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ABSTRACT We study the social choice setting of perpetual voting where, based on voter preferences,
decisions have to be taken over a finite horizon of consecutive points in time (e.g, days). We consider
two complementary settings: a Static setting, in which voter preferences remain static over time, and a
Dynamic setting, in which voter preferences may change over time. We adapt the well-established Justified
Representation and Proportional Justified Representation axioms, commonly used in the social choice
literature, to perpetual voting, resulting in two axiomatic variants for the static setting and four variants
for the dynamic setting. We show that all of the axioms are always satisfiable, and that simple preference
aggregation methods can be used to satisfy the axioms in both cases. We then conduct a large human study
(N = 190) aimed at identifying what potential voters (i.e., ordinary people) deem as desirable outcomes
in simple perpetual voting settings. Our results show that approximately half of our participants consider
different interpretations of fairness that correspond to our axiomatic framework. Taken jointly, our results
can be used to help the research community identify appropriate aggregation methods to use in practice.

INDEX TERMS Computational social choice, justified representation, perpetual voting.

I. INTRODUCTION
In a standard social choice setting there is a single collective
decision to be made in a single point in time, such as selecting
a president for a nation or a committee to act on behalf of
a group of people. There are, however, many situations in
which a set of collective decisions are to be taken sequentially,
over a number of time periods.

As an illustrating example, consider a group of colleagues
that want to decide upon a restaurant to dine in for, say, each
day of a given week. One way by which the group might
proceed is to do the following: Independently, for each day of
the week, ask all colleagues for their preferences and employ
a standard aggregation method to select a restaurant for that
day. To be more concrete, assume that there are 4 candidate
restaurants, denoted ri, i ∈ [4], and that each colleague,
for each day, simply reports a subset of restaurants she is
willing to dine in (i.e., restaurants she approves of for that
day). Assume that we have 3 colleagues, vi, i ∈ [3], with
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the following preferences for the first day of the week (i.e.,
Monday): v1 = {r1}, v2 = {r1}, v3 = {r3, r4}. One natural
way to decide upon the restaurant to go would be to employ
Approval voting, namely, choose the restaurant (i.e., candi-
date) approved by the largest number of voters. In our case,
this would mean selecting r1. Unfortunately, using the above
procedure for each day of the week separately may result
in some colleagues being repeatedly unhappy. For example,
now assume that the voter preferences remain static during
the week – i.e., they do not change from day to day. Then,
employing Approval voting on a daily basis would mean that
the group of colleagues would go to r1 each day of the week,
leaving v3 constantly unhappy; there is not even a single day
in which her preferences are taken into account. Following
Lackner [1], we refer to this setting as Perpetual Voting (PV).

A particularly important motivation for the study of perpet-
ual voting stems from the temporal notions that it entails. For
example, if the head of an institution has to be elected by vot-
ing (assuming that there are periodic elections), it is natural to
think that for each election, only a certain faction of voters can
be satisfied by the outcome, owing to the inherent presence
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of contradictory opinions amongst the voter factions. If left
unabated, such collective decision making mechanisms tend
to cater to only a limited subset of voter factions and tend to
overlook others, which actually deserve representation in the
form of election of a head of their choice. Proportionality in
Perpetual Voting abates the dis-satisfaction of certain voter
groups by putting in place certain mechanisms such that
over a period of time, (i.e. conduction of multiple elections
over time) all of the sufficiently large voter groups having
similarly aligned opinions are either fully or approximately
(i.e. equally) satisfied.

To the best of our knowledge, the existing literature that
studies sequential collective decision making does not delib-
erate upon proportional outcome allocation over the set of
voters. Consequently, there exists a scope to study this prob-
lem from the point of view of an axiomatic, algorithmic
and an empirical standpoint. To bring about more desirable
outcomes in PV settings, we first identify two complemen-
tary variants of PV: Static PV, in which voter preferences
do not change over time (remain static); and Dynamic PV,
in which voter preferences may change over time. We adapt
the well-established Justified Representation (JR) and Pro-
portional Justified Representation (PJR) axioms [2], which
are commonly used in the social choice literature (see,
e.g., [3] and the references within) to the two variants result-
ing in two axiomatic variants for Static PV and four variants
for Dynamic PV. Our adaptations formulate the notion that
any sufficiently-large and sufficiently-cohesive subgroup of
voters cannot be underrepresented.

