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A Mathematical Analysis of an
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In 1998 a long-lost proposal for an election law by Gottlob Frege (1848—1925)
was rediscovered in the Thiiringer Universitdits- und Landesbibliothek in Jena,
Germany. The method that Frege proposed for the election of representatives of
a constituency features a remarkable concern for the representation of minorities.
Its core idea is that votes cast for unelected candidates are carried over to the next
election, while elected candidates incur a cost of winning. We prove that this
sensitivity to past elections guarantees a proportional representation of political
opinions in the long run. We find that through a slight modification of Frege’s
original method even stronger proportionality guarantees can be achieved. This
modified version of Frege’s method also provides a novel solution to the appor-
tionment problem, which is distinct from all of the best-known apportionment

methods, while still possessing noteworthy proportionality properties.

1. Introduction

In the summer of 1998 a surprising discovery was made in the Thiiringer Universitdits- und
Landesbibliothek (ThULB) in Jena. Hidden among the legacy of the German politician Cle-
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mens von Delbriick (1856-1921), Uwe Dathe, curator at ThULB, found a typescript titled
Vorschldge fiir ein Wahlgesetz, which translates to ‘Proposals for a Voting Law’. The author
of the typescript turned out to be no one less than Gottlob Frege (1848-1925), the illustrious
logician and recipient of the letter in which Bertrand Russell expounds his famous paradox.
Although the typescript is undated, circumstantial evidence points to 1918 as the almost cer-
tain year of composition. The manuscript was finally published in the original German in the
year 2000 (Gabriel and Dathe, 2000), accompanied by an extensive and excellent introduction
by [Dathe and Kienzler (2000). The original typescript has been made digitally available by
the Thiiringer Universitdts- und Landesbibliothek in Jena (Frege, [1918).

The discovery of Frege’s proposal was surprising and remarkable. Regarding it merely as
a historical curiosity, however, would not do justice to its originality and perspective. Rather,
we feel that some of its underlying ideas shed a fresh light on modern discussions on how
to elect representatives to political assemblies. In particular, Frege takes a highly original
temporal point of view, where the votes cast for unelected candidates in an election are carried
over to the next election. He furthermore proposes a rudimentary system of how votes can
be delegated from candidate to candidate. In this paper, we conduct a mathematical analysis
of Frege’s proposal and can prove that, even from the standpoint of modern social choice and
apportionment theory, it fares remarkably well. In the following, we present Frege’s proposal

in detail and outline our findings.

1.1. Structure and content of Frege’s proposal

Frege’s typescript consists of four main parts and, in its original form, is presented on 24 num-
bered printed pages and is appended by two fold-out tables, Tafel I and Tafel 11. In the follow-
ing, the page numbering refers to Frege’s proposal as published in the year 2000 (Frege, 2000),
whereas the bracketed numbers refer to the sheets of the original typescript from 1918 (Frege,
1918).

In a preliminary note (Vorbemerkung) (page 297, [1]-[3]), Frege sketches the general con-
stitutional provisions of his proposal. He presumes a division of the electorate in constituen-
cies, with the voters in each constituency delegating an elected representative to an electoral
body like the German Reichstag (page 297, [1]). This is very much in line with constitutional
law in Imperial Germany (1871-1918), where the representatives of the constituencies were
elected by absolute majority and where, in case none of the candidates succeeded in securing

an absolute majority, a run-off took place between the two candidates with the highest number



of Votes In this part, he moreover specifies restrictions on active and passive suffrage as he
considered them appropriate.

The most original aspects of Frege’s election law are to be found in the second part (on
pages 297-299, [2]-[4]) of the manuscript. In eleven articles numbered §5 through §15, Frege
presents the voting method by means of which the representative of a constituency is chosen.

Finally, Frege makes a short concluding remark (Schlussbemerkung, page 299, [4]-[5])
concerning the use of referenda to settle political disputes, which is followed by an extensive
discussion elucidating the various aspects of his voting law (Erlduterungen, pages 299-311,
[5]-[24]). The two tables appended by Frege illustrate his voting method by means of two
examples he constructed for the purpose (pages 312-313).

1.2. Political views underlying Frege’s proposal

Frege’s proposal for a voting law displays a remarkable juxtaposition of highly conserva-
tive and nationalistic views with classical liberal ideals. Frege’s conservative views are most
clearly manifested in his proposal to restrict the right to vote to married men without crimi-
nal convictions (“unbescholten”), who have performed military service, and who received no
state support (“Almosen”) in the previous year (197, [1]-[2]). He explicitly declined women’s
suffrage on grounds that the husband be the head of the family, the alleged political unit of
German society as he saw it (311, [23]-[24]). To put this into perspective, it should be noted
that women’s suffrage was made law on November 30 of the same year that Frege presum-
ably wrote his proposal, with the first German women casting their votes for the Wahl zur
Deutschen Nationalversammlung on January 19, 1919.

The deep conservatism inherent in these considerationﬂ is in quite some contrast with the
more liberal ideals underlying his voting method. According to Frege himself, the voting
method constitutes the fundamental thought of his voting law and can largely be considered
independently of his ideas about suffrage (197, [1]). In this paper, we will concentrate on
the mathematical aspects of Frege’s voting method, and leave the other parts of his proposal
largely uncommented.

Frege’s voting method is based on the classical liberal notion that the voters in a con-

stituency should be represented by an elected representative in a national assembly or parlia-

I'The succeeding Weimar Republic (1918-1933) adopted a voting system based on proportional representation,
where multiple representatives were elected in each of a smaller number of constituencies of a considerably
larger size than was usual in Imperial Germany.

?Later in his life, Frege’s conservatism and nationalism would give way to more extreme views on the po-
litical far right, in particular a strong antisemitic position, as witnessed by his diary entries from 1924
(Gabriel and Kienzler, [1994; Mendelsohn, [11996).



ment while upholding the ideal of one-person-one-vote. Frege’s main concern is to guarantee
that no voters’ votes are lost in the election process (197, [1]; 308-9, [19]-[20]) by ensuring
that even political minorities should send the constituency’s representative from their midst
at some point in time. Failing to do so is a problem that is notoriously inherent in electoral
systems where representatives are elected in single-member constituencies by majoritarian or
first-past-the-post methods, that is, systems where the voters indicate a single candidate on
their ballot, and the candidate occurring on most ballots is elected as representative of the
constituency. Arguably, any vote cast on a minority candidate serves the voter, and the can-
didate, just as well as had the voter not participated in the election, and can consequently be

considered lost (Erlduterungen, 303, [10]).

1.3. Frege’s core idea: elections as a process over time

Frege’s solution to the problem of votes for non-winning candidates being lost during elections
is to acknowledge the fact that elections take place repeatedly over time. He sees the election
of representatives not so much as a one-shot event, but rather as a series of connected and
interdependent events proceeding in rounds. In his proposal, elections are held every five years
(§6, 298, [2]), where voters submit a (plurality) ballot, indicating a single candidate, just as it
was law in Germany between 1871 and 1918. He proposes, however, that the representative of
a constituency should not be elected on the basis of the votes received in the current election
alone, but also on those cast in previous elections. More precisely, every candidate has a
voting score (“Stimmenzahl”), which, after initially being set to zero (§5,§7, 297-8, [2]), is
increased by the number of votes received in each election. Frege makes a crucial proviso
for the incumbent representative of the constituency: on the Friday before the election, the
incumbent’s voting score is decreased by the integer part of the average voting score of all
candidates (§14, 299, [4]). The votes thus subtracted, Frege argues, have served their purpose
and cannot be considered lost (Vorbemerkung, 197, [2]). We suggest that they can be viewed
as the cost of winning that the elected representative incurs. The candidate with the highest
voting score after the election is then elected as representative for the next five years. Possible
ties are broken on the basis of age and, in case of an equal number of days lived, by lot (§13,
299, [4]).

With Frege’s voting method, candidates that only attract minor support among the elec-
torate keep accumulating votes over time, and at some point will be elected as representative.
Thus, also minority opinions are guaranteed to be represented in elected political assemblies,
which complies with Frege’s guiding principle that no votes should be lost. Should his voting

law be adopted, Frege anticipates the lively participation of all voters in the elections (Er-



lduterungen, 303—4, [11]), a concern that has also attracted attention in social choice theory
(Fishburn and Brams, [1983; Moulin, [1988).

