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Grading

In many group decision situations, people use measures or grades from a
common language of evaluation to evaluate candidates or alternatives:

I in figure skating, diving and gymnastics competitions;

I in piano, flute and orchestra competitions;

I in classifying wines at wine competitions;

I in ranking university students;

I in classifying hotels and restaurants, e.g., the Michelin ∗

M. Balinski and R. Laraki. Majority Judgement: Measuring, Ranking and Electing. The MIT
Press, 2010.
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I voters have more on their minds than merely comparing candidates, or
approving of some and disapproving of others, and wish to express it,

I voters care about all the results of an election (the distributions of the votes,
who is in second, third, down to last place, the spreads between candidates,
and so on) and not merely who is the winner, and

I voters are dissatisfied with election results that do not reflect their true
opinions.
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Voting by Grading: Questions

I What grading language should be used? (e.g., A− F , 0− 10, ∗ − ∗∗∗∗)

I How should we aggregate the grades? (e.g., Average or Median)

I Should there be a “no opinion” option?
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Measurement Theory
How to construct a scale is a science—measurement theory—that raises two key
problems.

1. the faithful representation problem: What scale? “When measuring some
attribute of a class of objects or events, we associate numbers with the
objects in such a way that the properties of the attribute are faithfully
represented as numerical properties” (Krantz et al. 1971, p. 1). For
example, if the scale is a finite set of numbers from 0 to 20, should they be
spaced evenly or otherwise?

2. the meaningfulness problem: Given a faithful representation, what analyses
of sets of measurements are valid? For example, if the scale consists of the
integers 0 - 20 when is it justified to sum and take averages of
measurements?

D. Krantz, D. Luce, P. Suppes, A. Tversky. Foundations of Measurement: Vol. 1: Additive and
Polynomial Representations. Academic Press, New York, 1971.
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I Pain, for example, is measured on an 11-point ordinal scale going from 0 to
10, each number endowed with a careful verbal description: it is not
meaningful to sum or average such measures since an increase from (say) 2
to 3 cannot be equated with an increase from 8 to 9.

I Temperature, Celsius or Fahrenheit, is an interval scale because equal
intervals have the same significance: sums and averages are meaningful but
multiplication is not, for there is no absolute 0.

I Ounces, inches, and the Kelvin temperature scale are ratio scales: they are
interval scales where 0 has an absolute sense and multiplication is
meaningful as well.
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“...voting or judging is measuring. The scale used by approval voting and
first-past-the-post is not a faithful representation of voters’ opinions; moreover,
the semantics are confusing, one tick lumping all kinds of different meanings into
one. Taking their sum is tantamount to declaring one mile+one meter+one inch
= three and is at best a very imprecise measure.

The semantics of rank-order
inputs are perfectly clear, but they are far too limited to permit a faithful
expression of opinion, deny the existence of any common scale, and lead to
unacceptable methods. Point-summing methods exaggerate in the other
direction, assuming the existence of a perfect scale of measurement—an interval
scale—which is almost impossible to achieve and, in any case, leads to highly
manipulable methods. There is, however, a middle ground that asks for more
than rank orders but less than an interval scale: an ordinal scale of merit.”

M. Balinski and R. Laraki. Judge: Don’t Vote!. Operations Research, Vol. 62, No. 3, May–June
2014, pp. 483–511.
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Evaluative Voting: Examples

Approval Voting: voters can assign a single grade “approve” to the candidates.
The candidates with the most approvals are the winner.

Dis&Approval Voting: voters can approve or disapprove of the candidates.
The candidates with the greatest scores are the winners.

Score Voting: voters can assign any grade from a fixed set of grades to the
candidates. The candidate with the greatest sum of the scores is the winner.

Majority Judgement: voters can assign any grade from a fixed set of grades to
the candidates. The candidate with the greatest median score is the winner.
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Score Voting/Range Voting

Fixe a common grading language consisting of, for example, the integers
{0, 1, 2, . . . , 10}

The candidate with the largest average grade is declared the winner.

Suppose A’s grades are {7, 7, 8, 8, 9, 9, 9, 10}. The average grade is 8.375

Suppose B ’s grades are {9, 9, 9, 9, 9, 10, 10, 10} . The average grade is 9.375

So, Score Vote (Range Vote) ranks B above candidate A.

www.electology.org/score-voting and rangevoting.org

9

http://www.electology.org/score-voting
http://rangevoting.org


Score Voting/Range Voting

Fixe a common grading language consisting of, for example, the integers
{0, 1, 2, . . . , 10}

The candidate with the largest average grade is declared the winner.