We first formally define the two variants of PV discussed
above and derive JR and PJR axioms pertaining to these
variants. We prove that the axioms are always satisfiable by
providing simple preference aggregation methods that can be
used to satisfy them under both PV variants. These results
suggest that our axiomatic framework and preference aggre-
gation methods are analytically sound and practically imple-
mentable. Our axiomatic framework is then taken to the field
and examined empirically through a large scale human study
(N = 190). Our study is aimed at identifying what poten-
tial voters (i.e., ordinary people of different backgrounds)
deem as desirable outcomes in simple PV settings. While
most potential voters have demonstrated a strong tendency
to adopt a utilitarian approach (i.e., maximize the number of
days each voter is satisfied), a large portion of whom have
also expressed different notions (which we list and describe)
of fairness which roughly correspond to our axiomatic
framework.

Our paper argues that in PV settings, voters are propor-
tionally represented in static variant of PV, even so in poly-
nomial time and provides suitable preference aggregation
methods for finding respective solutions. Further, it exhibits
the existence of solutions for four axioms that we propose in
alignment with dynamic variant of PV, two of which align
with Justified Representation while the remaining aligning
with Proportional Justified Representation. In addition to
the provision of preference aggregation rules for producing

solutions that are in adherence with the proposed axioms
thereby confirming the existence of solutions, our paper also
proves one of these to be polynomial-time computable and the
remaining three to be fixed-parameter tractable with respect
to the number of voters.

II. RELATED WORK
There are only a handful of social choice studies on set-
tings concerning repeated elections. One notable study is the
work by Frege [4] who proposed a Plurality-based election
approach, in which the voter set may change over time.
Contrary to this, we consider Approval ballots in addition
to Plurality ballots and while our voters might change their
preferences over time, our set of voters is static. In a more
recent paper, Lackner [1] analyzes a similar PV setting devel-
oped independently. Lackner suggests several voting rules
and analyze them via three axiomatic properties, as well as a
quantitative evaluation by computer simulations. The crucial
difference between the approach taken by Lackner and the
one proposed in our study is that the former concentrates on
each individual voter and analyzes her (dis)satisfaction along
the decision sequence; in contrast, our approach concentrates
on the representation that subgroups of voters achieve along
the decision sequence.

In particular, our approach is to adapt the well-studied
axioms of Justified Representation (JR) and Proportional Jus-
tified Representation (PJR) to the PV setting. In the context of
multiwinner elections [3], for which JR and PJR were orig-
inally proposed, these axioms require that sufficiently-large
and cohesive groups of voters shall not be disregarded by the
multiwinner voting rule, but shall get adequate representa-
tion in the winning committees. Since their introduction [2],
JR and PJR have been studied quite extensively in the context
of multiwinner elections [5], [6].

In our PV settings, we are interested in selecting several
candidates as winners, one for each point in time. As such,
our settings have some connections with multiwinner elec-
tions [3] and apportionment rules [7]. However, while in
multiwinner elections the outcome is an unordered set of can-
didates, in a PV setting the outcome is a vector of candidates
in which certain candidates might appear more than once.

Additional works related to ours include dynamic social
choice [8], in which a stochastic model is adapted, however
proportionality is not a concern. A setting of repeated choice
is also considered in fair division [9], [10] which is gener-
alized in the study of dynamic mechanisms [11]. Notably,
Freeman et al. [12] consider an online setting in which a
decision for time period i has to be made based only on the
preferences up to period i. Some notions of proportionality,
similar to the ones proposed in this paper, were achieved for
the investigated settings.

A particularly relevant resource allocation problem to our
settings is studied by Conitzer et al. [13]. Their study involves
the maximization of long termNashWelfare due to a simulta-
neous decision on a given number of issues by the aggregation
of preferences using a utility function reportage. While our
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settings also set out with an objective of long term fair rep-
resentation, our model differs with them in the sense that it
studies sequential decision making rather than simultaneous
decision making along with approval ballots rather than the
reporting of utility functions.