To the same end, Frege arranges for the installation of a maximum of twenty-five choice
candidates (“Erlesene”) as those candidates in a constituency with maximal voting score
(88, 298, [2]). The representative is chosen among these choice candidates and non-choice
candidates need to transfer their votes to one of the choice candidates. This is to ensure that
the votes cast on non-choice candidates are not lost or too much scattered to be of any ef-
fect. Frege claims that the number of twenty-five choice candidates should suffice for all
non-choice candidates to find a politically like-minded choice candidate to transfer their votes
to (Erlduterungen, 303, [10]). Frege also provisions for the transfer of votes from a choice
candidate to a deputy should the former die or otherwise lose his status as a choice candidate
(8§11, 298, [3]). In what follows, however, we will not make this distinction between choice
and non-choice candidates.

Given the objectives of Frege’s voting method, a key issue is how often a candidate can be
expected to be elected as representative given his support in the constituency. Even though
Frege does not seem to pursue proportional representation (“Proportionswahl’) as a political
aim in itself, he states without formal proof that: “If the strengths of political directions in
a constituency remain the same over a prolonged period of time, then the number of times
during which each of these directions is represented by the representative of the constituency
will behave approximately proportionally to these strengths” (Frege, 2000, 302, [8])H The
main goal of our paper is to investigate in a mathematically rigorous manner whether Frege’s

claim can be vindicated.

1.4. Contributions of this paper

Frege’s intended audience presumably being politicians rather than academics, Frege neither
provided a formal definition nor a formal analysis of his voting method. We aim to fill this
gap and, in Section 2] start by formulating his proposal in the precise mathematical framework
of modern social choice theory. We first observe that Frege’s method fails to be proportional
in the strict sense even under the assumption that the voters’ number and preferences remain
constant over time: examples are easily found in which at some point a candidate is elected
more often (and another less often) than would be justified by the number of votes he received

as a proportion of the total of votes cast (Example [2). We show, however, that this failure

3The original German reads: “Wenn die Richtungen in einem Wahlkreise lingere Zeit hindurch dieselben
Stdrken behalten, werden sich die Zeiten, wdihrend deren die einzelnen durch den Abgeordneten des
Wahlkreises vertreten werden, anndhernd wie diese Stirken verhalten”. Translation by the authors.



of proportionality can be attributed to the peculiarity of Frege’s method that the cost of be-
ing chosen representative varies over time. Even more, the variation of this cost creates a
massive, disproportional advantage for strong candidates who pay a lower cost than minority
candidates.

In Section 3] we can nevertheless prove that the cost of winning will converge and stabilize
at the number of voters after a finite number of elections—provided that the size of the con-
stituency remains constant (Lemmal(I)). Frege appears to have been aware of this phenomenon,
as he now and then speaks of a stable state (“Dauerzustand”) in this context (302, [8]). This
convergence of the cost of winning can take a very long time, as is also indicated by the two
examples Frege himself constructed to illustrate his procedure (Erlduterungen, 300—1, [S]-[7];
Tafel I and Tafel I). In both of the examples, the cost of winning can be shown to stabilize only
after 184 elections. As Frege proposes that elections are held every five years, this process will
take 920 years.

As soon as the cost of winning has stabilized, however, the behaviour of Frege’s voting
method becomes more favorable. We can show that, as time proceeds, the proportion of times
a candidate is chosen will converge towards the proportion of the candidate’s support in the
electorate. In other words, Frege’s method achieves proportionality in the limit (Theorem [T).
Again, this result requires that the size of the electorate remains constant and that the aver-
age number of votes each candidate receives converges. In this context, it is interesting that
Frege explicitly expresses the desirability of constituencies being of about equal size and their
composition changing as little as possible (Vorbemerkung, 197, [1]). If instead the size of the
electorate is not assumed to be constant but can grow over time, we give an example showing
that this convergence to proportionality does no longer hold (Example [3)).

The problems that come with the long initialisation phase before the cost of winning sta-
bilizes suggest a modified version of Frege’s voting method which we present in Section 4l
For this modified version, the number of votes cast for each candidate is normalized to lie
between 0 and 1, and the cost of winning is invariably 1. The latter stipulation intuitively cor-
responds to the cost of winning being equal to the number of voters. The modified version of
Frege’s voting method is well-behaved immediately and has stronger proportionality guaran-
tees over time than Frege’s original method. In particular, we prove that, at any point in time,
the number of times each candidate has been chosen lies within a bounded margin from his or
her proportional share of votes aggregated up to that time (Theorems [3] and 4]).

Frege’s original method was conceived for the election of a single representative in a con-
stituency and rests on the liberal principle of voting for individual candidates (“Personlich-

keitswahl”) instead of a party-list system (“Listenwahl”). That is, the method should guar-



antee fair representation of citizens’ opinions in parliament rather than reflect the strength of
political parties. Accordingly, it would be inappropriate to represent Frege as making a case
for proportional representation as such. Nevertheless, the modified Frege method, as proposed
in this paper, can naturally be interpreted as an apportionment method as is commonly used
for assigning seats to parties in a political assembly in systems of proportional representation.
This apportionment method, which we introduce in Section [3] and refer to as the Frege’s ap-
portionment method, assigns to each political party as many seats as the number of times it
would be elected as representative if the modified Frege method were run for so many times
as there are seats in the assembly (parliament) while keeping the electorate fixed.

We can show that Frege’s apportionment method is not mathematically equivalent to any
of the methods that are common in the literature. In particular, we demonstrate that it dif-
fers from the Adams method, the D’Hondt (or Jefferson) method, the quota method, the
Sainte-Lagué (or Webster) method, the largest remainder method, and the Huntington-Hill
method. Analysing its compliance with the customary axioms for apportionment, we prove
that Frege’s apportionment method satisfies house monotonicity and upper quota but fails pop-
ulation monotonicity. Lower quota is only satisfied if the number of candidates is at most three
(Theorem [3). As an apportionment method, it therefore behaves surprisingly well, especially
given the fact that it was not designed as one. Only the quota method by [Balinski and Young
(1975) satisfies all of the axioms mentioned above that are also satisfied by Frege’s method.
The quota method, however, is notoriously biased against small parties. Frege’s method fares
considerably better in this respect, as suggested by a numerical experiment in which we com-
pare the number of votes per representative of the largest party and the number of votes per
representative of the smallest party (Section[5.3). The conclusion seems to be fair that Frege’s
apportionment method is an interesting and novel addition to the apportionment literature.

Further discussions of Frege’s proposals follow at the end of the paper in Section |6l So as
not to interrupt the flow of the argument, mathematical proofs are deferred to the appendix.
An open-source Python implementation of Frege’s voting rule and our modified version is

available online [reference omitted for reasons of anonymity].

1.5. Related work

Frege’s voting method is difficult to compare with other voting rules due to its temporal nature,
a feature that voting rules typically do not possess. Thus, we only briefly review some works
in social choice theory that combine voting and a temporal structure. Formalisms such as itera-
tive voting (Meir, [2017) and dynamic social choice (Tennenholtz, 2004; Boutilier and Procaccia,

2012; Parkes and Procaccia, 2013) consider voting scenarios with changing (dynamic) pref-



erences. In contrast to Frege’s proposal, these essentially concern a single election where
preferences are updated over time. In particular, they are not concerned with proportional
outcomes over time.

Another line of work (Conitzer et all, [2017; [Freeman et all, [2017; [Lackner, [2020) is con-
cerned with repeating elections, similar to Frege’s proposal. These works, however, focus
on fairness towards voters and discuss mechanisms that guarantee a fair distribution of utility
among voters over time. From this point of view, these works can be viewed as an orthogonal
approach to the one of Frege, where all emphasis is put on fairness towards candidates and
individual voters are not taken into account. We return in Section [6] to this partial disregard of
voters’ current preferences.

Finally, the storable votes method (Casella, 2005, 2012) is a voting rule based on plurality
voting. In each election, voters can decide to either cast a vote or to transfer their vote weight
to future elections. If a voter decides to cast a vote, she can spend all, some, or none of
her stored weight from previous elections. This rule vaguely resembles Frege’ proposal as it
allows minority candidates to win at some point, however only if they have supporters that
strategically act to their benefit. This kind of strategic voting is not required with Frege’s

proposal; Frege even made his proposal with the intention of reducing strategic voting.

2. Mathematical Formulation of Frege’s Voting Method

Frege couched his voting law in legal terms, and also his subsequent discussions are mathe-
matically informal. In this section we provide a mathematical formulation of Frege’s voting
law, where we concentrate on the voting mechanism Frege proposed. In particular we focus
on the way candidates accumulate votes over the course of multiple elections and whether
this leads to a fair (proportional) representation of opinions over time. We will make the
simplifying assumption that candidates remain the same over time, but we do allow voters to
change their number, their identity, and opinion as to their most preferred candidate, unless
stated otherwise. In particular, we will disregard Frege’s distinction between choice candidates
(“Erlesene’”) and non-choice candidates, and the delegation mechanism it enables. Thus, in
our analysis, every candidate accumulates votes.

