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Abstract If voters vote strategically, is it useful to offer them the possibility of
expressing nuanced opinions, or would they always overstate the intensity of their
preferences? For additive voting rules, say that a ballot is extremal if it is neither
abstention-like nor can be expressed as a mixture of the available ballots. We give a
sufficient condition for strategic equivalence: if two rules share the same set of extremal
ballots (up to an homothetic transformation), they are strategically equivalent in large
elections. This condition is also necessary for the strategic equivalence of positional
rules. These results do not hold for small electorates.

Keywords Strategic voting · Voting equilibria

JEL Classification D70 · D72

1 Introduction

One of the reasons advocated for extending the set of ballots available to the voters
is to allow them to represent more accurately the intensity of their preferences for
the various candidates. Consider for instance Evaluative Voting (EV ). Under EV , the
voter evaluates each candidate independently on the same numerical scale, the grades
are added and the candidate with the largest total is elected. Baujard et al. (2010) and
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Baujard et al. (2013) report on field work on EV with various scales, and observe
that voters often say that they appreciate the possibility of voicing their opinions more
finely than what a uni-nominal vote allows.

Evaluative Voting is an extension of Approval Voting (AV ), which can be consid-
ered as EV with the simple scale {0, 1}. And AV is itself an extension of Plurality
Voting1 (PV ), in the sense that a voting rule V ′ is an extension of a voting rule V if
all the ballots available under V are available under V ′.

But does extending the set of ballots available under a given voting rule modify the
set of voting equilibria? For instance, Dhillon and Mertens (1999) study the “Rela-
tive Utilitarianism” mechanism, according to which voters grade alternatives and the
voter’s grades are summed after re-scaling to the interval [0, 1]. They write: “Except
possibly with very small sets of voters, voters will clearly find that, for their votes to
have a maximal effect, they should assign either 0 or 1 to every alternative. Hence the
corresponding direct mechanism seems to be ‘approval voting’.” Indeed, assuming
strategic voting, one might suspect that the set of voting equilibria should often not be
altered by such an extension.

We shall verify this intuition for large electorates. However, it need not be always
the case that extending the set of ballots has no strategic implications. For instance,
AV is an extension of PV and, as shown by Myerson and Weber (1993), AV improves
the aggregation of preferences when compared with PV in the noteworthy divided
majority situation.

We here focus on additive voting rules, in which a ballot is a list of points that the
voter is affording to the candidates, and where points for each candidate are simply
added. (A formal definition of this family of voting rules is provided in the next section)
We analyze the issue in the framework of strategic voting, that is assuming that voters
strategically cast their votes in order to maximize their (expected) utility. We study
equilibria and consider that two voting rules are strategically equivalent if they have
the same equilibrium outcomes.

Strategic incentives in large and small electorates may differ and have been modeled
in different ways. To study small electorates, we use a standard refinement of Nash
equilibrium (perfectness) and provide an example that shows that voters need not
overstate at equilibrium.

To tackle the problem on large elections, we focus on one of the first and simplest
models in this direction, proposed by Myerson and Weber (1993)2. In this model,
for any pair of candidates, the voter considers that there is a positive probability that
her vote is pivotal on this pair, but some of these probabilities are vanishingly small
compared to others. We first define the notion of strategically equivalent voting rules.

1 EV is obviously related to Utilitarianism; see Karni (1998), Dhillon and Mertens (1999), Segal (2000),
d’Aspremont and Gevers (2002) and Gaertner and Xu (2012) who called it Range Voting, for axiomatic
analyses. AV is often advocated since it emerged in the literature in the mid 70s; see Laslier and Sanver
(2010) for a detailed account. In an election held under PV , a voter is allowed to give at most one point to
at most one candidate and the candidate with the most votes wins the election. The most common rule for
direct presidential elections is Plurality with a Runoff (Blais et al. 1997), but we here restrict attention to
one-round voting systems.
2 Other models of large electorates have been proposed: Palfrey (1989), Laslier (2000), Myerson (2000),
and McKelvey and Patty (2006).
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Two equilibria of elections held under two different rules are equivalent if and only if
the winning candidates are the same ones and voters’ strategies can be justified by the
same sequence of pivot probabilities. Two voting rules are strategically equivalent if
and only if to each equilibrium for one rule corresponds an equivalent equilibrium for
the other rule.

We then derive necessary and sufficient conditions for the strategic equivalence of
voting rules. The sufficient condition is simple. Say that a ballot is extremal if it is not
abstention-like (the ballot does not treat all candidates alike) and it cannot be expressed
as a mixture of other available ballots. Notice that “casting an extremal ballot” does
not here mean voting for a candidate at some extreme point of the political spec-
trum, it means voicing a (maybe moderate) political opinion in the strongest possible
way.

We show that if two voting rules offer the same set of extremal ballots, up to a homo-
thetic transformation, then they are strategically equivalent. The use of this sufficient
condition is fairly straightforward, implying several interesting consequences.

The first consequence is that Approval Voting and Evaluative Voting are strategically
equivalent. The second consequence concerns a different family of voting rules. In an
election held under Cumulative Voting (CV ), another natural extension of Plurality
Voting, a voter is endowed with a finite number of points, and he is allowed to distribute
them freely between the different candidates. Different authors3 have discussed such
a method. With such a voting rule, voters have the possibility of choosing an extremal
ballot: that is to give the highest possible amount of points to only one of the candidates.
We prove that this is indeed the case in equilibrium, implying that PV and CV
are strategically equivalent. We hence prove that for both PV and AV , there exist
extensions that do not modify the set of voting equilibria.

A related question is to know whether extending a voting rule, and hence giving
more flexibility to the voters, necessarily leads to a better preference aggregation.
Such is the case with PV and AV in the examples of Myerson and Weber (1993).
Call robust the voting rules whose set of equilibria remains unaltered by any finite
extension. As we will see, provided that the maximal score that can be attached to
a candidate is bounded, for any voting rule U , there must exist an extension V such
that the set of extremal ballots of V coincide with the set of extremal ballots of EV
with the maximum number of points. Due to the sufficient condition, V and EV are
strategically equivalent. Therefore, giving more flexibility might modify the set of
equilibria, however, the limit of such extensions is strategically equivalent to EV with
the maximum number of points and therefore to AV . Therefore, the more flexibility
a voting rule allows to voters, the more it becomes similar, from a strategic point of
view, to Approval Voting.

As far as the necessary condition is concerned, we prove that the existence of a
homothetic transformation is necessary for strategic equivalence if we restrain the
allowed voting rules to be rank, or positional, scoring rules. A rank scoring rule (as
axiomatized by Young (1975)) is characterized by a vector of weights to be assigned to
each of the candidates, non-abstention ballots being all the permutations of this vector.

3 See Sawyer and MacRae (1962), Brams (1975), Nitzan (1985), Cox (1990) and Gerber et al. (1998).
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The candidate(s) with the highest number of votes is (are) declared the winner(s) of the
election. For instance, PV , Borda Count and Negative Voting are rank scoring rules
whereas AV is considered as a non-rank scoring rule, since such a permutation does
not exist. The reason of this simple necessary condition is the structure of positional
rules, any extremal ballot being a permutation of the same vector. In full generality, that
is without imposing some further structure to the rules, a tractable necessary condition
seems to be hard to obtain.

The described equivalence between voting equilibria is valid along the lines of the
theory of large elections proposed by Myerson and Weber (1993). Small elections
(that is elections with few voters) raise new questions. For instance, the information
available to voters might be much more detailed in a small election than in a mass
election, implying that a theory such as Myerson and Weber’s one is of scant interest
for small electorates. In order to investigate whether the previous claims still hold in
environments with few voters, we discuss a voting situation in the case of Evaluative
Voting.