Our human study is inspired by a variety of user stud-
ies performed in the larger context of computational social
choice research, which have helped to better situate and
understand the theoretical and computation advances made
in various settings. For example, human voting behavior
has been the focus of various experimental studies such as
that by Scheuerman et al. [14], [15], who has identified
different manipulation aspects in human approval voting; Tal
et al. [16], who have demonstrated different voting behav-
iors in various online settings under the Plurality rule; Zou
et al. [17], who have studied voter behavior in Doodle pools;
and Grandi et al. [18], who have studied iterative human
voting in combinatorial domains. Common to these and sim-
ilar works is the understating that any intelligent automated
decision necessitates the understanding of real-world users
(in our case, voters) and their judgment (in our case, what
people deem appropriate) [19].

III. FORMAL MODEL
In PV settings, we have a set A = {a1, . . . , am} of alterna-
tives, a horizon of k points in time, and a set V = {v1, . . . , vn}
of voters. The output is a sequenceW = [w1, . . . ,wk ], where
wj ∈ A for each j ∈ [k]; wj is referred to as the winner at time
j.We consider theApprovalmodel of elections, adapted to our
scenario. Formally, each voter vi reports Evi = [V 1

i , . . . ,V k
i ],

where V j
i ⊆ A for each j ∈ [k]; V j

i is a set containing those
alternatives that voter vi approves of at time j. Therefore, the
aggregate choice of a subgroup of voters V ′ ⊆ V is denoted
by ∩v∈V ′Ev. With a slight abuse of notation, we represent the
number of points in time that have a non-empty intersection
between the voters’ approval ballots and the output sequence
W by | ∩v∈V ′ Ev ∩W |.

We identify two complementary PV settings:

1) A Static setting of PV, in which voter preferences do not
change over time. Namely, V j

i = V j′

i for every voter (i)
and two point in time (j, j′). As such, in the Static PV
setting, Evi will simply be a set of approved alternatives
throughout the time horizon.

2) A Dynamic setting of PV, in which voter preferences
may change over time. Note that we consider the case
in which voter preferences are given completely as an
input to the aggregation algorithm; thus, in particular,
voter preferences for time t cannot depend on the aggre-
gation choice of the selected winners at any other time
steps. (Put differently, we consider an offlinemodel and
not an online model.)

We argue that the intuition behind JR and PJR [2] are
natural for the PV setting. In particular, as illustrated by our
example in Section I, a desired solution would require some
form of proportionality and representation from any adequate

aggregation method. To that end, in the next two sections,
we adapt each of the desired axioms (JR and PJR) to both the
Static and Dynamic PV settings.

A. STATIC PV
We begin the analysis of PV settings by considering the static
variant.

1) STATIC JR
In multiwinner elections, a multiwinner voting rule that
elects k winners satisfies JR if for each group of at least
n/k voters with non-empty intersecting Approval sets there
is non-empty intersection between the union of the Approval
sets of the voters in the group and the winning committee.
In other words, sufficiently-large and sufficiently-cohesive
groups of voter are not completely ignored. The JR axiom
translates to the following in the Static PV setting;
Definition 1 (Static JR): A rule R in the Static PV setting

satisfies Static Justified Representation (Static JR) if for each
group of voters V ′ that (1) has a non-empty intersection (i.e.,
for which ∩v∈V ′Ev 6= ∅), and that (2) contains at least n/k
voters (i.e., for which |V ′| ≥ n/k), it holds that | ∪v∈V ′ Ev ∩
W | 6= 0.
It turns out, that Static JR is a rather weak axiom; in

particular, the following simple rule satisfies it.
Definition 2 (GreedyCC): TheGreedyCC rule proceeds in

iterations, where in each iteration we compute the Approval
scores of all alternatives, pick the alternative with the most
Approvals, put it as the next winner (i.e., in iteration i, we set
this alternative to be wi), and remove from further consid-
eration all voters that approve it. If, after strictly less than
k iterations we are left with no voters, then we choose the
remaining winners arbitrarily.
Proposition 1: GreedyCC satisfies Static JR.
Proof: The claim follows by observing that: (1) there

cannot be more than k distinct groups of at least n/k vot-
ers with non-empty intersection of approval ballots; (2)
GreedyCC ensures that all of these groups are represented at
least once. These groups are exactly the groups that the Static
JR axiom requires a rule to represent.
Thus, Static JR always exists and can be found in polyno-

mial time.