Let C' be a set of m > 2 candidates. Voting proceeds in rounds over time, meaning that at
every point in time ¢ > 1 an election takes place and a new representative repr(t) is chosen.
We have n; denote the number of voters participating in the election at time ¢. In every election,
the voters submit their preferences by means of plurality ballots, that is, for every t > 1, the

voters specify their most preferred candidate only. We denote by 7r§- the plurality score of



candidate j at time ¢, that is, the number of voters that put j on their ballot at time ¢. Since
every and only participating voters cast votes on candidates, we thus have n; = > | jec 7r§. We
speak of a fixed electorate if the number of voters and the candidates’ plurality scores remain
constant over time, that is, if n, = n and 7r§- =m;forall j € C'andt > 1.

In each round ¢ of the election process, an aggregate score a§ is calculated for every candi-
date j on the basis of the scores obtained at the time of the election (7r§) and the scores obtained
in past elections. The candidate which obtains the maximal aggregate score at time ¢ is chosen
as representative for round t, that is, repr(t) = argmax;. o}. In case of a tie, the candidate
that is lexicographically first is chosen. This is equivalent to assuming a fixed tie-breaking
order, for instance, by breaking ties in favour of the oldest candidate, as suggested by Frege
himself. Formally, we define the aggregate score a;- of a candidate j at time ¢ inductively such

that, for every ¢t > 1,

S

_ 1

t t+1 1 t : 4
- o+ — L% D kec akj if repr(t) = j,
(o =
J
ol + 7t otherwise.

The term |- - >, - ot| can be seen as the cost of winning the election at time ¢, as it is
later subtracted from the aggregate score of the winning candidate. Note that this number is
chosen in such a way that the aggregate scores of all candidates are guaranteed to remain non-
negative at all times. Furthermore, observe that the aggregate scores at time ¢ are used to elect
the representative at time ¢ and consequently only include the costs of winning of previous

rounds and not of time ¢.

Example 1. Consider a fixed electorate with three candidates and ten voters, and let the
corresponding plurality scores of candidates a, b, and ¢ be 5, 3, and 2, respectively. Table [I]
depicts the values of a;» fort = 1,...,10. Maximum aggregate scores of each round are
printed in bold. At time 1, candidate a is chosen, because a has a maximum aggregate score
of 5. At time 2, each candidate keeps the votes he had obtained at time 1 plus the votes
obtained at time 2, which we assumed to be the same as at time 1. Thus for candidates b and c
the aggregate scores at time 2 are 3 + 3 = 6 and 2 + 2 = 4, respectively. The cost of winning
incurred by candidate a at time 1 amounts to 3 = |10/3|, which has to be subtracted from
the number of votes candidate a received at time 1 and time 2. Accordingly, candidate a’s
aggregate score o2 at time 2 is calculated as 5 + 5 — 3 = 7. Hence, at time 2, candidate a

again has the highest aggregate score and is elected representative another time. The cost



timet of o} of repr(t) |3 jecot]
1 5 3 2 a 3
2 7 6 4 a d
3 7T 9 6 b 7
4 12 5 8 a 8
3 9 8 10 & 9
6 14 11 3 a 9
7 10 14 5 b 9
8 15 8 7 a 10
9 10 11 9 b 10
10 15 4 11 a 10

Table 1: A simple example of Frege’s method (Example [I). Maximum aggregate scores are
printed in bold.

of winning at time 2, however, has increased to 5, and at time 3, it is candidate b who has
the maximum aggregate score and is elected representative, this time at a cost of 7. And so
on. Note that the cost of winning increases over time, starting with 3 and increasing to 10,
the number of voters. Once the cost of winning has reached 10—indicated in the table by the

dashed line—it stabilizes and remains constant at all subsequent time steps.

The increasing cost L% D okec a};J of winning, as we saw in Example [Il suggests an un-
fairness inherent in Frege’s voting method. Early winners, that is, those candidates with the
highest plurality scores, incur lower costs for being elected than those candidates that win
later. This makes it advantageous to win early in the election process, creating a positive bias
towards strong candidates and accordingly constitutes a disadvantage for minority candidates.
This is also reflected in these candidates being elected more often than would seem to be jus-
tified by the proportion of the electorate that supports them. This phenomenon is all the more
remarkable as it was Frege’s intention to also strengthen minority opinions (Frege 2000, Er-
lduterungen, 306, [15]; |Gabriel and Dathe 2000, page 292). How extreme this distortion can

be is illustrated by the following example.

Example 2. Let us consider a scenario that highlights the unfairness introduced by increasing
costs (Table[2). We have a fixed electorate with 6 candidates and 10 voters. The corresponding
plurality scores m; of the candidates a through f are 1,1,1,1,1, and 5, respectively. The table
below depicts the values of 0';- fort=1,...,10and j € C. Ties occur in rows with more than
one element printed in bold. We assume that ties are broken in alphabetical order and thus

always to the disadvantage of f. After ten rounds, candidate f has been chosen eight times,
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Table 2: The unfairness of increasing costs: candidate f wins unproportionally often (Exam-

ple2)

candidates a and b have been chosen once, and candidates ¢, d and e not at all. This shows
that Frege’s voting method does not select representatives in a proportional fashion: in ten
rounds it would be possible to perfectly reflect the distribution of votes, that is, by choosing

candidate f five times and all other candidates once.

At this point, we would like to make a minor remark concerning Frege’s use of the floor
function in the definition of the cost of winning as | -3, - of| in his voting method
(cf. a§+1, as defined above)H This was most likely motivated by considerations of numerical
simplicity, but, for our purposes, does not have a significant mathematical effect. Replacing
theterm |-L -3, ol | with L -3~ 0! does not help to resolve any of the issues identified
in Example

In Example [T} we also saw that after time 7, the cost of winning stabilizes at 10. After
this time, therefore, candidates no longer gain an advantage by being elected earlier rather
than later, at least not with respect to the cost of winning. This phenomenon is not specific to
Example [T also in Example [2] the cost of winning will stabilize at time 17, when it reaches
a cost of 10. Rather, as long as the size of the electorate remains constant, the convergence
of the cost of winning to the number of voters will hold generally (Lemma [l below). Under
further conditions on how the opinions in the electorate evolve over time, moreover, the un-
fairness caused by the varying costs of winning in the initial phase will taper off and result in

a proportional representation in the long run. We formally prove this in the next section.

“Frege writes: “A remainder that is smaller than the number of choice candidates of a constituency, is left
disregarded” (“Ein Rest, der kleiner als die Anzahl der Erlesenen des Wahlkreises ist, bleibt dabei unberiick-
sichtigt”) (§14, 299, [4], English translation by the authors).

11



The unfairness towards minority candidates caused by the increasing costs of winning sug-
gests a variation of Frege’s method where the cost of winning is stipulated to be constant from
the outset. We introduce the modified Frege method in Section 4l and show that it not only
guarantees proportionality in the long run, but also has stronger proportionality properties,

which we will make formally precise.

3. Proportionality Guarantees for Frege’s Method

In the previous section we saw how the cost of winning converges as long as the number of
voters is fixed. We now make this observation mathematically precise. ~The proof of this

lemma as well as all further proofs can be found in the appendix.

Lemma 1. Assume that the number of voters is fixed, that is, n, = n for allt > 1. Then
the function a(t) = Y, o}, is monotonically increasing. Moreover, there exists a positive
number ty such that a(t) = n - m forall t > 1.

This convergence process of the cost of winning (which is L%)J) to the number of voters
can take quite a long time: In Frege’s proposal, he provided two explanatory examples with
n = 1000 and m = 25. With these parameters, Frege’s voting method reaches a constant cost
of winning at time ¢y, = 184. As Frege proposes that elections are held every five years, this
would amount to 920 years.

Let us continue by specifying in which sense Frege’s voting method violates even a most
basic form of proportionality, as noted in Example 2l In what follows, let p;(¢) denote the
number of times candidate j is chosen as representative up until time ¢, that is, p;(t) =
|{s <t:repr(s) =j}|. Under the assumption of a fixed electorate, after ¢ rounds, each
candidate j should ideally win ¢ - % times, that is, the number of rounds multiplied by the
proportion of the electorate that supports candidate j. If ¢ - %J is an integer for all 7, a perfectly

proportional outcome is possible. This observation gives rise to the following definition.