In the example that we study, the strategy combination is a mixed-strategy equi-
librium in which the unique pure strategy best response for a voter is not extremal.
Indeed, one of the voters of the election mixes between his undominated strategies
making uncertain the final electoral outcome for the rest of the voters. The “mixing”
removes the weak preference for overstatements. Furthermore, the strategy profile is
a perfect equilibrium á la Selten (Selten 1975). This situation proves that the lack of
overstatement can be a best response even in equilibria that satisfy different equilibria
refinements. The refinement (trembling-hand perfection) used in this work is among
the most classical ways of obtaining equilibria as a limit of games with small uncer-
tainty (i.e. perturbed games). However, it should not be too difficult to generalize the
results to settings in which the uncertainty comes from other sources. For instance,
Bayesian games with some uncertainty about voters’ types or common values’ set-
tings with imperfect information about the true state of nature are good candidates for
models in which extremal voting is not always a best response for a strategic voter.

This paper is organized as follows. Section 2 presents the basics of the model.
Sections 3 to 6 are devoted to large elections: Sect. 3 describes the equilibrium concept,
Sects. 4 and 5 state the sufficient and necessary conditions for strategic equivalence,
Sect. 6 presents the strategic equivalence between the above-mentioned voting rules
and contains the results on the robustness of a voting rule. Section 7 presents the results
concerning the environments with few voters, and Sect. 8 provides some concluding
comments.

2 The setting

The finite set of voters is denoted by N = {1, . . . , n}. Each voter has a type t that
determines his preferences over the set of candidates K = {c1, c2, . . . , ck}. The pref-
erences of a voter with type t (a t-voter) is defined by ut = (ut (ci ))ci ∈K, in which
ut (ci ) denotes the utility a t-voter gets if candidate ci wins the election. Voters’ util-
ities are assumed not to be constant across all candidates. All types t belong to a
finite set of types T . The distribution of types is denoted by r = (r(t))t∈T with
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Preference intensity representation 317

∑
t r(t) = 1, in other words, r(t) represents the share of t-voters. Hence, a voting

situation is characterized by (N , T ,K, r).
In this work, we stick to the comparison of additive rules: a ballot is a vector

b = (b1, b2, . . . , bk) where bi is a positive integer that denotes the number of points
given to candidate ci , to be added to elect the candidate with the largest score. We
assume that the number of points is bounded, i.e. there exists some positive real number
M such that bi ≤ M for every i . Each voter must choose a ballot b from a finite set
of possible ballots denoted by V . Moreover, a voting game, or election, is a voting
situation in which the voting rule is specified. Among additive voting rules, we will
pay special attention to Evaluative, Cumulative, Approval, and Positional rules.

Under Evaluative Voting with m points, a voter can assign up to m points to each
candidate. Hence:

b is anEV mballot if ∀ b j ∈ K, b j ∈ {0, 1, . . . , m}.

Similarly, an Approval Voting (AV ) ballot consists of a vector that lists whether
each candidate has been approved or not: for each b j ∈ K , b j ∈ {0, 1}. Hence, AV
is a particular case of EV m with m = 1.

In an election held under Cumulative Voting with m points, a voter can assign up to
m points to each candidate, with the restriction that the sum of the points he assigns
to the candidates is at most m:

b is an CV mballot if ∀c j ∈ K, b j ∈ {0, 1, . . . , m}, and
∑

c j ∈K
b j ≤ m.

In an election held under Plurality Voting (PV ) voters can abstain or give one point
to at most one candidate. Hence, PV is a particular case of CV m with m = 1.

We can formally define for this paper a voting rule by its set of ballots, so that:

EV m = {0, 1, . . . , m}K, AV = EV 1 ,

CV m =
⎧
⎨

⎩
b ∈ {0, 1, . . . , m}K :

∑

c j ∈K
b j ≤ m

⎫
⎬

⎭
, PV = CV 1.

Following Myerson (1999), a rank scoring rule (a positional voting rule) U in a
k-candidates election is characterized by some list of numbers b = (b1, b2, . . . , bk)

such that b1 ≥ b2 ≥ . . . ≥ bk = 0, and the ballots are all the permutations of b. For
instance, Plurality voting is such that b1 = 1 and b j = 0 for any j �= 1. Similarly, the
Borda rule satisfies b j = k− j

k−1 . Negative voting belongs to this family as bk = 0 and
b j = 1 for any j �= k. Such rules play an important role in social choice theory and
were early characterized by Smith (1973) and Young (1975).

Note that both EV m for any m and CV m for m > 1 are non-rank scoring rules as it
is not be the case that all ballots in the ballot set are permutations of the same vector.
Central to this paper is the following concept:
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Definition 1 A voting rule V is an extension of the voting rule V ′ if all ballots in V ′
are available in V , i.e.

V ′ ⊂ V .

For instance, given a finite m, EV m is an extension of CV m as CV m ⊂ EV m .
Similarly, Approval Voting is an extension of Plurality Voting.

3 Large elections

We assume that each voter maximizes his expected utility to determine which ballot in
the set V he will cast. In this model, his vote has an impact in his payoff if it changes
the winner of the election. Therefore, a voter needs to estimate the probability of these
situations: the pivot events. We say that two candidates are tied if their vote totals
are equal. Furthermore, let H denote the set of all unordered pairs of candidates, we
denote a pair {ci , c j } in H as i j with i j = j i .

For each pair of candidates ci and c j , the i j-pivot probability pi j is the probability of
the outcome perceived by the voters that candidates ci and c j will be tied for first place
in the election. A voter perceives that the probability that he will change the winner of
the election from candidate ci to candidate c j by casting ballot b with bi ≥ b j to be
linearly proportional to bi − b j , and that the constant of proportionality (the i j-pivot
probability) is the same for the perceived chance of changing the winner from j to i
if b j ≥ bi

4.
A vector listing the pivot probabilities for all pairs of candidates is denoted by

p = (pi j )i j∈H . This vector p is assumed to be identical and common knowledge
for all voters in the election. A voter with i j-pivot probability pi j anticipates that
submitting the ballot b can change the winner of the election from candidate c j to
candidate ci with probability pi j max{bi − b j , 0}. The pivot probabilities pi j are
assumed to be small enough in order to ensure that pi j max{bi − b j , 0} is less than
one.

A (voting) strategy is a probability distribution σ over the set V that summarizes
the voting behavior of voters of each type. For any ballot b and any type t , σ(b | t) is
the probability that a t-voter casts ballot b. Let σ(· | − t) stands for the strategy profile
of the voters with types different from t . The expected utility gain from casting ballot
b equals the expected utility of casting ballot b minus the expected utility of abstaining.
Focusing on utility gains simplifies notation. The expected utility gain of a t-voter when
he plays the strategy σ(· | t) equals Et [σ(· | t) | p] where p is the common vector
of pivot probabilities. Slightly abusing notation, we let Et [b | p] denote the expected
utility gain of a t -voter from casting ballot b, that is he plays the pure strategy b with:

4 This is roughly equivalent to assume that the probability of candidates ci and c j being tied for first place
is the same as the probability of candidate ci being in first place one point ahead of candidate c j (and both
candidates above the rest of the candidates), which is in turn the same one as the probability of candidate
c j being in first place one vote ahead of candidate ci . Myerson and Weber (1993) justify this assumption
by arguing that it seems reasonable when the electorate is large enough. This is not verified in Poisson
games, a formal model of large elections in which the pivot probabilities are derived endogenously from
the structure of the game.
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Et [b | p] =
∑

i j∈H

(bi − b j ) · pi j · [ut (ci ) − ut (c j )]. (1)

Given the strategy combination σ , the share of the electorate who cast ballot b is
denoted by

τ(b) =
∑

t∈T
r(t)σ (b | t),

hence, the expected score of candidate ci is

S(ci ) =
∑

b∈V

biτ(b).

The score vector S = (S(ci ))ci ∈K describes the expected score of each candidate in
the election. The set of likely winners W (K) of the election contains the candidates
whose expected score S(ci ) is maximal given the strategy σ .

Myerson and Weber (1993) assume that voters expect candidates with lower
expected scores to be less likely serious contenders for first place than candidates
with higher expected scores. In other words, if the expected score for some candidate
ci is strictly higher than the expected score for some candidate c j , then the voters
would perceive that candidate ci ’s being tied for first place with any third candidate
cl is much more likely than candidate c j ’s being tied for first place with candidate cl .