2) STATIC PJR
With the Static JR being a weak axiom, we continue by adapt-
ing the PJR to the Static PV. Recall that in multiwinner elec-
tions, a multiwinner voting rule that elects k winners satisfies
the PJR axiom if for each group V ′ of voters with non-empty
intersecting Approval sets there are at least b |V

′
|

|V | kc members
of the winning committee from the union of the Approval
sets of the voters in V . In other words, sufficiently-cohesive
groups of voters are adequately represented based on their
sizes.
Definition 3 (Static PJR): A rule R in the static set-

ting satisfies Static Proportional Justified Representation
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(Static PJR) if for each group of voters V ′ that has a
non-empty intersection (i.e., for which ∩v∈V ′Ev 6= ∅), it holds
that | ∪v∈V ′ Ev ∩W | ≥ b

|V ′|
|V | kc.

It turns out that even this stronger axiom is satisfied by a
slight modification of GreedyCC (Definition 2).
Observation 1: There is a polynomial-time algorithm that

always finds a solution satisfying Static PJR.
Proof: We propose a slight modification of GreedyCC:

In each iteration, look for a candidate c approved by the most
number of voters and denote the corresponding voter set by
V ′. Set bk|V ′|/|V |c-many winners arbitrarily to be c, remove
V ′ from further consideration and reiterate.

In every iteration, the algorithm sets bk|V ′|/|V |c copies of
candidate with the highest approval score to be the winner at
those many arbitrarily chosen days, each satisfying disjoint
sets of |V |/k voters and since there are at most k disjoint sets
of voters of size |V |/k , all voters would be satisfied in at most
k iterations of this modified algorithm.

Taken jointly, we can conclude that:
Corollary 1: A solution satisfying Static PJR (and thereby,

Static JR) always exist and can be found in polynomial time.

B. DYNAMIC PV
In Section 3 we considered the Static PV setting in which
voter preferences do not change over time. In this section,
we extend our analysis to the Dynamic PV setting, in which
voter preferences may change over time. Unlike the Static
setting, here the number of periods in which there is an inter-
section between voters in each groupmatters.We propose two
possible temporal interpretations for the JR and PJR axioms
in the Dynamic PV setting: (1) we adapt the JR and PJR
axioms while taking care only of groups V ′ that intersect on
all periods; (2) we consider stronger adaptations of the JR
and PJR axioms, in which we take into account the number
of periods in which there is a non-empty intersection for the
voters in V ′.

1) DYNAMIC ALL-PERIODS-INTERSECTION
We start by adapting the JR axiom to the Dynamic PV under
the two temporal interpretations described above. We start
with the first, and weaker, interpretation which requires that
intersections occur over the entire time horizon.

a: DYNAMIC ALL-PERIODS-INTERSECTION JR
Adapting the first temporal interpretation, the JR axiom
would require that all sufficiently-large and sufficiently-
cohesive over all the entire time horizon voter groups should
not be completely ignored.
Definition 4 (Dynamic All-periods-intersection JR): A rule

R in the dynamic setting satisfies Dynamic All-periods-
intersection Justified Representation (Dynamic All-periods-
intersection JR) if for each group of voters V ′ that (1) has a
non-empty intersection in all periods (i.e., for which it holds
that, for each j ∈ [k], ∩v∈V ′V j

6= ∅), and that (2) contains at
least |V |/k voters (i.e., for which |V ′| ≥ |V |/k), it holds that
there exists at least one j ∈ [k] such that wj ∈ ∪v∈V ′V j.

It turns out that Dynamic All-periods-intersection JR is
also satisfied by another simple modification of GreedyCC
(Definition 2). Note that the algorithm GreedyCC does not
work since the candidate selected in each of its iteration is
not necessarily a one which lies in the intersection of the
voter group’s approval ballots on all days. Hence, that group
of voters which does not have the same candidate in the
intersection of its approval sets on all days is effectively
overlooked by the algorithm.
Proposition 2: There is a polynomial-time algorithm that

always finds a solution satisfying Dynamic All-periods-
intersection JR.