Definition 1. A fixed electorate with plurality scores (7;);cc has integral quotas at time t if
t %J is integral for all candidates j. We say that an (infinite) sequence of chosen representatives
(repr(1), repr(2),...) satisfies variable integral quota if for any time ¢ > 1 at which the

electorate has integral quotas, it holds that
7Tj i
p;i(t) :t-z for every j € C.

Example [2l shows that Frege’s method cannot guarantee this property: a sequence of repre-

sentatives chosen by Frege’s method may violate variable integral quota. Note that variable

12



integral quota applies to rather few electorates, namely only fixed electorates considered at
time points when a perfectly proportional outcomes is possible. Hence, we consider variable
integral quota as a weak and very basic form of proportionality. However, the following theo-
rem shows under which conditions p"T(t)

form of proportionality in the long run.

will converge to ”—n’ Thus, Frege’s method provides a

Theorem 1. If we assume a fixed electorate, that is, n, = n and 7r§- = 7 forallt > 1, the
following holds for Frege’s voting method:

i P _ T

t—o0 t n '

Ifny = nand for allt > 1 and for all j € C there is some 7} € [0, 1] such that

S

. =1"7 *
lim =— 2 = 73
t—o0 t 77

then the following holds for all candidates j € C':

i P2 (t) .

t—o00 t n

The following proposition shows that, for a fixed electorate, proportionality is not only

guaranteed in the limit but eventually also within (finite) intervals.

Proposition 1. If we assume a fixed electorate with n voters, there exists a time t* > 1 and a
period length P € N such that, for allt > t* and all j € C,

If we do not assume a fixed number of voters, proportionality cannot be guaranteed even as

t — oo. To see this, consider the following example.

Example 3. We consider a scenario with two candidates, a and b. Fort = 1, there are three
voters and T} = 2, m} = 1. In every following round the number of voters is doubled and the
ratio 7' /7l remains the same, namely 2. We thus have ¢ = 2" and 7w} = 2'=1. As we will see,

candidate b never wins despite receiving one third of the votes.
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In order to see this, let us prove that o', > o} for all t > 1 by induction over t. The basis is
clearly fulfilled since o} = n} = 2 > 1 = w} = o]. For the induction step, we assume that

0. > oy forall s <1, that is, candidate a has always won so far. We thus have:

t t
o, + 0
tHl _ bt ottl a % tHl _ t | ot
o, =o,+2 —{ 5 J and o, = o, + 2"

Since o, > o}, it follows:

5 <o

ol + o} <02+a}§ .
= 2 a*

Moreover, since b has not been chosen so far,

t+1 t+1

O.ll;+1 — § ﬂ_g — § 2871 — 2t+1 o 1
s=1 s=1

We thus have:

1 1 Ut"‘az 1 1 1
t+1 ¢ t+ a t t+ t _ ot+ i+
o, =o,+2 —{TJ>0(I+2 —0,=2""" >0,

Thus, candidate b will never be chosen as representative.

In conclusion, Frege’s method is not proportional for arbitrary time intervals, but converges

to proportional outcomes if the size of the electorate is fixed.

4. The Modified Frege Method

The examples in Section 2] and the results of Section [3] point to an increasing cost of winning
as the reason for Frege’s original method failing a reasonable form of proportionality in the
initial phase before the cost of winning has stabilized. This observation suggests that a natural
variation of Frege’s original method, for which the cost of winning is stipulated to be constant,
might do better. We thus introduce the following modification of Frege’s method, which we
will refer to as the modified Frege method. In the formal definition of the modified Frege
method, we abstract from the size of the electorate and accordingly use normalized plurality

scores pz- for candidates j and times ¢ > 1:

t

iy

t J
P =,
un
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time a b c d e f representative

1 0.1 0.1 0.1 0.1 0.1 0.5 f
2 02 02 02 02 02 00 a
3 —-0.7 0.3 0.3 0.3 0.3 0.5 f
4 —-06 04 04 04 04 0.0 b
3 -05 =05 05 05 05 05 c
6 —-04 —-04 -04 06 06 1.0 f
7 =03 -03 -03 07 07 05 d
8 -02 -02 -02 -02 08 1.0 f
9 -0.1 -01 -01 —-01 09 05 e
10 0.0 0.0 0.0 0.0 0.0 1.0 f

Table 3: Example illustrating the modified Frege method (Example [4))

where n; denotes the total number of voters at time ¢. The aggregate scores for the modified
Frege method are defined as follows, where we use Latin letters to denote variables instead of
Greek ones as in the definition of Frege’s original method:

1 _ .1
Sj = Pj

t+1 - _
=1 ifrepr(t) = j,

sb+pj

t+1

sh+pj otherwise.

One may wonder why the number 1 is subtracted from the winning candidate. The reason

is that this choice ensures that the sum of aggregated scores is invariably 1 for all

t
jec ¥
times t. Hence, this stipulation intuitively corresponds to the cost of winning being equal to
the number of voters, as it is eventually the case for Frege’s original method (cf. Lemma [I).
A potential disadvantage of the modified Frege method is that aggregated scores may become

negative; we will further discuss this issue at the end of the paper in Section

Example 4. Let us now reconsider Example 2| for the modified Frege method, as depicted in
Table |3l The normalized plurality scores for candidates a through f are 0.1, 0.1, 0.1, 0.1,
0.1, and 0.5, respectively. We now see that this method produces a proportional outcome:
candidate f wins five times and all other candidates once, which is exactly in accordance with

the candidates’ proportional share of the votes.

The modified Frege method enjoys a number of proportionality properties that are stronger

than the ones that can be proven for Frege’s original method. In the following, let r;(¢) denote
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the number of times candidate j is chosen as representative up to time ¢, that is 7;(t) =
| {s <t:repr(s) = j}|. First, we show that a similar statement to Theorem [I] holds for the
modified Frege method:

Theorem 2. If we assume that p§~ = pj for allt > 1, the following holds for the modified
Frege method:
(T
tim 2
t—soo

If the normalized plurality scores pz» are not fixed but for all j € C' there is some p; € 0, 1]
such that

t s
(t L ps
lim ri(?) = lim 723_1]9] =t

t—ooo T t—o00

Theorem [2 provides a proportionality guarantee for the modified Frege method in the long
run. Note that Theorem [2| does not require the number of voters to be fixed, in contrast to
the analogous result for Frege’s original method where this assumption is necessary (cf. The-
orem [I] and Example [3). We will now aim for much stronger guarantees, namely guarantees
that hold for arbitrary time intervals. We strengthen the definition of variable integral quota
(Definition [I)) to hold for arbitrary electorates, inspired by the lower and upper quota axioms

in the apportionment setting (cf. Section [3)).

Definition 2. For all candidates 7 € C), let pjl-, p?, ... be an infinite sequence of normalized
plurality scores. We say that an (infinite) sequence of chosen representatives repr (1), repr(2),

. satisfies variable upper quota if for any time ¢ > 1 it holds that

t
r;(t) < {Z pﬂ for every j € C,
s=1

and it satisfies variable lower quota if for any time ¢ > 1 it holds that

t
ri(t) > {Z ij forevery j € C.
s=1

Note that both variable upper and lower quota imply variable integral quota: in case of in-

tegral quotas any deviation from a proportional distribution would also violate variable upper
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time a b c d e f  representative

1 1001 1000 206 182 181 180
2 —748 2000 412 364 362 360
3 253 250 618 546 543 540
4 1254 1250 —1926 728 724 720
D —495 2250 —1720 910 905 900
6 506 500 —1514 1092 1086 1080
7
8
9

1507 1500 —1308 —1476 1267 1260
—242 2500 —1102 —1294 1448 1440

759 70 =896 —1112 1629 1620

0 1760 1750 —690 —930 —940 1800
1 2761 2750 —484 748 759 =770

Q0O T QAT O T

Table 4: The modified Frege method violates lower quota (Example [3). For increased read-
ability, the aggregate scores 35- are multiplied by 2750.

and lower quota. In the following we say that the modified Frege method satisfies variable
lower or upper quota if any sequence of winners produced by this method satisfies the corre-

sponding axiom.
Theorem 3. The modified Frege method satisfies variable upper quota.

As a consequence, the modified Frege method also satisfies variable integral quota. By

contrast, it violates variable lower quota, as the following example illustrates.

Example 5. Let us consider a fixed electorate with six candidates and 2750 voters. The plu-
rality scores are 1001, 1000, 206, 182, 181, and 180, respectively. For increased readability,
the corresponding normalized plurality scores are obtained by dividing these numbers by 2750
in Tabledl The variable lower and upper quota of candidate b at round 11 is 112'7150(?0 = 4, but
candidate b has been chosen only 3 times, that is, r,(11) = 3. Similar examples can be found
for m = 4 (for instance, with plurality scores of 1001, 1000, 115, and 26, and for t = 30) and

m = b (for instance, with plurality scores of 1001, 1000, 300, 107, and 92 and for t = 15).