Suppose A’s grades are {7, 7, 8, 8, 9, 9, 9, 10}. The average grade is 8.375

Suppose B ’s grades are {9, 9, 9, 9, 9, 10, 10, 10} . The average grade is 9.375

So, Score Vote (Range Vote) ranks B above candidate A.

www.electology.org/score-voting and rangevoting.org

9

http://www.electology.org/score-voting
http://rangevoting.org


Score Voting/Range Voting

Fixe a common grading language consisting of, for example, the integers
{0, 1, 2, . . . , 10}

The candidate with the largest average grade is declared the winner.

Suppose A’s grades are {7, 7, 8, 8, 9, 9, 9, 10}. The average grade is 8.375

Suppose B ’s grades are {9, 9, 9, 9, 9, 10, 10, 10} . The average grade is 9.375

So, Score Vote (Range Vote) ranks B above candidate A.

www.electology.org/score-voting and rangevoting.org

9

http://www.electology.org/score-voting
http://rangevoting.org


Majority Judgement

Fix a common grading language. For example, {0, 1, 2, . . . , 10}

The candidate with the largest median grade is declared the winner.

The median grade is the grade that is in the middle of the list when the grades
are ordered (If there is an even number of judges, then the median grade is the
lowest grade in the middle interval.)

Suppose that A’s grades are {6, 6, 7, 7, 7, 8, 9, 10, 10}: The median grade is 7.

Suppose B ’s grades are {6, 6, 6, 6, 9, 9, 9, 10}: The median grade is 6.

Majority Judgement ranks B above A.
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Majority Judgement: Tie-breaking rules

What happens when the median grades are the same?

A’s grades: {7, 9, 9, 11, 11}
B ’s grades: {8, 9, 9, 10, 11}

The second median grade is found:
A’s grades: {7, 9, 9, 11, 11}
B ’s grades: {8, 9, 9, 10, 11}

The third median grade is found:
A’s grades: {7, 9, 9, 11, 11}
B ’s grades: {8, 9, 9, 10, 11}

So, A is ranked above B .
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Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I , II , and III .

The grades are A,B ,C ,D, or F (from best to worst).

1 2 3 4 5 Median

I A A C D D C

II B B F B F B

III D C B A D C

Candidate II is the majority judgement winner. If asked about their preference, 4
voters would rank candidate I above candidate II
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Example

Suppose that there are five voters, 1, . . . , 5 and three candidates I , II , and III .

The grades are A = 4,B = 3,C = 2,D = 1, or F = 0 (from best to worst).

1 2 3 4 5 Average

I 4 4 2 1 1 2.4

II 3 3 0 3 0 1.8

III 1 2 3 4 1 2.2

Candidate II is the Majority Judgement winner. Candidate I is the Score Voting
winner
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# voters 1 1 1

A 20/20 9/20 9/20

B 11/20 0/20 10/20

Majority Judgement Winner: B

2 out 3 voters prefer A to B
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S. Brams and R. Potthoff. The paradox of grading systems. Public Choice, 165, pp. 193 - 210,
2015.
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Grades: {0, 1, 2, 3}
Candidates: {A,B ,C}
3 Voters

# voters 1 1 1 Avg

A 3 2 0 8/9

B 0 3 1 8/9

C 0 3 1 11/9

Average Grade Winner: C

Superior Grade Winner: A,B ,C
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Grades: {0, 1, 2, 3, 4, 5}
Candidates: {A,B ,C}
5 Voters

# voters 1 4 Avg

A 5 0 5/5

B 0 1 4/5

C 0 1 4/5

Average Grade Winner: A

Superior Grade Winner: B ,C
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“...we have identified a paradox of grading systems, which is not just a mirror of
the well-known differences that crop up in aggregating votes under ranking
systems. Unlike these systems, for which there is no accepted way of reconciling
which candidate to choose when, for example, the Hare, Borda and Condorcet
winners differ, AV provides a solution when the AG and SG winners differ. ”

Theorem (Brams and Potthoff). When there are two grades, the AG and SG
winners are identical.
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AG, SG, Median Winners
Grades: {0, 1, 2}
Candidates: {A,B ,C}
9 Voters

# voters 2 3 4 Avg Median

A 2 1 1 11/9 1

B 1 2 0 10/9 2

C 1 2 1 10/9 1

Average Grade Winner: A

Median Grade Winner: B

Superior Grade Winner: C
16
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weak paradox of grading systems: Profiles in which the AG and SG winners
overlap but do not coincide.

strong paradox of grading systems: Profiles in which the AG and SG winners do
not overlap.