Proof: Consider the following algorithm: Set w1 to be
a candidate c with the most number of Approvals in the first
time period; then remove the voters which approve c in the
first period from further consideration, and continue to the
next time period. If at some iteration i, the approval score
of any candidate is ≥ n/k , fill the winners in the remaining
positions arbitrarily and terminate the algorithm.
For correctness, first consider one iteration in which we

remove voters approving some c in some period; denote these
voters by V ′. Note that any group of voters containing at least
one voter v ∈ V ′ is already satisfied (including, in particular,
V ′, which we take care of explicitly as we set a winner in that
period to be c). Now, note that if at a certain point the number
of Approvals for the candidate c is strictly less than n/k , then
it means in particular that there are no more groups that still
need to be taken care of, as we should only care of groups
of size at least n/k . Then, as long as there are groups of size
at least n/k , in each iteration of the algorithm we ‘‘pay’’ one
winner to remove at least n/k voters. As we have n voters
and k days, it follows that the algorithm will halt at a point
in which there are strictly less than n/k voters not explicitly
taken care of.

Thus, also Dynamic All-periods-intersection JR always
exists and can be found in polynomial time.

b: DYNAMIC ALL-PERIODS-INTERSECTION PJR
Using the same temporal interpretation, the PJR axiomwould
require that all sufficiently-large and sufficiently-cohesive
over the entire time horizon voter groups would be adequately
represented based on their sizes.
Definition 5 (Dynamic All-Periods-Intersection PJR): A

rule R in the dynamic setting satisfies Dynamic All-
periods-intersection Proportional Justified Representation
(Dynamic All-periods-intersection PJR) if for each group of
voters V ′ that has a non-empty intersection in all periods
(i.e., for which it holds that, for each j ∈ [k], ∩vi∈V ′V

j
i 6= ∅),

it holds that |{j ∈ [k] : wj ∈ ∪vi∈V ′V
j
i }| ≥ b

|V ′|
|V | kc.

Unfortunately, it seems that GreedyCC defined in Defini-
tion 2 (and therefore, its stronger variant which guarantees
a solution satisfying proportional representation mentioned
in Observation 1) cannot be adapted to satisfy Dynamic
All-periods-intersection PJR, as described by the following
example:
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Example 1: Consider this input:

v1 : {1}{3}{3}{3}

v2 : {1}{3}{3}{3}

v3 : {1, 2}{2}{2}{2}

v4 : {2}{2}{2}{2}

GreedyCC would select 1 as the winner of the first day. Then,
however, it would not necessarily take care of V ′ = {v3, v4}
which deserves two winners.

We conjecture that satisfying this axiom is NP-hard, how-
ever we do not yet have NP-hardness proof for it. The basis of
our conjecture is that it seems that we should consider larger
cohesive voter groups first, however, finding a large group
that has a non-empty intersection on all periods is intractable;
a sketch of a reduction from the NP-hard Clique problem [20]
for this is as follows: given a graph, consider A = {0, 1}; let
each voter each time step be vertices, and set V j

i to be {1} if
i = j, {0, 1} if i and j are adjacent, and {0} otherwise; then,
groups of voters with all-periods-intersections are exactly
cliques of the graph.
Conjecture 1: No polynomial-time algorithm solves

Dynamic All-periods-intersection PJR unless P = NP.
While we conjecture general intractability for Dynamic

All-periods-intersection PJR, we still show that it is possible
to satisfy this axiom, albeit with a super polynomial algo-
rithm. In fact, the algorithm is fixed-parameter tractable wrt.
the number n of voters.
Proposition 3: Dynamic All-periods-intersection PJR is

fixed-parameter tractable wrt. the number n of voters.
Proof: For a parameterization by the number n of voters,

we can consider all groups of voters separately (as there are
2n groups). For each such group V ′, we check whether V ′ has
non-empty intersection in all periods. Then, we consider only
those groups V ′ with non-empty intersection in all periods
and order them by their size (i.e., by |V ′|). Now, we consider
the largest such V ′, arbitrarily assign to it the number of
winners it deserves (i.e., b |V

′
|

|V | kcmanywinners), remove those
voters from further consideration, and re-iterate. We halt
when no groups with non-empty intersection in all periods are
left or when the size of the largest such group is less than n/k .
We choose the remaining winners arbitrarily.