We can nevertheless show that the violations of variable lower quota by the modified Frege
method are not too severe. This is in particular the case for electorates with few candidates, as

the following theorem shows.

Theorem 4. For m € {2,3}, the modified Frege method satisfies variable lower quota. For
m > 4, we have r;(t) > LZ';:l pjj — [m=3] for every candidate j and time t > 1.
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The following example shows, however, that variable lower quota violations can still be
arbitrarily large. Yet, this construction requires a number of candidates that is exponential in
the size of the violation. Thus, it may still be possible to strengthen the bounds of Theorem [l
for the cases in which m > 6. (Example [3 shows that Theorem [l is optimal for m = 4 and
m=2>5.)

Example 6. We define a variable electorate with candidates C' = {1,...,m} and n;, =
m —t+ lvoters fort € {1,...,m}. At time t, we have plurality scores of

m; =0 forje{l,....t—1},

m=1 forje{t,...,m}.

p§:0 forje{l,...;t—1},

= ‘ t,... .

Furthermore, we assume that if candidate © and j are tied, then the tie is broken in favor
of min(i, j). Due to this tie-breaking assumption, the modified Frege method selects candi-
date 1 in the first round, candidate 2 in the second, candidate t in round t. Let us consider

round m — 1, in which candidate m — 1 wins. The variable lower quota of candidate m is
- 1 1 1 U N |
=t —+ -+ | = - >) —-—2.

Since the harmonic series Yy .-, % grows without limit, the variable lower quota of candi-
date m is unbounded for a growing number of candidates (m). Recall that candidate m does
not win before round m. Thus, if m tends to infinity, so does the violation of candidate m’s

variable lower quota at timet = m — 1.

5. The Apportionment Setting

In this section, we want to analyse Frege’s methods from the viewpoint of apportionment. Let
us first review the apportionment problem and well-known methods that provide apportion-

ment solutions.
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5.1. Apportionment methods

An apportionment problem for m parties is given by a distribution p = (p1, ..., pm,) of votes
with > p; = 1 and a desired house size k. A solution to the apportionment problem (p, k)
is an m-sequence of non-negative integers (ai, . .., a,,) with >\ a; = k. An apportionment
method is a function that returns for every apportionment problem a valid SOlutiOI‘H. Appor-
tionment has two main applications: to assign a fixed number of parliamentary seats to parties
(proportionally to their vote count), and to assign representatives in a senate to states (propor-
tionally to their population count). From a mathematical point of view, these two applications
are indistinguishable, and, in particular, this distinction is not relevant for our study. For the
sake of clarity, we speak in the following of parties and seats. First, we are going to introduce

some important apportionment methods (cf. Balinski and Young, [1982; [Pukelsheim, 2017).

Largest remainder method. The earliest proposal for an apportionment method is the
largest remainder method (or Hamilton method). The largest remainder method assigns in a
first step | kp; | seats to each party. In a second step, all remaining seats are distributed so that
each party receives at most one seat. Priority is given to parties with the largest remainder,

that is, those with largest kp; — | kp;].

Divisor methods. Divisor methods are the most commonly used apportionment methods.
Their definition is based on divisor criteria: A divisor criterion is a monotonically increasing
function d : N — R that satisfies i < d(i) < i+ 1 forall ¢ > 0. A divisor criterion d induces

a d-rounding, defined as follows:
[z];,={aeN:dla—1) <z <d(a)}.

If = d(a) for some q, then [z], contains two integers, otherwise only one. For example, the
divisor criterion d(a) = a + 1 corresponds to rounding down, with the slight difference that
rounding down an integer © with x = a yields here both @ and a — 1.

Given a divisor criterion d we define a corresponding divisor method: the set of d-admissible

solutions is defined as

m
(a1,...,a,) € N™: Zai =kanda; € [%L for some positive z € R
=1

>To simplify the presentation, we assume that ties are broken in some fashion and thus apportionment methods
always return a single solution.
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As we require that apportionment methods return only one solution, a tie-breaking mechanism
may be necessary to choose one solution in this set.

We can now define the most common divisor methods: the D’Hondt method (or Jefferson
method) is defined by d(a) = a + 1, that is, rounding down. The Adams method is defined
by d(a) = a (rounding up). The Sainte-Lagué method (or Webster method) is defined by
d(a) = a+ 0.5, which corresponds to rounding to the nearest integer. Finally, the Huntington-
Hill method uses the d(a) = y/a(a + 1) criterion.

Quota method. The quota method (Balinski and Young, [1975) is the most recent addition
to this list of apportionment methods. It is defined iteratively, starting with the empty solution
(0,...,0). Inround ¢ > 1,if (ay, ..., an) is the current solution () _ a; = ¢ — 1), we consider
all parties that would not violate upper quota (cf. Definition H]) if they received an additional
seat, that is, all parties 7 with a; + 1 < [p;f] or, equivalently, a; < p;¢{. Then we choose
among these parties the one party 7 with maximum p;/(a; + 1) (subject to a tie-breaking, if

necessary); party ¢ receives another seat.

Frege’s apportionment method. Both Frege’s original method and the modified Frege
method can easily be transformed into apportionment methods. However, since Frege’s orig-
inal method violates even a very basic proportionality property (weak proportionality, see be-
low), it is not a sensible method in this context and we omit it here from further study. To apply
the modified Frege method, we view the vote distribution (py, . . ., p,,) as a fixed electorate and
apply the method for k£ rounds, thus obtaining an apportionment solution (r1(k), . .., r,(k)).
Let us refer to this method as Frege’s apportionment method.

Given this interpretation, it is natural to ask how Frege’s apportionment method compares
to other apportionment methods, and, in particular, whether it is equivalent to an already
established method in the apportionment setting. Example [7] gives a negative answer to this

question.

Example 7. A concrete example where all apportionment methods listed in Table [3 yield

different solutions is given by p = (%, %, %, %, %, 9—18) and a house size k = 20. We omit the

calculations and only list the results:
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house popul. lower upper  quota for

monot. monot. quota quota m=23
Largest Remainder — — + + +
D’Hondt (Jefferson) + + 4 _ _
Adams + + — + —
Sainte-Lagué (Webster) + + — — 4
Huntington-Hill + + — — —
Quota method + — + + +
Frege’s apportionment method + — — + +

Table 5: An overview of apportionment methods and their respective properties.

Largest Remainder: (16,2,1,1,0,0)
D’Hondt (Jefferson): (18,1,1,0,0,0)
Adams: (14,2,1,1,1,1)
Sainte-Lagué (Webster): (17,1,1,1,0,0)
Huntington-Hill: (15,1,1,1,1,1)
Quota method: (17,2,1,0,0,0)
Frege’s apportionment method: (16,1,1,1,1,0)

In the following section, we address the issue in more depth from an axiomatic perspective.

5.2. Apportionment axioms

For an overview of apportionment methods and their respective properties, we refer the reader

to Table [3} the corresponding analysis can be found, e.g., in the book by Balinski and Young

(1982). In the following, we discuss axiomatic properties of Frege’s apportionment method.
As a first step, we want to discuss a basic requirement of apportionment methods, called

weak proportionality.

Definition 3. An apportionment method satisfies weak proportionality if, given an apportion-
ment problem ((p1, ..., pm), k) with k - p; being integer for every ¢ € {1,...,m}, the method
returns (kpy, ..., kpm)-

It is easy to see that our concept of variable integral quota is closely related to weak pro-
portionality. Thus, Frege’s original method, seen as an apportionment method, violates this

property. This is the reason why we focus on Frege’s apportionment method (which is based
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on the modified Frege method). Let us now consider two stronger proportionality require-

ments:

Definition 4. An apportionment method satisfies upper quota if, for any apportionment prob-

lem ((p1, ..., pm), k), the method returns a solution (ay, . . ., a,,) satisfying a; < [kp;]| for all

i € {1,...,m}. An apportionment method satisfies lower quota if, for any apportionment
problem ((p1,...,pm), k), the method returns a solution (ay, ..., a,,) satisfying a; > |kp;|
foralli € {1,...,m}. An apportionment method satisfies quota if it satisfies both lower and

upper quota.

Note that upper quota implies weak proportionality since any deviation from the propor-
tional solution (kp1, ..., kp,,) would violate upper quota for some voter. The same holds for
lower quota.