17



Probability of Weak Paradox of Grading Systems
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Probability of Weak Paradox of Grading Systems
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Concluding Remarks - AV vs. Grading Systems

I The strategic model, in which all voters give at least one candidate a
bottom grade and at least one candidate a top grade, seems a more realistic
model than the sincere model without such a constraint...Unless voters
dichotomize their grades by grading up some middling candidates to the
maximum grade, and grading down other middling candidates to the
minimum grade—which is in effect to reduce the grades to two (as under
approval voting, AV)—then a paradox can occur.

I Among grading systems, we favor AV (g = 2), not only because it ensures
that the AG and SG winners are the same, so no paradox can arise, but also
because it is sensitive to how individual voters dichotomize their middling
candidates.
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Concluding Remarks - AV vs. Grading Systems

I If voters can assign more than two grades, they will have a strong incentive
to give a maximum grade to only one candidate—at least if he or she is
viewed as a contender—and a minimum grade to all the other candidates. If
a voter’s favorite is not viewed as a contender, then he or she will be
motivated to give a maximum grade to his or her (noncompetitive) favorite
and a favorite among the contenders, and a minimum grade to everybody
else. In either case, these strategies are tantamount to those that would be
used under AV.

I Although AV may not be the ideal system to use in figure-skating contests
or wine-tasting competitions—wherein voters have little or no incentive to
dichotomize their grades—we think it has much to commend in political
contests in which more than two grades can result in the paradox, even
when voters are strategic.
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J.-F. Laslier. The Strange “Majority Judgement”. https://hal.archives-ouvertes.fr/

hal-01965227.

D. Felsenthal and M. Machover. The Majority Judgement voting procedure: a critical evaluation.
Homo oeconomicus, 25, pp. 319 - 334.

S. Brams. Grading Candidates. Book Review, American Scientist, 2012.

M. Balinski. A letter regarding Steven J. Brams’s review of Majority Judgment . American
Scientist.
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Majority Judgement: Spoilers

49% 3% 48%

Gore: 20/20 Nader: 20/20 Bush: 20/20

Nader: 6/20 Gore: 4/20 Gore: 2/20

Bush: 0/20 Bush: 0/20 Nader: 0/20

In the absence of Nader, Gore would win according to any reasonable voting
method. What is more, note that Gore would also win in the absence of the

Nader voters, and that all Nader voters prefer Gore to Bush.

The median evaluations are 0 for Bush, 4 for Gore, and 6 for Nader.
Consequently, Nader would be elected with the Majority Judgment method.
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Majority Judgement: Spoilers

This example has the benefit, among others, of showing that it is not true that
all systems of evaluative voting avoid the spoiler effect. It all depends on how the
ballot papers are counted. In this society, with Majority Judgment, Gore electors
would be wrong to believe that they can rate Nader 6/20 without causing
damage.
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Majority Judgement: No Show Paradox
Excellent Very Good Good Quite good Acceptable Mediocre Rejected

A 1 2 0 3∗ 3 0 0

B 0 2 2 0 2∗ 1 2

Majority Judgement winner: A.

Suppose two voters decide to submit their vote: A is Excellent and B is Very
Good.

Excellent Very Good Good Quite good Acceptable Mediocre Rejected

A 3 2 0 3∗ 3 0 0

B 0 4 2∗ 0 2 1 2

Majority Judgement winner: B .
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Voters who are indifferent between all candidates may decide to abstain from
voting, or to express their indifference actively.

x 3 4 4
y 2 5 5

Winner: y

x 1 1 3 4 4
y 1 1 2 5 5

Winner: x
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Strategic Grading

The median grade encourages sincere grading.

Suppose a student submits a paper to a panel of examiners.

If an examiner were informed of the grades awarded by the other examiners, she
would have no incentive to change her grade.