Definition 2 Given a voting strategy σ and any 0 < ε < 1, a pivot probability vector
p satisfies the ordering condition for ε given σ if, for every three distinct candidates
ci , c j and cl :

S(ci ) > S(c j ) 	⇒ p jl ≤ εpil .

Besides, Myerson and Weber (1993) assume that the probability of three (or more)
candidates being tied for first place is infinitesimal in comparison to the probability
of a two-candidate tie.

Given a pivot probability vector p, the set of pure best replies of t-voters is as
follows:

BRt (p) = {b ∈ V | b ∈ arg max
d∈V

Et [d | p]}.

Given a strategy combination σ , the support of σ for t-voters denotes the set of
pure strategies (ballots) played with positive probability by t-voters according to σ :

Suppt (σ ) = {b ∈ V | σ(b | t) > 0}.

Definition 3 The strategy σ is a voting equilibrium of the game if and only if, for
every positive number ε, there exists a vector pε of positive pivot probabilities that
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satisfies the ordering condition for ε given σ , and such that, for each ballot b and for
each type t ,

b ∈ Suppt (σ ) 	⇒ b ∈ BRt (pε).

It should be stressed that, in this definition, the pivot probabilities pε
i j are supposed

to be the same when the voter contemplates casting one ballot or the other. This
point will play an important role in the next section. It is justified when the number
of voters is large for, in that case, the voter cannot change with his single vote the
order of magnitude of these probabilities. It can be shown that the set of equilibria is
non-empty 5.

Dividing the positive vector pε by the sum of its components, one obtains a prob-
ability distribution qε = (qε

i j )i j∈H over the set H of pairs of candidates. Note that
qε still satisfies the ordering condition. The component qε

i j represents the conditional
probability of a pivot between candidates ci and c j in the event of a pivot between
any two candidates in the election. Myerson and Weber (1993) remark that, in an
equilibrium, qε

i j can have a strictly positive limit when ε tends to 0 only if one of these
conditions holds: either both ci and c j are the front-runners of the election or one of
these two candidates is the front-runner and the other has the second highest expected
score.

Finally, an important concept in our model should be defined: the equivalence
between equilibria under different voting rules.

Definition 4 (Equivalence of Equilibria) An equilibrium σU of an election held under
a voting rule U is equivalent to an equilibrium σV of the same election held under V
if and only if they are justified by the same sequence of pivot probability vectors and
the set of likely winners is identical.

Definition 5 Given the set of candidates, two voting rules are strategically equivalent
if and only if their set of voting equilibria are equivalent in any voting situation, that
is if for any equilibrium of an election held under one rule there exists an equivalent
equilibrium under the other.

A possible winner is a candidate who wins the election in equilibrium with positive
probability. The set of possible winners of an election held under the voting rule V is
denoted:

WV = {ci ∈ K | There exists an equilibrium σ in which S(ci ) is maximal}.

If two voting rules are strategically equivalent, then they have the same set of
possible winners. However, the converse needs not be true; for instance, the rankings of
other candidates may differ. It is noteworthy that the definition of strategic equivalence
used is rather demanding. It requires more than the set of possible winners being the
same under two voting rules. This demanding definition reinforces our results as we
show that this strong version of equivalence holds in the Myerson-Weber setting.

5 See Theorem 1, page 105 in Myerson and Weber 1993.
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4 Strategic equivalence

This section states the sufficient conditions for the strategic equivalence of voting
rules.

4.1 The set of ballots

We now introduce some categories of ballots that will be useful throughout.
An abstention ballot is a ballot with all the coordinates alike; the set of such ballots

is denoted by Abs(V ).
An interior ballot b is a ballot which is not an abstention ballot and that can be

expressed as a strict convex combination of other ballots in V , i.e. there exist ballots

b1, b2, . . . , bm ∈ V with b =
∑

i

αi b
i with αi ∈ (0, 1) and

∑

i

αi = 1.

An extremal ballot is a ballot which is neither an interior nor an abstention ballot.
Given the set of ballots V , the set of interior and extremal ballots are respectively
denoted by Int(V ) and Ext(V ) with,

Ext(V ) = V \ (Int(V ) ∪ Abs(V )).

Letting �(V ) the set of convex combinations of ballots in V , the extremal ballots
correspond to the extreme points of �(V ) minus any abstention ballots.

We need to make the following technical assumption concerning the ballot set:
there exists for any type of voters a ballot in the set of ballots V that delivers a positive
expected utility to this type.
Regular ballot sets: A ballot set V is regular if for, for every type t and for every
positive pivot probability vector pε, there exists a ballot b∗ ∈ V that ensures a positive
utility gain to t-voters: Et [b∗ | pε] > 0.

Assuming regular ballot sets is not too restrictive. For instance, it suffices to see
that a sincere ballot under a rank scoring rule (and also under CV m and under EV m)
gives a strictly positive expected utility to voters. Recall that, by assumption, voters’
utilities are not constant across candidates. Assume that some voter’s preferences
are as follows ut (c1) > ut (c2) > . . . > ut (ck). Voting sincerely implies to vote b =
(b1, b2, . . . , bk−1, 0) with bi ≥ bi+1. By (1), Et [b| pε] = ∑

i j∈H (bi −b j )pε
i j [ut (ci )−

ut (c j )]. As (bi − b j ) ≥ 0 with i < j , with at least one inequality being strict, then
Et [b | pε] > 0 as wanted. We assume throughout that the ballot set V is regular.

Lemma 1 Neither an abstention ballot nor a ballot which is a convex combination of
at least one abstention ballot are cast with positive probability in equilibrium.

Proof We let ax denote an abstention ballot with ax = (x, . . . , x) for some positive
x . For any ε > 0, by (1), Et [ax | pε] = 0 for any pε.

The regularity of the ballot set directly implies that any strategy combination σ

in which an abstention ballot is cast with positive probability is not an equilibrium.
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Indeed, as the ballot set is regular, there exists a ballot b∗ ∈ V such that Et [b∗ | pε] >

0 = Et [ax | pε] for any pε. Therefore, ax �∈ BRt (pε) which implies that ax �∈
Suppt (σ ) in any equilibrium σ .

It remains to be proven that a ballot which is a convex combination of at least one
abstention ballot is not cast with positive probability in equilibrium. Let c be such a
ballot with c = αx ax +∑

i∈D αi di . Ballot c is the convex combination the abstention
ballot ax and of ballots di in some subset D ⊆ V with

∑
i∈D∪{x} αi = 1 with αi ≥ 0

for any i ∈ D ∪ {x}. Therefore, for any ε > 0, Et [c | pε] = ∑
i∈D αi Et [di | pε] as

Et [ax | pε] = 0. Suppose that there exists an equilibrium σ with c ∈ Suppt (σ ).
Suppose first that Et [c | pε] ≤ 0 with respect to σ . By the regularity of the ballot

set, there exists a ballot b∗ ∈ V such that Et [b∗ | pε] > 0. But then Et [b∗ | pε] > 0 ≥
Et [c | pε], so that c �∈ BRt (pε). Therefore, σ is not an equilibrium.

Suppose now that Et [c | pε] > 0 with respect to σ . By definition, there exists a
ballot b∗ ∈ V such that Et [b∗ | pε] > 0 for any pε. Let σ̂ (· | t) stand for the mixed
strategy of t-voters such that σ̂ (b∗ | t) = αx and for any di ∈ D, σ̂ (di | t) = αi .
Therefore, σ̂ is a well-defined mixed strategy with

Et [σ̂ (· | t) | pε] = αx Et [b∗ | pε] +
∑

i∈D
αi Et [di | pε]

> αx Et [ax | pε] +
∑

i∈D
αi Et [di | p] = Et [c | pε].

Therefore, as Et [σ̂ (· | t) | pε] > Et [c | pε], then c �∈ BRt (pε). Therefore, we can
conclude that σ is not an equilibrium. ��
Remark 1 The definition of an interior ballot implies that if a ballot c is interior then
it is the strict convex combination of extremal and abstention ballots:

c =
∑

b∈V ′
αb · b for some V ′with V ′ ⊂ Ext(V )

∪Abs(V ) with αb ∈ (0, 1) and
∑

b∈V ′
αb = 1.