For correctness, note first that the algorithm takes care
of disjoint groups as after it takes care of a group of suffi-
ciently large size, it removes all voters belonging to it. Thus,
in particular, the algorithm always has sufficient ‘‘budget’’
– a free period to select its winner in each iteration. Now,
any voter v the algorithm removes explicitly takes care of all
groups V ′ that contain v; note that this holds, in particular,
as we consider bigger groups, that deserve more winners,
first. Thus, in particular, the algorithm takes care of any
group of voters containing at least one of those voters that
the algorithm explicitly removed during its operation. At the
end of the algorithm there are strictly less than n/k voters left,
thus there are in particular no more groups that needs to be
taken care of.

Indeed, the above fixed-parameter algorithm implies
in particular that there is always a solution satisfying
Dynamic All-periods-intersection PJR, albeit with only a
superpolynomial-time algorithm.

2) DYNAMIC SOME-PERIODS-INTERSECTION
Next, we adapt the second, and stronger, temporal interpreta-
tion requiring that voter preference intersections occur over
sufficiently-many periods of time.

a: DYNAMIC SOME-PERIODS-INTERSECTION JR
Using the second temporal interpretation, our adaptation of
JR requires that all groups that are sufficiently-large and also
sufficiently-cohesive over sufficiently-many periods of time
will not be ignored.
Definition 6 (Dynamic Some-Periods-Intersection JR):

A rule R in the dynamic setting satisfies Dynamic Some-
periods-intersection Justified Representation (Dynamic
Some-periods-intersection JR) if for each group of voters V ′

that has (1) a non-empty intersection for k ′ periods (i.e., there
are at least k ′ j’s for which ∩vi∈V ′V

j
i 6= ∅); and for which (2)

b
|V ′|
|V | k

′
c > 0; it holds that {j ∈ [k] : wj ∈ ∪vi∈V ′V

j
i } 6= ∅.

Remark 1: Note that Dynamic Some-periods-intersection
JR is stronger thanDynamic All-periods-intersection JR. This
is so as, while Dynamic All-periods-intersection JR requires
representation only for groups of voter with non-empty inter-
section in all periods, Dynamic Some-periods-intersection
JR requires representation for all groups (of sufficient size
and intersection): In particular, it requires to reserve at
least one winner for groups of voters that has non-empty
intersection in at least some k ′ periods, provided that
their size is at least |V |/k ′. Indeed, this means, also, that
any algorithm satisfying Some-periods-intersection JR sat-
isfies also Dynamic All-periods-intersection JR. However,
Dynamic Some-periods-intersection JR is incomparable to
All-periods-intersection PJR.
Theorem 1: There is a polynomial-time algorithm that

always finds a solution satisfying Dynamic Some-periods-
intersection JR.

Proof: Consider a PV setting with alternatives A, k time
steps, and voters V . Let T = [k] be the set of time steps.
Given an alternative a, a set of voters V ′ ⊆ V , and a time
t ∈ T , say that the worth of a at time t for V ′, denoted by
worthV ′ (a, t), is |{vi ∈ V ′ | a ∈ V t

i }|; i.e. the number of
voters among set V ′ that approve a at time t .
Consider the following algorithm: start with j = 0, V0 =

V , and T0 = T . Pick (aj, tj) = argmaxa∈A,t∈Tj worthVj (a, t).

Set wtj = aj, Tj+1 = Tj \ {tj}, V ′j = {vi | aj ∈ V
tj
i }, Vj+1 =

Vj \ V ′j , and j = j + 1. Start again unless one of Vj or Tj is
empty. For each remaining t ∈ Tj (if any), set wt = a for any
alternative a. Then, wt is defined for each t ∈ T ; return the
corresponding solutionW .
Note first that this algorithm terminates in polynomial

time.

