = 7 g = 9

c = 3:

v = 3 0.2216 0.3276 0.3372 0.3344

v = 4 0.2443 0.3763 0.4183 0.4534

v = 9 0.2709 0.3369 0.3614 0.3572

v = 25 0.2518 0.3059 0.3310 0.3378

c = 4:

v = 4 0.3168 0.4661 0.5103 0.5476

v = 5 0.3157 0.4307 0.4385 0.4385

v = 9 0.3249 0.4196 0.4394 0.4475

v = 25 0.3071 0.3733 0.3962 0.4452

c = 5:

v = 5 0.3663 0.4947 0.5008 0.5016

v = 6 0.3839 0.5000 0.5275 0.5562

v = 9 0.3780 0.4657 0.4997 0.5021

v = 25 0.3448 0.4399 0.4526 0.4631
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But this leaves open how one should grade candidates who fall in the middle, which is

analyzed in Brams and Fishburn (2007 [1983], ch. 5). Unless voters dichotomize their

grades by grading up some of these candidates to the maximum grade, and grading down

the others to the minimum grade—which is in effect to reduce the grades to two (as under

approval voting, AV)—then a paradox can occur.

We know of no uses of a grading system in public elections, so there is no basis for

judging the relative frequency of a paradox in such elections. But examples of actual

elections exist, such as the 1977 Democratic mayoral primary in New York City, in which

the paradox would likely have occurred if a grading system had been used. In that election,

no candidate received as much as 20 % of the vote, and five candidates received more than

10 % (Edward Koch won with 19.8 %, just beating out Mario Cuomo, who received

18.7 %).

In close elections in which candidates bunch at the top, it may be desirable to let voters

make judgments of who, among their middling candidates, merits approval and who does

not. In that sense, AV is ‘‘responsive’’ to the views of each voter (Brams et al. 1988),

though others—including Saari and Van Newenhizen (1988), who favor the Borda count—

disagree. Still other theorists have suggested from three (Felsenthal 1989; Hillinger 2005;

Alcantud and Laruelle 2014) to six (Balinski and Laraki 2011) to more grades be used, but

they disagree as to whether it is better to choose an AG winner, an SG (or Condorcet)

winner, or a median-grade winner.

Among grading systems, we favor AV (g = 2), not only because it ensures that the AG

and SG winners are the same, so no paradox can arise, but also because it is sensitive to

how individual voters dichotomize their middling candidates. Whether voters approve of

many or few such candidates, their choices influence the choice of a winner. As a case in

point, if the first voter in Example 5 approves of the candidate graded 1 (B), B wins under

AV, but if not a three-way tie among A, B, and C occurs, in which case one candidate

presumably would be chosen at random. Likewise, depending on how the A, B, and

C voters in Example 1 dichotomize their 1 votes, any of the three candidates could be the

unique AV winner.

If voters can assign more than two grades, they will have a strong incentive to give a

maximum grade to only one candidate—at least if he or she is viewed as a contender—and

a minimum grade to all the other candidates. If a voter’s favorite is not viewed as a

contender, then he or she will be motivated to give a maximum grade to his or her

(noncompetitive) favorite and a favorite among the contenders, and a minimum grade to

everybody else. In either case, these strategies are tantamount to those that would be used

under AV.

To be sure, in some nonpublic elections, such as in judging certain sporting events (e.g.,

figure skating) and rating wines, grading systems are used and generally work well. In

these contests, there typically is not a single winner. Three players usually receive medals

in sports contests, though not all have the same prestige, and more than one wine may be

rated highly. However, the award(s) go to the AG winners, not the SG winners, though a

case can be made that the SG winners are just as deserving when a paradox arises.

To conclude, we have identified a paradox of grading systems, which does not just

mirror the well-known differences that crop up in aggregating votes under ranking systems.

Unlike those systems, for which there is no accepted way of reconciling which candidate to

choose when, for example, the Hare, Borda, and Condorcet winners differ, AV provides a

solution when the AG and SG winners differ. We believe this to be an eminently sensible

way of reaching a consensus on who, normatively speaking, should win.
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Although AV may not be the ideal system to use in figure-skating contests or wine-

tasting competitions—wherein voters have little or no incentive to dichotomize their

grades—we think it has much to commend in political contests in which more than two

grades can result in the paradox, even when voters are strategic. AV has been advocated for

other reasons, including its simplicity and practicality,15 but our intent in this paper has

been to show how it resolves a troublesome paradox.
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