Remark 2 The set Ext(V ) of extremal ballots is non-empty for any non-constant voting
rule. To see this suppose that Ext(V ) = ∅ for some voting rule with ballot set V . By
definition, V = Ext(V ) ∪ Int(B) ∪ Abs(V ). As V is finite, not every ballot can be
expressed by a convex combination of other ballots in V , so that V �= Int(V ). As we
have assumed that Ext(V ) = ∅, we must have that Abs(V ) �= ∅, i.e. every ballot
which is not interior is an abstention ballot. Hence, every ballot of such a rule is an
abstention ballot as any interior ballot is a strict convex combination of other ballots.
Thus, such a voting rule can be labeled as constant as it elects for any voting situation
the whole set of candidates.

Example 1 Consider a three-candidates election held under CV m with m = 2. Each
voter is endowed with at most two points that can be freely distributed among the
different candidates. The set of allowed ballots CV m is:
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CV m = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2),

(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1).}

The interior ballots are:

Int(CV m) = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(To see this, it is enough to write that for instance the interior ballot (1, 1, 0) equals the
convex combination 1/2(2, 0, 0) + 1/2(0, 2, 0).) There is a unique abstention ballot:

Abs(CV m) = {(0, 0, 0)}.

Finally, the set of extremal ballots is:

Ext(CV m) = {(2, 0, 0), (0, 2, 0), (0, 0, 2)}.

4.2 Extremal voting

By Lemma 1, an abstention ballot is not cast with positive probability in equilibrium,
so that there are two types of equilibria: interior and extremal. We refer to an interior
equilibrium whenever an interior ballot is included in the support of a voter’s strategy.
Formally, the equilibrium σ is interior if there exists t ∈ T such that I nt (V ) ∩
Suppt (σ ) �= ∅. On the contrary, an extremal equilibrium is an equilibrium in which
the support of every voter’s strategy uniquely includes extremal ballots.

The following Proposition proves that for any interior equilibrium, there exists
an equivalent extremal one. The logic of the proof is as follows. We start with an
interior equilibrium in which at least one type of voters cast an interior ballot. We
then build an equivalent equilibrium in which the support of this type of voters only
includes extremal ballots. As the construction does not depend on the initial interior
equilibrium, one can iteratively apply this construction until no type of voters casts an
interior ballot. It hence follows that for any interior equilibrium, there must exist an
equivalent equilibrium in which the support of every voter uniquely includes extremal
ballots, an extremal equilibrium.

Proposition 1 [Strategic Overstating] Let U be a voting rule. For any interior equi-
librium, there exists an equivalent extremal equilibrium.

Proof Let σ = (σ (· | t), σ (· | − t)) be an interior equilibrium such that the t-voter’s
strategy satisfies σ(c | t) = 1 with c being an interior ballot. Similar arguments can be
used to extend the proof whenever σ involves that t-voters play in mixed strategies.

As c is an interior ballot, we can write c = ∑
i∈D αi di , that is c is a convex

combination of ballots di in some subset D ⊆ V with
∑

i∈D αi = 1 with αi > 0 for
any i ∈ D. By Remark 1, the set D uniquely includes abstention and extremal ballots.
Furthermore, Lemma 1 entails that only extremal ballots belong to D as otherwise
there is a contradiction with σ being an equilibrium.
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Formula (1) implies that, given σ , for any ε > 0, there exists a positive pivot
probability vector pε such that

Et [c | pε] = Et [
∑

i∈D
αi · di | pε] =

∑

i∈D
αi · Et [di | pε].

In other words, given pε, the t-voter is indifferent between the strategy σ(· | t) (i.e.
voting c) and the “mimicking” strategy γc(· | t) with γc(di | t) = αi for all di ∈ D.

We have proven so far that a t-voter is indifferent between casting ballot c (as in σ )
or playing the mixed strategy γc(· | t) that uniquely involves extremal ballots. Hence,
given σ(· | − t), we have proven that γc(· | t) is a best response for t-voters. Note that
as c is a convex combination of ballots di in some subset D ⊆ V , each di ∈ D is in
BRt (pε) as otherwise there is a contradiction with σ being an equilibrium.

Denote by � = {γc(· | t), σ (· | − t)} a strategy in which types t ′ �= t play according
to σ . In order to prove that � is an equilibrium, we need to prove that any t ′-voter
with t ′ �= t is playing a best response. However, as the scores of the candidates are
unchanged when t-voters switch from playing strategy σ(· | t) to strategy γc(· | t), the
same pivot probability vector pε justifies both strategy combinations. Therefore, the
set of best responses of t ′-voters BRt ′(pε) is unchanged as it only hinges on the pivot
probability vector. Therefore, any t ′-voter is playing a best response in the strategy
combination �, proving that � is an equilibrium

If type t is playing a mixed strategy σ(·|t), it suffices to apply the above argument to
each interior ballot c played with positive probability and to take as the mixed strategy
mimicking σ(· | t) the average of γc(· | t), according to σ .

All in all, both σ and � are justified by the same pivot probability vector and
under both of them, the expected scores of the candidates coincide. Hence, for any
equilibrium σ in which the t-voters cast an interior ballot, there exists an equivalent
equilibrium � in which they only cast extremal ballots.

As the argument does not hinge neither on the type t nor on the strategies played by
the rest of the voters, one can repeat the same argument in equilibrium γ if some voter
plays an interior ballot with positive probability. Hence, by iteratively applying this
argument, one can prove that for any interior equilibrium, there exists an equivalent
extremal one. ��

4.3 A sufficient condition for strategic equivalence

Proposition 1 proves that interior equilibria are not informative in the sense that what
can result from a voting rule is fully described by the extremal equilibria. Building
on such a result, we now give a simple sufficient condition to ensure the strategic
equivalence of two voting rules.

Adding the same constant to every candidate in a ballot obviously does not change
anything, so we normalize rules in the following way. Let U be a voting rule. Let N
be the normalizing transformation which brings to 0 the minimal grade in any ballot:
(N (b)) j = b j − mini∈K bi for all j . Denote by N (U ) the normalized version of U
with ballot set N (U ). We omit the proof of the following result:
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Proposition 2 Any voting rule U is strategically equivalent to its normalized version
N (U ).

Proof From now on, we concentrate on normalized rules. As will be shown, the
strategic equivalence of two rules depends on their extremal ballots. Recall that a
homothetic transformation is a transformation H : X → Y of the form H(x) = s + t x
with both s, t real numbers, t > 0. Two vectors x and y are homothetic if there exists a
homothetic transformation between them. Similarly, two sets are homothetic if every
pair of vectors in X and Y are homothetic. A dilation is a homothetic transformation
with s = 0. ��
Theorem 1 If there exists a homothetic transformation between the sets of extremal
ballots of two normalized voting rules U and V , then U and V are strategically
equivalent.

Proof Let U and V denote two voting rules such that there exists a transformation
f : b �−→ f (b) = α+βb, from Ext(U ) onto Ext(V ), for some reals α, β with β > 0.
As both U and V are normalized, we know that every ballot b ∈ U ∪ V , has positive
coordinates, the smallest one being 0. Hence, α = 0.

Let σU be a strategy in an election held under U in which every voter only casts
ballots in the set Ext(U ). Let σV denote a strategy in the same election held under V
that satisfies

σV (b∗ | t) = σU (b | t), ∀ t ∈ T , (2)

in which each ballot b∗ satisfies b∗ = f (b) = βb. Hence, in the strategy combination
σV , every voter only casts ballots in the set Ext(V ).

The scores of the candidates SU (·) given σU and SV (·) given σV satisfy

SV (ci ) = βSU (ci ) ∀ ci ∈ K,

and hence the scores of candidates coincide up to an homothetic transformation under
both strategies.

Let us now prove that if σU is an equilibrium then the strategy σV is an equilibrium
with σU and σV being equivalent.

As σU is an equilibrium, there exists a vector pε = (pε
i j )i j∈H with pε

i j > 0
for every i j ∈ H and every ε > 0 that satisfies the ordering condition for every
ε > 0. Furthermore, pε justifies σU . As under both σU and σV the relative scores of
the candidates coincide, the same vector pε satisfies the ordering condition for both
strategies for any ε > 0. Hence, it remains to be proven that pε justifies the strategy σV .