If the examiner’s grade coincides with the median, there is no incentive to change

If the examiner’s grade turns out to be lower than the median, there is no
incentive to change: lowering the grade would not change the result, raising the
grade may result in a higher median grade.

Similarly, if the examiner’s grade turns out to be higher than the median grade.
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1 2 3
x A C C
y D A D
z B D A

I If the judges act sincerely, then z is the winner

I Both 1 and 2 would prefer that x wins

I 1 can down grade z to D, then x will win

I 2 can upgrade x from C to A, then x will win

I 3 cannot do anything about this.
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M. Nunez and J.-F. Laslier. Preference intensity representation: strategic overstating in large
elections. Social Choice and Welfare, 42, pp. 313 - 340, 2014.

Baujard et al. (2013) report on field work on EV with various scales, and observe
that voters often say that they appreciate the possibility of voicing their opinions
more finely than what a plurality vote allows.

But does extending the set of ballots available under a given voting rule modify
the set of voting equilibria?
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Nunez and Laslier

I Focus on additive voting rules, in which a ballot is a list of points that the
voter is affording to the candidates, and where points for each candidate are
simply added. We analyze the issue in the framework of strategic voting,
that is assuming that voters strategically cast their votes in order to
maximize their (expected) utility. We study equilibria and consider that two
voting rules are strategically equivalent if they have the same equilibrium
outcomes.

I Two main conclusions:

1. Approval Voting and Evaluative Voting are strategically equivalent.
2. Cumulative Voting and Plurality Voting are strategically equivalent.
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Nunez and Laslier

I Strategic incentives in large and small electorates may differ and have been
modeled in different ways. To study small electorates, we use a standard
refinement of Nash equilibrium (perfectness) and provide an example that
shows that voters need not overstate at equilibrium.

I The more flexibility a voting rule allows to voters, the more it becomes
similar, from a strategic point of view, to Approval Voting. Small elections
(that is elections with few voters) raise new questions. For instance, the
information available to voters might be much more detailed in a small
election than in a mass election.
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Characterizing Scoring Rules

31



Voting Methods

F : D → R

I What is the range? R = O(X ) or R = ℘(X )− ∅

I What is the domain? D = O(X )n, D = L(X )n or D = Bn

I Do we focus on a fixed set of voters?
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Variable Population Model

Let N be the set of “potential” voters.

Let V = {V | V ⊆ N and V is finite} be the set of all
voting blocks.

For V ∈ V , a profile for V is a function π : V → P
where P is O(X ), L(X ) or some set B of “ballots”.

Let ΠP be the set of all profiles based on P .
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Variable Population Model

Two profiles π : V → P and π′ : V ′ → P are disjoint if
V ∩ V ′ = ∅

If π : V → P and π′ : V ′ → P are disjoint, then
(π+π′) : (V∪V ′)→ P is the profile where for all i ∈ V∪V ′,

(π + π′)(i) =

{
π(i) if i ∈ V

π′(i) if i ∈ V ′
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Variable population model: F : ΠB → (℘(X )− ∅) where B is some fixed set of
“ballots”.

Five characterization results:

1. Positional Scoring Functions (B = L(X ))

2. Borda Count (B = L(X ))

3. Approval Voting (B = ℘(X )− ∅)
4. Plurality Rule (B = L(X ))

5. Range Voting (B = S)

35



Positional Scoring Rules

F : ΠL(X ) → (℘(X )− ∅)

Suppose there are m candidates. Let {s1, . . . , sm} be a set of scores,

Nπ(j ,A) = {i | i ranks A in the jth position} and
Scoreπ(A) =

∑m
j=1 sj × |Nπ(j ,A)|

F is a scoring function if F (π) = {A | Scoreπ(A) ≥ Scoreπ(B) for all B ∈ X}

Consistency: For each set of voters V , let RV denote a profile of rankings of
candidates for the voters V . Suppose that V and Y are disjoint sets of voters.
For all RV and RY , if F (RV ) ∩ F (RY ) 6= ∅, then
F (RV + RY ) = F (RV ) ∩ F (RY ), where RV + RY is the appropriate union of
the two profiles.
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Positional Scoring Rules

F : ΠL(X ) → (℘(X )− ∅)

Suppose there are m candidates. Let {s1, . . . , sm} be a set of scores,

Nπ(j ,A) = {i | i ranks A in the jth position} and
Scoreπ(A) =

∑m
j=1 sj × |Nπ(j ,A)|

F is a scoring function if F (π) = {A | Scoreπ(A) ≥ Scoreπ(B) for all B ∈ X}

Overwhelming Majority: Suppose that a group of voters V elects a candidate
A and a disjoint group of voters Y elects a different candidate B . Then there
must be some number m such that the population consisting of the subgroup V
together with m copies of Y will elect B .
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Positional Scoring Rules

Theorem. A social choice correspondence F : ΠL(X ) → (℘(X )− ∅) satisfies
anonymity, neutrality, consistency and overwhelming majority if and only if F is a
scoring rule.