96602 VOLUME 9, 2021



L. Bulteau et al.: JR for PV

We now show that the solutionW satisfies Dynamic Some-
periods-intersection JR. We say that a group V ′ of voters is
k ′-important over V ′′ ⊆ V and T ′ ⊆ T if it satisfies the
conditions of Dynamic Some-periods-intersection JR with
integer k ′ over the reduced instance containing only votersV ′′

and time points T ′. Formally, V ′ has a non-empty intersection
at k ′ different time points among T ′ and b |V

′
|

|V ′′|k
′
c > 0; i.e.

|V ′| ≥ |V
′′
|

k ′ .
We can now show by induction over |Tj| that the algorithm

gives at least one winner to each k ′-important groups of voters
over Vj and Tj with 1 ≤ k ′ ≤ k . First note that, if either Tj
or Vj is empty, then no such group V ′ exist, and the claim
is proven for the base case. In general, consider such a set
V ′. If some voter vi is both in V ′ and in the set V ′j picked

by the algorithm, then aj ∈ V
tj
i , and setting wtj = aj gives

a winner to vi ∈ V ′ at time tj. If no such voter exists, i.e.
V ′ ∩ V ′j = ∅, then we claim that V ′ is (k ′ − 1)-important in
the sub-instance with voters Vj+1 and time points Tj+1. Note
also that k ′ > 1 (since k ′ = 1 yields |V ′| = |Vj| and V ′ = Vj,
which necessarily intersects V ′j ), so k

′
−1 ≥ 1 and, by induc-

tion, a winner is given to V ′ in a subsequent step of the
algorithm.

In remains to prove the claim above. First note that there
exists at least one alternative with worth |V ′| or more (since
V ′ self-intersects at least once). Since the size of V ′j is the
maximum worth of alternatives over Vj and Tj, we have

|V ′j | ≥ |V
′
| ≥

|Vj|
k ′ , so |Vj+1| ≤

(k ′−1)|Vj|
k ′ . Thus, using

|V ′| ≥ |Vj|
k ′ , we have |V ′| ≥ |Vj+1|

k ′−1 . Furthermore, V ′ self
intersects on k ′ time points among Tj, so it intersects on at
least k ′−1 time points among Tj \ {tj}. Overall V ′ is (k ′−1)-
important over Vj+1 and Tj+1.

b: DYNAMIC SOME-PERIODS-INTERSECTION PJR
We complete our axiomatic framework with the adaptation
of the PJR axiom to the Dynamic setting and the second tem-
poral interpretation. The Dynamic Some-periods-intersection
PJR axiom requires that all groups that are sufficiently-large
and also sufficiently-cohesive over sufficiently-many points
in time would be adequately represented, based on their sizes
and the points in time in which they intersect. Note that
the periods in which a group V ′ ‘‘gets a winner’’ need not
necessarily be the same periods in which there is a non-empty
intersection.
Definition 7 (Dynamic Some-Periods-Intersection PJR):

A rule R in the dynamic setting satisfies Dynamic Some-
periods-intersection Proportional Justified Representation
(Dynamic Some-periods-intersection PJR) if for each group
of voters V ′ that has a non-empty intersection for k ′ periods
(i.e., there are at least k ′ j’s for which ∩vi∈V ′V

j
i 6= ∅), it holds

that |{j ∈ [k] : wj ∈ ∪vi∈V ′V
j
i }| ≥ b

|V ′|
|V | k

′
c.

Following Conjecture 1, here we also conjecture
hardness.
Conjecture 2: No polynomial-time algorithm solves

Dynamic Some-periods-intersection PJR unless P = NP.

As before, we show that Dynamic Some-periods-
intersection PJR is always satisfiable, and can be computed
efficiently if there are not too many voters.
Theorem 2: Dynamic Some-periods-intersection PJR is

fixed-parameter tractable wrt. the number n of voters.
Proof: The proof follows by the following algorithm.

The algorithm works in two phases. In the first phase, we do
an iterative greedy algorithm, as follows: We consider the
set of all groups of voters that deserve some representation
(i.e., groups V ′ for which |V ′|k ′ is at least n); denote this set
by V . Now, in each iteration we consider a group V ′ ∈ V ,
where we take the groupV ′ that has the highest value of |V ′|k ′

(since |V | is a constant and the higher is the value of |V ′|k ′,
more ‘demanding’ is the voter group in that sense). While
iterating over these V ′ ∈ V , we maintain a set of constraints
C (initially empty) where each constraint c ∈ C is of the form
‘‘burn i places out of the places x ∈ [k]’’. For this group V ′,
we add the constraint: ‘‘burn b |V

′
|

|V | k
′
c places out of the places

x ∈ [k]’’, where x is the index of each the day on which
the group V ′ has nonempty intersection. Then we remove all
voters of V ′ from further consideration (in particular, prune V
to not include any group containing at least one voter from the
current V ′) and reiterate. We end this first phase whenever we
have strictly less than n/k voters left (and then, in particular
V will be empty).