Therefore, we have that, for every ε > 0, pε justifies the strategy σU , so that for
every b ∈ Suppt (σU ):

b ∈ arg max
d∈ Ext(U )

Et [d | pε] ⇐⇒ Et [b | pε] ≥ Et [d | pε] ∀ d ∈ Ext(U )

⇐⇒ βEt [b | pε] ≥ βEt [d | pε] ∀ d ∈ Ext(U )

⇐⇒ Et [b∗ | pε] ≥ Et [d∗ | pε] ∀ d∗ ∈ Ext(V )

⇐⇒ b∗ ∈ arg max
d∗∈ Ext(V )

Et [d∗ | pε].
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We have therefore proven that if b ∈ Suppt (σU ) when the election is held under U ,
then b∗ = βU V b ∈ BRt (pε) when the election is held under V .

We can now conclude that σV is an equilibrium. Indeed, as the scores under both
σU and σV coincide up to a homothetic transformation, the pivot probability vector
pε satisfies the ordering condition for strategy σV for any ε > 0. Furthermore, by
definition, σU (b∗ | t) > 0. Additionally, as b ∈ Suppt (σU ), then b∗ ∈ BRt (pε).
Therefore, σV is an equilibrium when the election is held under V .

As the f function is bijective, it can be proven similarly that if σV is an equilib-
rium under V , then σU is an equilibrium under U . In other words, if there exists an
homothetic transformation between Ext(U ) and Ext(V ), the set of extremal equilibria
under both U and V are equivalent. But the previous equivalence finishes the proof
as, by Proposition 1, any interior equilibrium under a voting rule is equivalent to an
extremal equilibrium under the same voting rule. ��

Theorem 1 has the advantage of being extremely simple to use: indeed, as will be
shown by Sect. 6, almost no computation is needed to check the strategic equivalence
of two voting rules.

5 A necessary condition for the strategic equivalence of rank scoring rules

A natural question to ask is whether the previous sufficient condition for strategic
equivalence is also necessary. We only have a partial answer to this technically chal-
lenging question. We prove that the condition is necessary if we restrict the analysis
to rank scoring rules.

Theorem 2 Let U and V be two rank scoring rules. If U and V are strategically
equivalent, then there exists a homothetic transformation between their sets of extremal
ballots.

First notice that two rank scoring rules are homothetic if and only if they are identical
once re-scaled between 0 and 1. Within the proof, we uniquely consider re-scaled rank
scoring rules w.l.o.g. due to Theorem 1. The proof of the theorem is presented in the
next paragraphs. We start by the case of three candidates and then generalize the
argument.
Three candidates: Take a scoring rule U with weights (1, s2, 0). Let the pivot vector
pε = (pε

i j )i j∈H satisfy pε
12 = pε

13 = ε and pε
23 = ε2.

Suppose that there are three possible types of voters in the election: the ones who
prefer c1 to c2 and c2 to c3, the ones who prefer c3 to c1 and c1 to c2 and finally the
ones who prefer c2 to c3 and c3 to c1. All voters assign a utility of 10 to their first
candidate, a utility of 5 to their middle candidate and no utility to their least preferred
one. We denote by βi the share of voters who rank candidate c1 in the i t h position;
it follows that β3 = 1 − β1 − β2. Given the pivot probabilities, one can easily check
that the voters’ best responses are sincere so that they assign a higher weight to a more
preferred candidate than to a less preferred one.
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Given these best responses, the scores of the candidates are the following ones:

S(c1) = β1 + β2s2;
S(c2) = β1s2 + (1 − β1 − β2);
S(c3) = β2 + (1 − β1 − β2)s2.

Letting β∗
2 = β∗

1
2s2−1
2−s2

+ 1−s2
2−s2

and β∗
1 > 1/3 leads to S(c1) > S(c2) = S(c3)

which is compatible with the ordering of pivot of probabilities. In other words, given
the type distribution β∗ and the pivot probabilities vector, there exists an equilibrium
under the voting rule U . Take now another rank scoring rule V with weights (1, s′

2, 0)

and w.l.o.g. assume that s′
2 > s2. Given the type distribution is β∗ and the pivot vector,

the best responses are identical as in V so that the score vector S′ satisfies

S′(c2) = β∗
1 s′

2 + (1 − β∗
1 − β∗

2 );
S′(c3) = β∗

2 + (1 − β∗
1 − β∗

2 )s′
2.

As β∗
1 > 1/3, one can check that (1−β∗

1 −β∗
2 ) < β∗

1 . Hence, β∗
1 s′

2 > (1−β∗
1 −β∗

2 )s′
2 so

that S′(c2) > S′(c3). These scores are in contradiction with pε
12 = pε

13 = ε entailing
that there is not a corresponding equilibrium when the election is held under V .

Therefore, we have proven the lack of strategic equivalence of rank scoring rules
for three candidates. We now prove the lack of strategic equivalence for any number
of candidates.
Multi-candidate elections: The proof proceeds as follows. We first construct for any
rank scoring rule U a type distribution and an equilibrium such that all candidates but
one get the same expected score. We then deduce from the previous point that given
the type distribution, this equilibrium does not exist under any different rank scoring
rule V . Therefore, the rules U and V are not strategically equivalent.

Before proving the main claim, we introduce a lemma dealing with voters’ best
responses that will be useful throughout.

Say that a scoring ballot is sincere if it matches the voter’s ordinal preference:

Definition 6 A scoring rule ballot c is sincere for a t-voter if

ut (ci ) > ut (c j ) 	⇒ si ≥ s j .

Observe that under a rank scoring rule, if a voter has strict preferences, he has a
unique sincere ballot. The next lemma proves that, when all pivots are equally likely,
this sincere ballot is his unique best response.

Lemma 2 Assume that a voter has strict preferences over the candidates. If all pivot
probabilities are equal in an election held under a rank scoring rule, then the unique
best response for the voters is sincere.

Proof Assume that all pivot probabilities are equal, i.e. pε
i j = ε for every i j ∈ H .

Pick a scoring rule with weights (si )
k
i=1 and a voter with preferences ut (c1) >

ut (c2) > . . . > ut (ck). Hence, the sincere ballot for the t-voter is the ballot b∗ =
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(1, s2, s3, . . . , sk−1, 0). Let us now prove that the unique best response for t-voters is
ballot b∗. Take two integers m and n with m < n and denote by ρmn the vector in
R

k that assigns 1 point to coordinate m, -1 point to coordinate n and 0 to the rest of
coordinates. Due to (1), we can write that

Et [ρmn | pε] =
∑

i j∈H

(ρmn
i − ρmn

j ) · pi j · [ut (ci ) − ut (c j )].

Note that as pε
i j = ε for every i j ∈ H , we can remove the pivot probabilities as they

do not affect the sign of the expected utility so that Et [ρmn | pε] = ∑
i j∈H (ρmn

i −
ρmn

j ) · [ut (ci ) − ut (c j )]. As ρmn
m = 1, ρmn

n = −1 and ρmn
j = 0 for any j �= m, n, it

follows that

Et [ρmn | pε] = k[ut (cm) − ut (cn)].

Denote by μl the ballot that assigns 1 point to candidate l and no points to the rest
of the candidates. Using the previous equality, we can set up a complete preference
order over the different ballots μl for the t-voters. Indeed, as by definition, ut (c1) >

ut (c2) > . . . > ut (ck), it follows that

Et [μ1 | pε] > Et [μ2 | pε] > . . . > Et [μk | pε].

Therefore, the t-voters’ best response is the one that assigns the highest weight to can-
didate 1, the second highest weight to candidate 2, and so on which actually coincides
with the definition of sincere ballot under a scoring rule, concluding the proof. ��

Equipped with this lemma, we continue with the proof of Theorem 2 for multi-
candidate elections. Assume that the voters anticipate that all pivots in which candidate
c1 is not involved are equally likely and that they are infinitely less likely than the ones
involving candidate c1. Formally, assume that the pivot probabilities are ordered as
follows:

pε
1 j = ε if j �= 1 and pε

i j = ε2 for every i, j �= 1. (3)

Let the voters’ preferences be strict and the number of types be equal to k, the number
of candidates. We denote each type by ti in which i stands for the rank assigned by
voters to candidate c1. Moreover, all voters rank candidate c j+1 immediately after
candidate c j if possible.