Frege’s apportionment method satisfies upper quota (and thus weak proportionality) but
fails lower quota. This is an immediate consequence of Theorem [3] and Example [ respec-
tively. Note that Theorem [] also holds in the apportionment setting and thus Frege’s appor-
tionment method satisfies quota for m € {2,3}, and for m > 4 violates lower quota by at
most [252].

Let us now turn to two monotonicity axioms, viz., house and population monotonicity.

Definition 5. An apportionment method satisfies house monotonicity if the following holds:
for any vote distribution p and positive integer k, if this method returns the solution (ay, ...,
a,,) for the problem (p, k) and the solution (by, . .., b,,) for the problem (p, k£ + 1), then there
exists 1 <4 < m such that (i) a; + 1 = b; and (ii) a; = b; for all j # <.

In other words, if the house size increases by one, then the apportionment solution can
change only by an increase of 1 for one party. The largest remainder method is notable in
that it actually violates this basic criterium. As Frege’s apportionment method is calculated

iteratively, it is easy to see that it satisfies house monotonicity.

Definition 6. An apportionment method satisfies population monotonicity if the following
holds: for vote distributions p, p’ and a positive integer k, if this method returns the solution
(ay,...,a,) for the problem (p, k) and the solution (b, ..., b,,) for the problem (p’, k), then
foranyi,j € {1,...,m}:

p—f > & implies that either a; > a; or a) < a;.

p; Dy

In other words, if party ¢ increases its vote count relative to party 7, then either ¢ does

not lose seats or j does not gain seats. We speak of a population paradox if this property
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is violated: a gain for party ¢ relative to party j grants extra seats for j while ¢ loses seats.
The following example shows that Frege’s apportionment method suffers from the population

paradox and thus violates population monotonicity.

Example 8. Consider the following two scenarios with three parties (a, b, and c) and three

seats (k = 3): In the first, we have p = (2%, 2%, 2%), for which Frege’s apportionment method
yields:
time a b c  representative

8 3 9

20 20 20 ¢

16 6 2

20 20 20

4 9 e b

20 20 20

8len
8l
%
S
S~—

In the second scenario, we have p' = (

time «a b c  representative
5 4 1 c
20 20 20
2 W W a
3 % x 30 c

Now consider parties b and c. We have

Do

L_4_n
pe 3511 p

that is, the relative strength of b over c increases, but b loses a seat while c gains one.
Theorem [5| summarizes our findings in this section.

Theorem 5. Frege’s apportionment method satisfies house monotonicity, upper quota, and

quota for m € {2, 3}, but fails lower quota for m > 4 and population monotonicity.

This theorem shows in particular that FregeAAZs apportionment method is not a divisor
method, as divisor methods satisfy—and can even be uniquely characterized by—population
monotonicity (Balinski and Young, 1982). Furthermore, the theorem shows an axiomatic dif-
ference with the largest remainder method (which fails house monotonicity), as well as to the

quota method (which satisfies lower quota).
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5.3. Bias

As a final aspect of apportionment methods, we consider “bias”: does a method favor small
over large parties—or vice versa? Bias is generally more of a concern when using apportion-
ment methods for assigning representatives to states and less so for parties. In parliamentary
elections, a bias for larger parties can support the formation of governments and disincentivize
schisms of parties (Rae, [1967; Balinski and Young, [1982). In contrast, when assigning repre-
sentatives to states, a fair treatment of large and small states is often an essential property (e.g.,
in the U.S. House of Representatives). However, an example of strong bias (in the aforemen-
tioned sense) is the European parliament, where small countries have disproportionally many
members; this is referred to as degressive proportionality (Koriyama et al., 2013).

To formalize “bias” as an axiom is difficult, as it is best described as a tendency. [Balinski and Young
(1982) formalize what it means for a divisor method to be unbiased, but this definition does
not extend to arbitrary apportionment methods. [Pukelsheim (2017) provides a more general,
probabilistic analysis assuming that vote distributions are distributed uniformly at random and
that the house size converges to infinity. A third approach is to compute bias in given data
sets. This has been done by [Balinski and Young (1982) and [Birkhoff (1976) based on Con-
gressional apportionment in the USA. It is noteworthy that all these analyses yield similar
results.

Our approach is to determine bias via numerical simulationsH We employ the following
simple test: we assume five parties, each having a vote count between 1 and 1000, drawn
uniformly at random. Furthermore, we assume a house size of 100 seats. For each appor-
tionment method, we compute the number of votes per representative of the smallest and the
largest party. If p; and p, are the vote counts for the largest and smallest party, respectively,
and a; and a, are the number of seats of the largest and smallest party, we say that the given

apportionment method favors the smaller party if

P _ Pt
Qs ap
that is, if the smaller party requires fewer votes per seat. We computed the fraction of appor-
tionment problems where the smaller party had this advantage based on 1.000.000 instances.
A value of 50% would correspond to being perfectly unbiased, as small and large parties are
favored equally often.
The results are shown in Table [6] (including 95% confidence intervals), and can be summa-

rized as follows. Adams favors small parties; D’Hondt and the quota method favor large par-

The Python source code to run these simulations is available [reference omitted for reasons of anonymity]
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bias 95% confidence interval

Largest Remainder 48.5% (48.41%, 48.61%)
D’Hondt (Jefferson) 11.9% (11.81%, 11.94%)
Adams 87.6% (87.51%, 87.64%)
Sainte-Lagué (Webster) 48.5% (48.38%, 48.58%)
Huntington-Hill 55.7% (55.59%, 55.78%)
Quota method 12.7% (12.60%, 12.73%)
Frege’s apportionment method 54.5% (54.38%, 54.58%)

Table 6: Bias of apportionment methods computed based on numerical simulations, along with
the 95% confidence intervals. Bias, as shown here, is the percentage of instances
where the smallest party is favored over the largest party; a value of 50% corresponds
to “no bias” for the used set of apportionment problems.

ties. Sainte-Lagué and the Largest remainder method are well-balanced, as is Huntington-Hill,
but to a lesser degree. All these findings are in alignment with previous work (Balinski and Young,
1982; Birkhoff], [1976; [Pukelsheim, 2017). Frege’s apportionment method achieves a ratio of
54.5%, in between Sainte-Lagué and Huntington-Hill, and thus can be seen as a rather unbi-
ased apportionment method.

To sum up our findings, Frege’s apportionment satisfies strong proportionality guarantees,
which are not achievable in the class of divisor methods. The quota method satisfies slightly
stronger proportionality guarantees (both upper and lower quota), but is biased towards large

parties. Frege’s method, in contrast, shows no particular bias towards large or small parties.

6. Conclusions and Discussion

In our mathematical study of Frege’s voting method we focused on the extent to which it
guarantees various forms of proportionality. Accordingly, we ignored a number of its other

features that are still worth discussing.

Practical applicability in political elections

It should be noted that the proportionality guarantees of Frege’s method only apply to single
constituencies (when observed over time) but not to the political assemblies formed by the
chosen representatives. It is thus possible that the political assembly does not at all reflect the

entire electorate’s current political opinion. This issue becomes even more dramatic if one

25



considers the actual political decision power within such an assembly (cf. the work on power
indices, e.g., Rae, [1969; Dubey and Shapley, 11979; [Felsenthal and Machover, [1998; Napel,
2019). In particular, it may be beneficial for a group of candidates (e.g., a party) to receive
few additional votes at time ¢, so that all of them are elected at time ¢ + 1 and thus potentially
achieve a majority in the assembly. This paradoxical behaviour leads us to the conclusion that
Frege’s method and the modified Frege method are only sensible for single decisions and not
so much in the broader sense for electing assemblies.

In addition, Frege’s idea is only attractive if the main concern is fairness towards candidates
(in the sense that no votes are lost) and only in the absence of harmful extremist opinions (as
also extremist candidates would win eventually). This is likely to be the case in low-stake,
high-frequency settings, where the long-term behaviour of a mechanism is much more impor-
tant than individual decisions. In such settings, moreover, the strong assumption, occasionally
made in this paper, that the electorate is fixed and does not change their preferences, would ar-
guably also be more reasonable. Frege’s apportionment method, as introduced in Section[3] is
not affected by these considerations and can be recommended in situations where its axiomatic

properties appear desirable.

Gerrymandering

Frege claimed in his proposal (Erlduterungen, 302, [9]) that his method provides a safeguard
against gerrymandering (“Wahlkreisgeometrie™), that is, the strategic districting by a political
party for electoral gain, an iniquity that infamously pervades representative systems based
on first-past-the-post methods for electing representatives (see, e.g., Ricca et al. 2013). The
validity of Frege’s claim, however, much depends on the exact assumptions that are being
made and accordingly warrants a careful analysis.