H. P. Young. Social Choice Scoring Functions. SIAM Journal of Applied Mathematics, 28, pgs.
824 - 838, 1975.

J. H. Smith. Aggregation of Preferences with Variable Electorate. Econometrica, 41, pgs. 1027
- 1041, 1973.
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Borda Count

Borda Count is a scoring rule with scores sj = m − j , where m is the number of
candidates.

Cancellation: For all profiles π, if |Nπ(A P B)| = |Nπ(B P A)| for all pairs of
candidates A,B ∈ X , then F (π) = X .

Faithfulness: If there is only one voter (V = {i}) and π : {i} → L(X ), then
F (π) = {A} where A is voter i ’s top-ranked candidate according to the linear
order π(i) ∈ L(X ).
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Borda Count

Theorem. A social choice correspondence F : ΠL(X ) → (℘(X )− ∅) satisfies
anonymity, neutrality, consistency, cancellation and faithfulness if and only if F is
Borda Count.

H. P. Young. An axiomatization of Borda’s rule. Journal of Economic Theory, 9, pgs. 43 - 52,
1974.

S. Nitzan and A. Rubinstein. A further characterization of Borda ranking method. Public Choice,
36, pgs. 153 - 158, 1981.
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Approval Voting

F : ΠB → (℘(X )− ∅), where B = {B ⊆ X | B 6= ∅}.

Theorem. A social choice correspondence F : ΠB → (℘(X )− ∅) satisfies
anonymity, neutrality, consistency∗, cancellation∗ and faithfulness∗ iff F is
approval voting.

C. Alós-Ferrer. A simple characterization of approval voting. Social Choice and Welfare, 27:3,
pgs. 621 - 625, 2006.

P. Fishburn . Axioms for Approval Voting: Direct Proof. Journal of Economic Theory, 19, pgs.
180 - 185, 1978.
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Plurality Rule

F : ΠL(X ) → (℘(X )− ∅)
For a linear ordering R ∈ L(X ), T (R) is the top ranked candidate.

For a profile π, let T (π) = (T (πi))i∈V , where V is the domain of π.

For A ∈ X , let Topπ(A) = {i | T (π(i)) = A}}.
F is plurality rule if F (π) = {A | |Top(A)| ≥ |Top(B)| for all B ∈ X}

Tops-Only: For all profiles π and π′ on the same set V of voters, if
T (π) = T (π′) then F (π) = F (π′)
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Plurality Rule

Theorem. A social choice correspondence F : ΠL(X ) → (℘(X )− ∅) satisfies
anonymity, neutrality, consistency, faithfulness and tops-only if and only if F is
plurality rule.

Y. Sekiguchi. A Characterization of Plurality Rule. Economic Letters, 116:3, pgs. 330-332,
2012.

S. Ching. A Simple Characterization of Plurality Rule. Journal of Economic Theory, 71, pgs.
298 - 302, 1996.
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Range Voting

F : ΠS → (℘(X )− ∅), where S is a (possibly infinite) set of ‘signals’.

F is at least as expressive as G if the voters can express any profiles of
opinions via F which they could have expressed via F .

F admits minority overrides if regardless of the size of the set of voters in a
profile and the weight of existing public opinion, a single voter can always cast a
vote that changes the outcome.
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Range Voting

Theorem. Range voting is the most expressive voting rule which satisfies
consistency, neutrality, over-whelming majority and does not admit minority
overrides.

M. Pivato. Formal utilitarianism and range voting. Mathematical Social Sciences, 2013.
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Additional Readings

V. Merlin. The Axiomatic Characterizations of Majority Voting and Scoring Rules. Mahtematical
Social Sciences, 161, pp. 81 - 109, 2003.