In other words, the cardinal preferences of a ti -voter, 1 ≤ i ≤ k, satisfy

uti (ck−i+2) > . . . > uti (ck) > uti (c1) > uti (c2) > . . . > uti (ck−i+1),

in which ci = ci−k if i > k.
Given the order of the probabilities, the unique best response for both t1 and

tk-voters is to vote sincerely. Indeed, following Lemma 2, voters’ best responses are
sincere if all pivot probabilities are equal. Even though it is not the case here, sincerity
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follows from candidate c1 being either the first or the worst choice for all these voters
combined with the fact that all pivot probabilities in which c1 is not involved are equal.
It hence follows that these voters assign 1 point to c1. Moreover, the weights assigned
to the rest of the candidates hinge only on the pivots in which c1 is involved (the rest
of the pivots being infinitely less likely) and, as they are all equal, the logic of Lemma
2 applies.

As far as the other voters are concerned, the logic of Lemma 2 does not apply
directly, and one needs to specify some utility levels to ensure that the unique best
response is sincere. Indeed, a ti -voter with ti �= t1, tk has candidate ck−i+2 as his
most preferred alternative, c1 in the i t h position and ck−i+1 as his least preferred
alternative. As for the case of t1 and tk voters, their best response is sincere if we
restrict the analysis to the weights assigned to all the candidates but c1. Indeed, as all
the pivot probabilities in which c1 is involved are equal, the logic of Lemma 2 applies.
However, whether it is in their interest to be sincere when considering also the weight
assigned to c1 depends on their cardinal utility.

As previously defined, ρ1n stands for the vector in R
k that assigns 1 point to

coordinate 1, -1 point to coordinate n and 0 to the rest of the coordinates. In order
to ensure that their unique best response is sincere, it must be the case that for any
ti -voter with ti �= t1, tk , there exists an ε̂ > 0 such that for any ε in (0, ε̂), the following
inequalities hold:

Eti [ρ1n | pε] > 0 for n ∈ {2, . . . , k − i + 1},
and

Eti [ρ1n | pε] < 0 for n ∈ {k − i + 2, . . . , k}.
Given the sequence of pivot probabilities (3), one can check that

lim
ε→0

Eti [ρ1n | pε]
ε

= kuti (c1) − uti (cn) −
k∑

j=2

uti (c j ).

Hence, in order to ensure that the unique best response for ε small is sincere, it
suffices to assume that

uti (c2) + ∑k
j=2 uti (c j )

k
< uti (c1) <

uti (ck) + ∑k
j=2 uti (c j )

k
,

as ck is ranked immediately above c1 and c2 is ranked immediately below. We therefore
assume that the previous inequality holds for every ti -voter with ti �= t1, tk .

Let βi denote the share of ti -voters who rank candidate c1 on the i t h position. Note
that the numbers βi can be chosen independently the ones from the others with the
constraint that their sum equals one.

Take a rank scoring rule U with weights (si )
k
i=1. As the rank scoring rule is

re-scaled, s1 = 1 and sk = 0. Assume that the pivot probabilities are ordered as
in (3) so that voters’ best responses are sincere.
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Let ŝ stand for the extension of the voting weights (si )
k
i=1 for any positive integer

i as follows :

ŝi =
{

si if 1 ≤ i ≤ k;
si = si−k if i > k.

Given the best responses, the score vector S is as follows:

S(c1) =
k∑

i=1

βi ŝi ;

S(c2) =
k∑

i=1

βi ŝi+1;
. . . = . . .

S(c j ) =
k∑

i=1

βi ŝi+ j−1;
. . . = . . .

S(ck) =
k∑

i=1

βi ŝi+k−1.

The sequence of pivot probabilities (3) is only compatible with the scores of candidates
being ordered as S(c1) ≥ S(c2) = . . . = S(ck).

Given the previous system of equations, we can write that S(c j ) = S(c j+1) for any
j ≥ 2 if and only if

k∑

i=1

βi (ŝi+ j−1 − ŝi+ j ) = 0.

Moreover, S(c1) ≥ S(c2) holds when
∑k

i=1 βi (ŝi − ŝi+1) ≥ 0.

Note that the equality among all candidates holds when βi = 1
k for every i

(a Condorcet cycle exists under such a distribution). Therefore, as there are k − 1
variables (βi for i = 1, . . . , k − 1 as

∑
i βi = 1), k − 2 equations and one inequal-

ity, there exists a continuum of solutions. For the rest of type distributions for which
the equilibrium is ensured, the type distribution satisfies β1 > 1/k which moreover
implies that :

β1 > βi for any i �= 1,

when some si �= 1.
Now, take two different scoring rules U and V with associated weights (si )

k
i=1 and

(s′
i )

k
i=1. Take a type distribution β∗ under which the previously described equilibrium
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under U exists. We shall prove that the equilibrium under U corresponds to no equi-
librium under V , and hence that both rules are not strategically equivalent. The proof
is by contradiction and is divided in three different cases labeled a, b1, b2.
a. Suppose first that they differ by one term, say sl �= s′

l and s j = s′
j for any j �= l.

Consider the type distribution β∗ and the sequence of pivot probabilities (3). The best
responses are identical under both U and V . Note that the t1-voters assign sl points to
cl . If we denote by S′ the score vector under V , we have

S′(cl) − S(cl) = β∗
1 (s′

l − sl),

and for any ci �= cl ,

S′(c j ) − S(c j ) = β∗
i0
(s′

l − sl),

with i0 such that io + j − 1 = l. As by construction β∗
1 > β∗

j for any j �= 1, it follows
that S′(cl) − S(cl) > S′(c j ) − S(c j ) for any c j �= c1. Hence, candidate cl has the
second highest score, in contradiction with the sequence of pivot probabilities (3).
b. Suppose now that the weights of U and V differ by more than one term, say si �= s′

i
for any i ∈ I ⊆ K and s j = s′

j for any j �∈ I .
b.1 Suppose first that the cardinal of I equals 2. W.l.o.g. take I = {c2, c3}. With the
type distribution β∗ and the sequence of pivot probabilities (3), the best responses are
identical under both U and V . Hence, we can write that

S′(c2) − S(c2) = β∗
1 (s′

2 − s2) + β∗
2 (s′

3 − s3),

and

S′(c3) − S(c3) = β∗
1 (s′

3 − s3) + β∗
k (s′

2 − s2).

Moreover, if there is an equilibrium under V equivalent to the one described under U ,
it must be the case that S′(c2) − S(c2) = S′(c3) − S(c3). However, this equality is
equivalent to:

β∗
1 (s′

2 − s2 + s3 − s′
3) = β∗

k (s′
2 − s2) + β∗

2 (s3 − s′
3). (4)

However, as β∗
1 > β∗

i for any i �= 1, it follows that:

β∗
k (s′

2 − s2) + β∗
2 (s3 − s′

3) < β∗
1 (s′

2 − s2) + β∗
1 (s3 − s′

3) = β∗
1 (s′

2 − s2 + s3 − s′
3),

which contradicts (4).
b.2 Suppose finally that the cardinal of I equals 3, the rest of the cases being analogous.
W.l.o.g. take I = {c2, c3, c4}. With the type distribution β∗ and the sequence of pivot
probabilities (3), the best responses are identical under both U and V . Hence, we can
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write that

S′(c2) − S(c2) = β∗
1 (s′

2 − s2) + β∗
2 (s′

3 − s3) + β∗
3 (s′

4 − s4),

and

S′(c3) − S(c3) = β∗
1 (s′

3 − s3) + β∗
2 (s′

4 − s4) + β∗
k (s′

2 − s2).