The effectiveness of gerrymandering obviously rests upon the possibility of affecting the
proportional support of a party in constituencies. However, if the constituencies are of equal
size and the combined electorate of all constituencies is fixed, redistricting will not affect the
sum of these proportions, no matter how clever the gerrymander. Thus, if redistricting can
only be performed once, Theorem [Il shows that, as time goes to infinity, the number of times
each candidate for a party is elected in her respective constituency will be in accordance with
this proportion. It would thus follow that Frege’s method does indeed contravene the designs
of gerrymanderers. The argument can be generalized to electorates that are not necessarily
fixed but still comply with the convergence conditions as in the second part of Theorem [IL

A number of caveats, however, are in place regarding the sweep of this argument. First,

Frege’s voting method is based on the plurality rule, and as such it is still susceptible to ger-
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rymandering for gain in the short run if an individual election in a constituency is seen as
a singular event (ignoring past and future elections) or as particularly important. Second,
even when considering the temporal nature of Frege’s method, incidental gerrymandering
may be successful in achieving short-term benefits without harming the candidates’ long-
term chances. This point also relates to the question of power distribution within an assembly,
as discussed above. Third, Frege argues that constituencies should be kept of a similar size
and remain largely unchanged over time (Vorbemerkung, 197, [1]). This demand by itself
excludes some forms of gerrymandering but cannot be seen as a (mathematical) guarantee of
his voting method. Therefore, Frege’s method certainly prevents or hinders certain forms of
gerrymandering, but to which extent and under which assumptions is a question we leave for
future research. Furthermore, it would be interesting to investigate whether the modified Frege

method guarantees a better protection against gerrymandering.

Choice candidates and delegation

Among all candidates in a constituency, Frege proposes to distinguish so-called choice candi-
dates (“Erlesene”), the twenty-five candidates in a constituency with maximal electoral back-
ing, among which the representative will be chosen. So as to ensure that no votes are lost,
Frege also provisioned for a delegation mechanism, in which non-choice candidates or de-
ceased choice candidates can transfer the votes cast on them to one of the (living) choice can-
didates. The exact social choice theoretic ramifications of this delegation mechanism are left
as a topic for future research. Furthermore, this mechanism could be compared with modern

proposals for vote delegation (Alger, 2006; (Green-Armytage, 2015; Blum and Zuber, 2016).

Negative aggregate scores and strategic voting

We have seen how an increasing cost of winning undermines the proportionality guarantees
of Frege’s method until this cost stabilizes (after a potentially very long time). A further
disadvantage of the original method is that long-serving candidates tend to have high scores,
which makes the entry of new candidates difficult, even if they have a strong public support.
In contrast, the modified Frege method has a constant cost of winning and, as we have seen,
stronger proportionality guarantees. However, here the aggregate scores of the candidates can
be negative, which also leads to negative consequences. The possibility of negative scores
renders the modified Frege method vulnerable to the following type of manipulation. Once
a candidate has a negative score, it is advantageous for this candidate to retract his or her

candidacy in favor of a like-minded person (in social choice terminology a so-called clone),
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who then starts with a higher aggregate score of 0. A complete study of the manipulability of

Frege’s voting method and the modified Frege method is subject to future research.

Transition from plurality to proportionality

The plurality rule performs very badly when it comes to proportionality in the long run. If
the electorate is assumed to be fixed, it will always elect the same candidate! Frege’s method
has much better proportionality properties, and the modified Frege method even better ones
still. In an important and interesting sense, Frege’s method can be seen as a gradual transition
between a system based on plurality towards a system based on the modified Frege method, as
the cost of winning is increased until it stabilizes at the size of the electorate and henceforward

behaves like the modified Frege method.

Outlook and research directions

The temporal or dynamic aspect of the Frege methods distinguishes them from most other
voting methods that have been considered in the literature. As such they can also take into
account changing electorates and changing opinions among the electorate. Yet, the dynamic
Frege methods still rely on the plurality rule in that plurality ballots are used and, for any
election at any one single time, they simply select the candidate with the highest aggregate
score. Seen this way, the Frege methods could easily be varied upon by considering other
‘static’ social choice rules instead of the plurality rule, thus defining a new class of dynamic
voting rules that can be studied from a social choice perspective in their own right. An obvious
variation, for instance, would be to assume that the voters’ ballots specify complete preference
orders over the candidates. This would allow the computation of Borda scores. The candidates
then aggregate their respective Borda scores over time in a similar way as they aggregate
plurality scores for the Frege methods. At each election the candidate with the highest Borda
score could then be chosen as representative and subsequently incur a certain cost of winning
yet to be defined. In order to investigate this class of dynamic voting rules in a systematic and
principled fashion, one may want to define axioms that are specific to the temporal setting,
like variable quota axioms. In particular it would be interesting to see if there is a dynamic

voting rule that satisfies both variable upper and lower quota.
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A. Proofs of Section 3

Lemma [II Assume that the number of voters is fixed, that is, n, = n for all ¢t > 1. Then
the function a(t) = )", 0}, is monotonically increasing. Moreover, there exists a positive

number ¢, such that a(t) = n - m for all t > t,.

Proof. Let us establish a recursive definition for a(t), starting with

a(1) :Za,ﬁ:ZWé:n.

kel kel

Let j* = repr(t). Then the following equalities hold:

1
a(t+1) = Zafjl = 0j. + ﬂ;jl - {E ZUZJ + Z(U}tC + i)

keC keC Ay
1
S I SR P 9E
k k keC
1
= t — | —a(t)| fort > 1.
a(t) +n {ma( )J ort >

Now, let us start by proving that there exists aty € N suchthata(t) > n-m forallt > t,. For
this purpose, let us consider the simpler recursion b(1) = nand b(t+1) = b(t) +n— = - b(t).
This recursion has the solution b(t) = nm (1 — (mT’l)t> Note that b(¢) converges to nm for
t — oo. Furthermore, it holds that b(¢) < a(¢) (this can easily be shown by induction). Since
b(t) converges to nm and a(t) is integer-valued, there has to be a point in time ¢; such that
a(t) > nmforall t > t;.

Let to > 1 be the smallest possible choice for t;, that is, ¢, is chosen such that a(ty) > nm

and a(tp — 1) < nm. We want to show that a(ty) = nm. Leti € N be such that a(ty — 1) =
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nm — i. Then, using the recursion for a(t), we obtain the following:

ato=1)

a(to):a(to—l)jtn—{ —
it |

=nm-—1t+mn-—n-— {—LJ

m
) ?
=nm-—1+ [——‘
m

< nm,

since —i + [-L] < 0. It follows that a(ty) = nm.

Now, let us prove that a(t) = nm for all ¢ > ¢,. Using the recursion for a(t), we have
a(to +1) = nm+n — [ 22| = nm. By induction a(t) = nm for all ¢ > t,.

Let us finally show that the function a(¢) is monotonically increasing. From what was
proven so far, we now that 0 < a(t) < nm and thus 0 < L%J < nforallt > 1. Thus, we
have for all ¢ > 1:

1

a(t+1)=a(t) +n— {aa(t)J >a(t) +n—n=alt).

O

Theorem [Il If we assume a fixed electorate, that is, n; = n and 7r§- = mj forall t > 1, the

following holds for Frege’s voting method:

i P _

t—soo t n

If n, = n and for all £ > 1 and for all j € C there is some 7} € [0, 1] such that

>

. s=1"7 %
lim =——— =7,
t—o0

then the following holds for all candidates j € C"

) *
lim PiY) *) =1

t—oo n

Let us first prove a technical lemma, which is required in the proof of Theorem [Ik
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Lemma A.l. Assume that the number of voters n is fixed. For every candidate j € C' there

exists a positive integer c; such that for all t > 1

t+1
ot =dom = e = (py(0) = p(to)) M
s=1

where to > 1 is such that ), . O'ZO = nm.

Proof. Let ty > 1 be such that Zkec a,? = nm (the existence of such a ¢, was proven in
Lemmal)), and let ¢; > 0 be such that

to+1

to+1 __ s _ .
O'j = E 7Tj CJ.
s=1

We shall prove equation (I)) by induction over ¢ > .
For the induction start, let us consider time ¢g:

to+1 to+1

ot = om e =Y m — g n (pilte) = pilte)

s=1 s=1

For the induction step, we distinguish whether repr(t + 1) = j or not. We may assume that

J S s — ¢ — (pi(t) — pi(to)) - n. In case repr(t + 1) = j, we have:

s=1"7

1
olt2 = i+l 4 pt+2 _} :U]t:rl
J J J m

keC
t+1
=3 m o= ()~ pi(to) m A 7 =
s=1
t+2

= w0 —c;— (ps(t) + 1= p;(to)) - m
t+2

- ZW; —¢j— (p(t +1) = pj(t)) - m.