M. Pivato. Variable-population voting rules. Journal of Mathematical Economics, 49, pp. 210
- 221, 2013.
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Grades vs. Utilities

In the real world the deep preferences or utilities of a judge or a voter are a very
complicated function that depens on a host of factors....We contend that the
deep preference of judges or voters cannot be the inputs of a practical model of
voting. A judge’s input is imply a message, no more no less. But her input
chosen strategically, depends, on her deep preferences or utilities.

(Balinksi and Laraki, p. 184)
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Grades vs. Utilities

The language of grades has nothing to do with utilities (viewed as measures of
individual satisfaction). Grades are absolute measures of merit. In the context of
voting and judging, utilities are relative measures of satisfaction. Formally, a
distinction must be made between two different types of scales of measurement.
An absolute scale measures each entity individually (height, area, merit). A
relative scale measure each entity with respect to a collective of like entities
(velocity, satisfaction). Were voters to be asked their satisfaction as inputs,
adjoining or eliminating candidates would alter their answers, provoking the
possibility of Arrow’s paradox. A common language must be an absolute scale of
measurement. (Balinksi and Laraki, p. 185)
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A. Dhillon and J.-F. Mertens. Relative Utilitarianism. Econometrica, Vol. 67, No. 3, pp. 471 -
498, 1999.

Axiomatize relative utilitarianism: normalize the nonconstant individual von
Neumann-Morgenstern utility functions to have infimum zero and supremum one,
and taking the sum as social utility.
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Sen: Informational Basis of Social Choice

A. Sen (1999). The possibility of social choice. American Economic Review 89: 349 - 78.

...social choice is impossible in the absence of interpersonally comparable indices
of well-being.
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Utility Functions

A utility function on a set X is a function u : X → R

A preference ordering is represented by a utility function iff x is (weakly)
preferred to y provided u(x) ≥ u(y)

L. Narens and B. Skyrms . The Pursuit of Happiness Philosophical and Psychological Foundations
of Utility. Oxford University Press, 2020.
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Let X and V be nonempty sets with |X | ≥ 3 and V finite.

Let U(X ) be the set of all functions u : X → R

A profile is a function U : V → U(X ), write U i for voter i ’s utility function on
X in profile U .

A Social Welfare Functional (SWFL) is a function f mapping profiles of
utilities to asymmetric relations on X . So for each profile U , f (U) is the social
preference order on X .
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U x y z
a 3 1 8
b 3 2 1
c 1 4 1

P a b c
z x y
x y x z
y z
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U x y z
a 3 1 8
b 300 2 1
c 1 4 1

P a b c
z x y
x y x z
y z
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U x y z
a 3 1 8
b 300 2 1
c 1 400 1

P a b c
z x y
x y x z
y z
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Von Neumann-Morgenstern Axioms
Let L be the set of lotteries on a set X , P a strict preference relation on L, and
I an indifference relation on L.
Preference preference over L are complete and transitive

Compound Lotteries The decision maker is indifferent between every
compound lottery and its simplification

Independence For all L1, L2, L3 ∈  L and a ∈ (0, 1],

L1 P L2 iff [L1 : a, L3 : (1− a)] P [L2 : a, L3 : (1− a)]

L1 I L2 iff [L1 : a, L3 : (1− a)] I [L2 : a, L3 : (1− a)]

Continuity For all L1, L2, L3 ∈  L,

if L1 P L2 P L3, then there exists a ∈ (0, 1)

such that [L1 : a, L3 : (1− a)] I L2
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Von Neumann-Morgenstern Theorem
u :  L→ R is linear provided for all L = [L1 : p1, . . . , Ln : pn] ∈  L,

u(L) =
n∑

i=1

pi × u(Li)

Von Neumann-Morgenstern Representation Theorem Suppose that (P , I )
is a rational preference on the set L of lotteries. Then, (P , I ) satisfies Compound
Lotteries, Independence and Continuity if, and only if, (P , I ) is represented by a
linear utility function.

Moreover, u′ :  L→ R also represents (P , I ) if, and only if, there are real numbers
c > 0 and d such that for all lotteries L ∈ L, u′(·) = cu(·) + d . (“u is unique up
to linear transformations.”)
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IIA says two things. First, it says that the comparison of two options should
depend only on people’s preferences, as opposed to the numerical values of
utility. Second, it adds that the comparison must rely only on pairwise
preferences about the two contemplated options.