If there is an equilibrium under V equivalent to the one described under U , we must
that S′(c2) − S(c2) = S′(c3) − S(c3). However, this equality implies that:

β∗
1 (s′

2 − s2 + s3 − s′
3) = β∗

2 (s3 − s′
3) + β∗

k (s′
2 − s2) + β∗

3 (s4 − s′
4) + β∗

2 (s′
4 − s4).

(5)

As β∗
1 > β∗

i for any i �= 1, the right-hand side of (5) is strictly lower than

β∗
1 (s3 − s′

3) + β∗
1 (s′

2 − s2) + β∗
1 (s4 − s′

4) + β∗
1 (s′

4 − s4) < β∗
1 (s′

2 − s2 + s3 − s′
3),

entailing a contradiction with (5).
We can therefore conclude that any two scoring rules with different weights lead

to different equilibria given the same pivot probabilities vector and hence are not
strategically equivalent.

6 Applications

Two applications of Theorem 1 are now described. The main interest of such a theorem
is that it allows to “simplify” voting rules, in which the term simplify has been coined
by the recent literature on mechanism simplification6. In this literature, a mechanism
is simplified by reducing the message space of the agents, while no new equilibria are
created as a consequence of this reduction. When the number of voters becomes large
enough, adding or removing interior ballots to a voting rule does not modify the set
of voting equilibria. Our results hence prove that when the number of voters is large
enough, many voting rules can be simplified.

6.1 Evaluative voting: one man, many extended votes

Under Evaluative Voting with m points, a voter can assign up to m points to each
candidate, for some positive m. Its set of abstention ballots equals Abs(EV m) =
{(0, . . . , 0), (m, . . . , m)}. Hence, as AV is a particular case of EV m , the set of absten-
tion ballots of AV equals Abs(AV ) = {(0, . . . , 0), (1, . . . , 1)}.

6 See Milgrom 2009, 2010 and Perez-Richet (2011).
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Corollary 1 For any finite m, EV m and AV are strategically equivalent.

Proof Note that the set of extremal ballots of AV is not modified by normalizing the
rule as it satisfies

Ext(AV ) = {0, 1}k \ {(0, . . . , 0), (1, . . . , 1)}.

The same claim applies to the extremal ballots of EV m as it equals

Ext(EV m) = {0, m}k \ {(0, . . . , 0), (m, . . . , m)},

so that, by Theorem 1 and Proposition 2, EV m and AV are strategically equivalent.
��

6.2 Cumulative voting: one man, one extended vote

In an election held under Cumulative Voting with m points, a voter can assign up to m
points to each candidate for some positive m with the restriction that the sum of the
points he can assign to each of the candidates is at most m. Hence, its set of abstention
ballots equals:

Abs(CV m) = {(0, . . . , 0), (1, 1, . . . , 1), . . . , (�m

k
�, . . . , �m

k
�)},

with �x� being the largest integer lower than x . PV is a particular case of CV m with
m = 1 and hence its set of abstention ballots equals Abs(PV ) = {(0, . . . , 0)} as
� 1

k � = 0 for any k.

Corollary 2 For any finite m, CV m and PV are strategically equivalent.

Proof Given the set of ballots under PV and CV m , one obtains that Ext(PV ) con-
sists of all the permutations of (1, 0, . . . , 0)} and that Ext(CV m) consists of all the
permutations of (1, 0, . . . , 0)}. Since the set of extremal ballots is not affected by
normalization, Theorem 1, concludes the proof. ��

Even though we have proven that CV m and PV are strategically equivalent, we
have remained silent over the set of possible winners in an election. To do so, we give
a proposition which extends a previous result of De Sinopoli (2000) (which focused
in Plurality Voting with perfect equilibrium à la Selten) to the Myerson-Weber setting.
We show that any candidate who is not a Condorcet loser can win the election under
Cumulative Voting and hence under Plurality voting.

Prior to stating it, we need the definition of Condorcet loser. For any pair of can-
didates ci , c j ∈ K, let V (i, j) = {t ∈ T | ut (ci ) > ut (c j )} be the set of types where
candidate ci is strictly preferred to candidate c j . The Condorcet Loser of the election
is defined as:
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Definition 7 A candidate ci is called the Condorcet Loser of the election if

∑

t∈V (i, j)

r(t) < 1/2 ∀ c j ∈ K, c j �= ci .

Proposition 3 Assume that voters have strict preferences. For every positive m, in an
election held under CV m, for every candidate ci who is not a Condorcet loser there
exists an equilibrium in which ci wins the election with positive probability.

We provide a proof for completeness. The idea of the proof is standard and identical
to the proofs for PV in similar settings (De Sinopoli 2000; Myerson 2002).

Proof Let c1 and c2 be two candidates. As voters have strict preferences, we divide the
voters in two groups: the voters who prefer candidate c1 to candidate c2, V (1, 2) = {t ∈
T |ut (c1) > ut (c2)}, and the remaining ones V (2, 1) = {t ∈ T |ut (c2) > ut (c1)}. We
suppose that

∑
t∈V (1,2) r(t) >

∑
t∈V (2,1) r(t) (in case of an equality a similar claim

applies). Under CV m , a voter can assign up to m points to a single candidate. Consider
the strategy σ(· | t) such that every t-voter with t ∈ V (1, 2) assigns m points to c1, i.e.

σ((m, 0, . . . , 0) | t) = 1,

and such that every t ′-voter with t ′ ∈ V (2, 1) assigns m points to c2,

σ((0, m, . . . , 0) | t ′) = 1,

Therefore, the winner of the election is candidate 1 given σ . This equilibrium is
supported, for any ε > 0, by any pivot probability vector pε = (pε

i j )i j∈H that satisfies
two constraints. First, the limit when ε tends towards zero of the conditional pivot
probability vector qε satisfies q12 = 1 and qi j = 0 with i j �= 12. Second, for any
candidate cl �= c1, c2 and for any ε > 0, pε

2l ≤ εpε
1l in order to satisfy the ordering

condition for ε. Given such a pivot probability vector, voters expect that, in the event of
a pivot, the most probable pivot occurs candidates c1 and c2, the ones with the highest
scores. Voters that prefer 1 to 2 assign the highest score to 1 and similarly for the voters
that prefer c2 to c1. Indeed, take a t-voter with t ∈ V (1, 2). His expected utility gain
equals Et [(b1, b2, . . . , bk) | pε] = ∑

i j∈H (bi − b j ) · pε
i j · [ut (ci ) − ut (c j )]. As q =

(1, 0, . . . , 0), we can write that Et [(b1, b2, . . . , bk) | p] = (b1 − b2)[ut (c1)− ut (c2)].
Under CV m , the ballot for which b1 − b2 is maximized is (m, 0, . . . , 0). Hence, as
in the rest of the ballots under CV m , the difference b1 − b2 is strictly lower than m,
we have BRt (p) = {(m, 0, . . . , 0)} for a t-voter with t ∈ V (1, 2). A similar argument
applies for t ′-voters with t ′ ∈ V (2, 1), concluding the proof. ��

7 Small elections

The results previously presented are a consequence of the model used in which voters’
perceptions over the impact of their ballots in switching the winner of the election have
a very specific shape. Such a theory fits particularly well the study of mass elections.
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Indeed, as shown by further developments of the theory7, more formal models give,
roughly speaking, similar predictions depending on whether the ordering condition is
satisfied. However, it seems that the specific shape of expected utility is not particularly
relevant for studying voting in committees (that is voting with few voters). Indeed, in
a committee, the information a voter knows can be much more detailed than in a large
election.

In order to prove that non-extremal voting may be the unique best response in a
voting game with few voters, we present an example. In order to test the robustness
of the example, we focus on trembling-hand perfection à la Selten.

Let us recall that each voter chooses from a ballot set V . Letting V n stand for the
product ballot set, we let �0(V n) denote the set of all probability distributions over
V n which give positive probability to all members of V n . Hence a strategy profile
σN ∈ �0(V n) is a completely mixed strategy profile in the game (N , V, T ,K). The
definition of perfection is as follows:

Definition 8 A completely mixed strategy profile σε
N is an ε-perfect equilibrium in

the game (N ,B, T ,K) if

∀i ∈ N , ∀bi , b̄i ∈ V, if πi (b
i , σ ε

N \{i}) > πi (b̄
i , σ ε

N \{i}), then σε(b̄i ) ≤ ε,

in which πi (b) denotes the payoff of voter i given the strategy combination b. We refer
to the strategy combination σN as a perfect equilibrium if there exists a sequence {σε

N }
of ε-perfect equilibria converging (for ε → 0) to σN .