In case repr(t + 1) # j, we have:

O't»+2 — O.ﬁ+1 + 7Tt~+2
J J
t+1

= ;= (pi(t) = pj(te)) -+ )+
s=1
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t+2

= == (pi(t) — pj(to)) - m
s=1
t+2

= m = — (pi(t+1) — p;(to)) - m,

which concludes the induction step. L

Proof of Theorem[ll Assuming a fixed electorate, equation (1) becomes:

ot = (t+1)-m —c; — (pi(t) — pi(to)) - m 2)
or, equivalently,

t+1

pit) _m 1w ¢ _ 9

PN T — | 2L () — 2L — L
t n+t n+pj(0) n n

To see that the expression %( .. ) converges to 0, note the following: First, 0 < % < 1and
0 < p,(to) < to. Moreover, 0 < ¢; < p;(tg)-n <ty-nand 0 < 0§+1 < n -m. Thus, the term

in brackets is bounded from below and above. We obtain:

lim Pi\t) (*) =2
t—o0 t n
Similarly, if the electorate is not fixed but the mean plurality scores converge, that is, lim,_, ., 1/¢-

St w3 = m; forall j € C, we have:

t s 1 1
pilh) _ X L () +pi(t )—&——U;%+
t t-n t n A n n
and thus .
(¢ s *
hmpﬂ_(): imgz_ﬁ
t—soo ¢ tsoco t-m n

O

The following proposition shows that, for a fixed electorate, proportionality is not only

guaranteed in the limit but eventually also within (finite) intervals.

Proposition[Il If we assume a fixed electorate with n voters, there exists a time ¢* > 1 and a
period length P € N such that, for all ¢t > ¢t* and all j € C,

pit+P)—pit) m
P n’
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Proof. From Lemma [Il we know that 0 < a}tC < mnmforall k € C'and ¢t > 1. Thus the tuple

(of,0k, ..., 0l)) can only take finitely many values. Therefore there must be a time ¢t* > 1

rm

and an integer P such that

t* t* t*\ t*+P t*+P t*+P
(01,05 ,...,0,)="(0] 7,05 T, 0, ).
Given these two values ¢t* and P, it clearly also holds that
* * * * * *
(U Tk gtk gl TRy = (o TPk GUPTR ot PR for k € N and thus
t_t t\ _ (,t+P t+P t+P *
(01,05,...,0,,)= (o] o5, ... 0, ) forallt > t*.

From equation (1)) in Lemmal[A.T]it follows that the following holds for ¢ > ¢* — 1:

1
pi(t + P) — p;(to) = o (mj- (t+P+1)—c; — ot
1
and pi(t) = pi(to) = —- (-t +1) —¢;—a™).
Thus ) ,
7T, .
pi(t+ P)— pi(t) = ~ (7Tj P _ (a§+P+1 _ aj»ﬂ)) _ jn ’
which concludes the proof. =

B. Proofs of Section 4

Theorem 2. If we assume that pE- = p; for all t > 1, the following holds for the modified
Frege method:
t—o0 t

If the normalized plurality scores p} are not fixed but for all j € C there is some p; € [0, 1]
such that

22:1 P; o
—; P
then the following holds for all candidates j € C"

t
Zs:l p; *

(T
limrj—(): lim = pj-

t—oo t t—o0 t

Let us first prove a technical lemma, which will yield the desired proportionality results.
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Lemma B.1. For the modified Frege method, we have Z < 5 =land -1 < 5 — p§- for all
jeCandt > 1.

Proof. The proof of the first statement is by induction on ¢. For the basis ¢ = 1, we immedi-

ately have
l

SEEDIED ST

jeC jeC jeC ™

For the induction step, we assume ) . s; = 1. Let j* = repr(t). Then,

DSttt = N (shApt) sk -1

jec k£
_ ZS —|—Zpt+1 l=1+1-1=1.
jec jeC

The proof of the second statement is by induction on ¢ as well. For the basis ¢ = 1, we

immediately have
1 1 1 1

For the induction step, we assume —1 < s} — pl. We distinguish two cases. First, if j #

repr(t), we have:

t+1 pé“ = s +pt+1 pﬁ“ t} > S; —p§ -1
st . . .
Second, if j = repr(t), it has to hold that s} > % = % (in order for j to win). Thus we
have:
t+1 p§+1 — 3 +pt+1 1 p§+1 t o 1 Z i o 1 > _1
m
]
Proof of Theorem|2l Note that the following holds for the modified Frege method:
t+1
st = Zp]—r] )forallt >1andj € C. 3)

This corresponds to a normalized version of equation () in the proof of Lemma [A.1l with
Tj(to) = (0 and Cj = 0.
It follows that

t+1 ¢ 1
T](t) o 28:1 p] _ 8;+

t t t
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Since we know from Lemma [B. Il that —1 < 32“ < 1, both asymptotic results follow imme-
diately. L

We proceed with another technical lemma, which is useful for proving Theorems [3] and (4]

Lemma B.2. Foreveryt > 1andj € C:

t
s m—1
s=1

The second inequality is strict for m > 3.

Proof. The lower bound of —1 follows from a combination of Lemma [B.1] and Theorem [k
By virtue of equation (3)) in the proof of Theorem 2 the lower bound is equivalent to —1 <
sttt — pi*!. Lemma[B T ensures that this inequality holds for all j € C and all ¢ > 1.
T0 prove the upper bound of "= L by virtue of equation (@), it suffices to show by induction
on ¢ that st — pit! < ML for all candidates j and ¢ > 1. For the basis, let t = 1. First
assume that j = repr(1). Then observing that 0 < p1 <1,

2 2 1 2 2 1

where the last inequality is strict as we always assume m > 2. Now assume that j # repr(1).

Then, p1 § 5, as otherwise 7 would have been chosen as representative. Accordingly,

2 2 1 2 2 1
A N A

IN
=
IA
i

where the last inequality is strict if m > 3.

We introduce the following notation: we write <* to denote a weak inequality (<) if m = 2

and a strict inequality (<) for m > 2. For the induction step, we may assume s;*' — pi*t <*
m—1 0 prove that 5% — p/*? <* =L First assume that j = repr(t + 1). Now the following

1nequa11t1es hold.

t2 t+2 tl t+2 t+2 t+1 tl t+1 -1
+ pj-f— — + +p+ 1— p]-i- — Sj+ -1 < + p]-i- <>ikh m2 )

Now, let j* = repr(t 4 1) and assume that j # j*. Accordingly, s'"" < s’I'. By virtue of
Lemma(B.1] we have that

t+1+8t+1Jr Z t+1
keC\{j.j*}
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As we saw above that —1 < s'*! — p'*!, we also have the following:

TS = 1= Yheovyan Sk
< 1= Yheovgin 8 — )
< 1+m-—2
= m-—1.

As s < st follows that s <* =L Finally, since r;(t 4 1) = r;(t),

t+2 t+1

t+2 t+2 t+2
s =Lt =B =)

which concludes the induction. U
Theorem[3l The modified Frege method satisfies variable upper quota.
Proof. By Lemmal[B.2] it holds that
t
s=1
and consequently
t
< Z p;+ 1L
s=1
This is equivalent to
t
< {Zzﬂ 7
s=1
O

which is exactly the condition for variable upper quota.

Theorem 4. For m € {2, 3}, the modified Frege method satisfies variable lower quota. For

m > 4, we have r;(t) > LZizl pjj — (mT’?’w for every candidate j and time ¢ > 1.

Proof. By Lemmal[B.2] for m > 3 it holds that,

-1

t
s m
s=1
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and consequently t
ri(t) > pj— mT_l
s=1
This implies t
ri(t) > {ZP?J — [mT_ﬂ :
s=1

For m = 3, the last inequality becomes

ri(t) > {ZP?J

and thus lower quota is fulfilled.
For m = 2, variable lower quota follows from variable upper quota. Let C' = {a,b} and

22:1 p; = x; for j € {a,b}. Thus, x, + x, = t. Towards a contradiction, assume without

loss of generality that r,(t) < |z, ]|, that is, candidate a’s lower quota is violated. Then:
rp(t) =t —ro(t) >t — |x,] =t — [t — 1] = 23],

which is in contradiction to variable upper quota for candidate b. L
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