Ordinal Non-Comparability: Social preferences should remain the same when
the profile of individual utility functions changes without altering individual
preferences.

Independence of Irrelevant Utilities: Social preferences on two options
should only depend on individual utilities at these two options.
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Ordinal Invariance: Given two profiles U and U ′, let U ∼OM U ′ if for all i ∈ V
and x , y ∈ X , U i(x) ≥ U i(y) if and only if U ′i(x) ≥ U ′i(y).

For all profiles U and U ′, if U ∼OM U ′, then f (U) = f (U ′).

Cardinal Measurability: Given two profiles U and U ′, let U ∼CM U ′ if for all
i ∈ V , there are αi , βi ∈ R with βi > 0 such that for all x ∈ X ,
U i(x) = αi + βiU ′i(x).

For all profiles U and U ′, if U ∼CM U ′, then f (U) = f (U ′).

Cardinal Unit Comparability: Given two profiles U and U ′, let U ∼CUC U ′ if
there is a β ∈ R with β > 0 such that for all i ∈ V , there are αi ∈ R such that
for all x ∈ X , U i(x) = αi + βU ′i(x).

For all profiles U and U ′, if U ∼CUC U ′, then f (U) = f (U ′).
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To prove his impossibility theorem, Arrow assumed OM invariance (and Sen
generalized it to CM invariance)
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Arrow’s Epistemological Objection

The viewpoint will be taken here that interpersonal comparison of utilities
has no meaning and, in fact, that there is no meaning relevant to welfare
comparisons in the measurability of individual utility...

(Social Choice and Individual Values, p. 9)
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Arrow’s Epistemological Objection

Even if...we should admit the measurability of utility for an individual,
there is still the question of aggregating the individual utilities.

At best,
it is contended that, for an individual, his utility function is uniquely
determined up to a linear transformation; we must still choose one out
of the infinite family of indicators to represent the individual, and the
values of the aggregate (say a sum) are dependent on how the choice
is made for each individual. In general, there seems to be no method
intrinsic to utility measurement which will make the choices compatible.

(Social Choice and Individual Values, pp. 10-11)
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Arrow’s Epistemological Objection

It requires a definite value judgment not derivable from individual sensa-
tions to make the utilities of different individuals dimensionally compat-
ible and still a further value judgment to aggregate them according to
any particular mathematical formula....

If we look away from the math-
ematical aspects of the matter, it seems to make no sense to add the
utility of one individual, a psychic magnitude in his mind, with the utility
of another individual. Even Bentham had his doubts on this point.

(Social Choice and Individual Values, pp. 10-11)
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Why not take interpersonally comparable utility functions as primitives?

“...the mythical character of any numbers behind preferences: they are just a
construct in the “observing mathematician”’s mind, and without any uniqueness
property in addition. But if until Arrow this ordinalist position was almost the
consensus, apparently his theorem itself, together with the very influential work
of Harsanyi, turned the tide partially, and led to the conclusion that interpersonal
comparability was a must to obtain SWF’s. The present theorem proves this
conclusion false.” (p. 473)
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To summarize, we consider only preferences as empirically meaningful primitives,
and hence axiomatize their aggregation coming thus back to the original
formulation of social choice theory (Arrow 1963) as a guide to policy
recommendations, not as the ultimate foundations of ethics. So a priori the
question of interpersonal comparisons is not even meaningful in our framework.
Following this approach requires that the set A consist of all feasible and just
alternatives: the ethical question lies in the choice of A and it is this that will
determine whatever implicit “interpersonal comparisons” occur. The questions of
justice being. accounted for by the choice of A, the choice within A is to be
handled by an appropriate generalization of majority voting: the SWF. (p. 477)
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...given a mild assumption (called “concordance”) about the statistical
distribution of voter’s preferences, we will show that the Condorcet winner
actually maximizes utilitarian social welfare. We will then show that, if the
voters’ utility functions arise from certain plausible random processes, then a
sufficiently large population of voters will have a concordant distribution of utility
functions, with very high probability. In other words, in a large population
satisfying certain statistical regularities, not only is the Condorcet winner almost
guaranteed to exist, but it is almost guaranteed to also be the utilitarian social
choice. So for such populations, Condorcet and Bentham agree. (p. 85-6)
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