Example 2 There are three candidates K = {c1, c2, c3} and four different types
T = {a,b,c,d}, with cardinal utilities given by:

ua = (6, 1, 0), ub = (0, 6, 1), uc = (0, 1, 6) and ud = (0, 3, 6).

Notice that the utility vectors are consistent with single-peaked preferences. There
are seven voters in the electorate. Voters 1 , 2 and 3 have type a, voters 4 and 5 have
type b, voter 6 has type c and voter 7 has type d.

We consider EV 2, that is Evaluative Voting in which voters can give up to two
points to each of the candidates.

We let g denote the strategy combination

g = ((2, 0, 0), (2, 0, 0), (2, 0, 0), (0, 2, 1), (0, 2, 1), (0, 0, 2), g7).

in which g7 stands for the mixed strategy 1/3(0, 0, 2) + 1/3(0, 1, 2) + (1/3)(0, 2, 2)

of voter 7. Every voter plays an undominated strategy in the strategy combination g. It
is easy to check that g is a mixed-strategy equilibrium of the election in which voters
1 to 6 are playing a unique best response.

Proposition 4 In Example 2, g is a perfect equilibrium in which some voters’ unique
best responses are not extremal when the election is held under EV 2.

7 See Myerson (2002), Laslier (2009), Núñez (2010), Bouton et al. (2012), Goertz and Maniquet (2011),
and Núñez (2010).
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Remark 3 Formula (1) is not verified in a perfect equilibrium in small elections.

The source of the non extremal behavior in this example is clearly the uncertainty
faced by voters 4 and 5, as a consequence of the mixing of voter 7. The same logic
applies in a (Bayesian) game of incomplete information in which voters are not sure
of the type of their opponents.

8 Conclusion

Building on the theory of strategic voting in large elections, we have derived sufficient
and necessary conditions for the strategic equivalence of additive voting rules that
simply depend on the ballots available to the voters. The sufficient condition says that
whenever two voting rules share the same set of extremal ballots (up to a homothetic
transformation), then they are strategically equivalent. This condition is proven to be
necessary for the strategic equivalence of rank scoring rules.

Furthermore, the sufficient condition helps us to draw some conclusions about
how adding ballots to a given voting rule modifies the set of voting equilibria. We
set up a distinction between extensions of voting rules: completions (adding interior
ballots) and enrichments (adding at least one extremal ballot). Whereas all voting
rules are robust to completion, it might be the case than an enrichment modifies the
set of equilibria of a voting rule. Using this distinction, we prove that it is possible to
add ballots to both Plurality Voting and Approval Voting without modifying the set
of voting equilibria. In the case of Approval Voting, there is no difference between
EV m (for any m) and AV when voters act strategically. As far as PV is concerned,
Cumulative Voting (CV m for any m) extends PV but remains strategically equivalent
to PV . Nevertheless, the possibilities of expression seem to be somehow bounded for
the following reason. Consider a voting rule which allows at most M points. If one
wishes to enlarge the possibilities of expression of voters by adding new ballots while
respecting the same constraint, one can at best propose EV M . But, the rule EV M is
strategically equivalent to EV 1, which is AV . As has been shown, the previous results
do not extend to a context with a reduced number of voters.

We have very few observations to back up, or to invalidate, these theoretical results.
Laslier and Van der Straeten (2004) report on an experiment comparing EV with the
0 to 10 scale and AV , and Baujard et al. (2013) report on experiments comparing
the use of EV under various scales, including AV . It is observed that the outcome of
the election (the elected candidate) tends to be the same under different systems, even
if it is not observed that voters concentrate on extreme grades.

An interesting extension of the present work would be to understand whether similar
results apply under proportional representation or in multi-seat elections in which
voters have to distribute their votes.
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9 Appendix: Proof of Proposition 4

The first step of the proof consists in showing that g is a mixed strategy equilibrium. To
do so, we compute the probability, under g, of each pivot outcome a player can face and,
from these probabilities, the expected utility derived from each undominated strategy.
Voters 1,2,3

Even though the best responses are explained for the voter 1, the reasoning is
analogous for voters 2 and 3.

p((4, 4, 6) | g−1) = 1/3

p((4, 5, 6) | g−1) = 1/3

p((4, 6, 6) | g−1) = 1/3.

From the pivot probabilities previously described, we have

π1(2, 0, 0) = 25/9

π1(2, 1, 0) = 19/9

π1(2, 2, 0) = 13/9.

which entails that (2, 0, 0) is the unique best response for voter 1.
Voters 4,5

Voter 4’s best responses are analyzed, the reasoning being analogous for the voter
5.

p((6, 2, 5) | g−4) = 1/3

p((6, 3, 5) | g−4) = 1/3

p((6, 4, 5) | g−4) = 1/3.

From the pivot probabilities previously described, we have

π4(0, 2, 0) = 1

π4(0, 2, 1) = 10/9

π4(0, 2, 2) = 1.

implying that (0, 2, 1) is the unique best response for voter 4.
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Voter 6
The most probable pivot outcomes faced by voter 6 are as follows

p((6, 4, 4) | g−6) = 1/3

p((6, 5, 4) | g−6) = 1/3

p((6, 6, 4) | g−6) = 1/3

From the pivot probabilities previously described, we have

π6(0, 0, 2) = 25/9

π6(0, 1, 2) = 19/9

π6(0, 2, 2) = 13/9.

implying that (0, 0, 2) is the unique best response for voter 6.
Voter 7

The most probable pivot outcome faced by voter 7 is the event (6,4,4). Due to her
utility profile, voter 7 strictly prefers to use an undominated strategy and is indifferent
among all of them: that is (0, 0, 2), (0, 1, 2), (0, 2, 2). Hence, the mixed strategy g7
is a best response.

The second step of the proof consists in showing that g is a perfect equilibrium.
To do so, consider the following completely mixed strategy combination gε, where ηi

denotes the mixed strategy of voter i which assigns equal probability to all his pure
strategies.

i = 1, 2, 3 gε
i = (1 − 27ε2)(2, 0, 0) + 27ε2ηi

i = 4, 5 gε
i = (1 − 27ε2)(0, 2, 1) + 27ε2ηi

i = 6 gε
i = (1 − ε − 27ε2)(0, 0, 2) + ε(0, 1, 2) + 27ε2ηi ,

i = 7 gε
i = g7 + 27ε2ηi .

It is easy to see that, for ε sufficiently close to zero, this is an ε-perfect equilibrium.
Suppose all voters other than i choose the strategies prescribed by g. Since for ε going
to zero, the probability of voter 6 to tremble towards (0, 1, 2) is infinitely greater than
the probability of any other mistake, it is enough to check that the limiting strategy is
preferred to the other undominated strategy when either this mistake or no mistake at
all occurs.

For voters 1 to 5, the relevant contingency is the one described by the limiting
strategy g. Indeed, as has been shown, their unique best response is the one depicted
by g as when the trembles tends towards, they have a unique best response. For voter
6, the same argument applies.

Finally, one can deduce that for voter i = 7 casting the mixed strategy ballot
g7 is a best response, against gε. Indeed, for voter 7, the relevant contingency are
summarized by the vectors (6, 4, 4) and (6, 5, 4). Let us denote their probabilities by
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p((6, 4, 4) | f ε−i ) and p((6, 6, 4) | f ε−i ). Since

π7(0, 0, 2) = 3p((6, 4, 4) | f ε−i ) + 3p((6, 5, 4) | f ε−i )

= π7(0, 1, 2), π7(0, 2, 2).

the mixed strategy g7 is a best reply to gε−i .
Hence, {gε} is a sequence of ε-perfect equilibria. Since g is the limit of gε, it is a

perfect equilibrium in which voters’ best responses are not extremal.
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