In the second phase of the algorithm, we first take the
constraints C, and split each constraint of the form ‘‘burn i
places out of x’’ into i constraints, each of the form ‘‘burn 1
place out of x’’ This splitting keeps correctness.
Now, we go over the constraints of C in increasing order

of their corresponding k ′ (observe that each constraint c ∈ C
corresponds to some group of voters V ′ with some k ′). Now,
we greedily burn places as needed.

Next we show that indeed we can always ‘‘burn’’ places.
Furthermore it is important to show that, for each V ′ we
consider, there exist enough days to satisfy voters of V ′ – out
of those days in which V ′ has nonempty intersection – that is
not already fixed (by groups of voters that we explicitly took
care of in earlier iterations). To this end, assume, towards a
contradiction that, during a run of the algorithmwe encounter
now some V ∗ that intersects in some k∗ periods, however,
the winners of all these k∗ periods are already fixed. As all
these k∗ periods are already taken, it means in particular that
the algorithm already took care explicitly of at least k∗ voter
groups, each with nonempty intersection in at least k ′ ≤ k∗

periods (as we consider the groups in V in increasing values
of their k ′). Now, as for each V ′ with its k ′ it holds that
k ′ ≤ k∗, it also holds that each V ′ is such that |V ′| ≥ |V ∗| (as
groups that deserve winners are those with |V ′|k ′ ≥ n, so if
k ′ gets smaller it means that V ′ shall become larger). Thus,
this means that the algorithm already explicitly took care of
at least k∗ groups V ′, each with size at least equal to |V ∗|;
crucially, this holds as all these groupsV ′ are disjoint in voters
(as the algorithm prunes out V , the group of satisfied voters).
Furthermore, observe that |V ∗| ≥ n/k∗ (as V ∗ is a group that
deserves awinner). Thus, thismeans that the number of voters
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the algorithm already took care of is at least k∗ · (n/k∗) = n;
however, this contradicts the assumption that the algorithm
now encounters some V ∗, a group of unsatisfied voters.
In effect, the algorithm iterates over the 2n possible subsets
of voters and prunes the satisfied groups of voters before
commencing each iteration while selecting disjoint subsets
of voters. Thus, the number of iterations that the algorithm
performs is bounded by 2n.

IV. EMPIRICAL DIFFICULTY
Following Conjectures 1, 2 and 3, we set to investigate
the empirical difficulty of satisfying the associated axioms
using simple algorithms on synthetic instances. Specifi-
cally, we evaluate the extent to which the Dynamic All-
periods-intersection PJR axiom (DynamicAllPeriodPJR for
short; Definition 5), Some-periods-intersection JR axiom
(DynamicSomePeriodJR for short; Definition 6) and the
Dynamic Some-periods-intersection PJR axiom (Dynamic-
SomePeriodPJR for short; Definition 7) can be satisfied by
the simple GreedyCC algorithm (Definition 2), a naïve mod-
ification of GreedyCC (which we describe next, denoted
PGreedyCC) and a baseline random winner determination
algorithm (denoted Rand) which uniformly selects a winner
for each time period. The PGreedyCC works as follows:

PGreedyCC. In each iteration, look at the first time period
for which the winner is still undetermined (j). Look for a
candidate c approved by the most number of voters in that
period, denoted V ′. Count the number of periods in which
voters V ′ has a non-empty intersection (k ′). Starting at period
j, for b |V

′
|

|V | k
′
c consecutive periods, choose an arbitrary winner

from the intersection of V ′ preferences on each period (if
non-empty, otherwise choose from the union), and remove
V ′ from further consideration.

To generate a sensible dataset we use the following pro-
cedure: For m ∈ {5, 10} alternatives, k ∈ {10, 30, 50}
periods, and n ∈ {10, 15} voters, we first generate a random
non-empty subset of approved alternatives (V j

i ) for each of the
voters. Then, for the Dynamic settings, for each period k ′ > 1
we (slightly) modify each voter’s approved alternatives based
on the voter’s approved alternatives in period k ′ − 1: Each
alternative approved in period k ′−1 continues to be approved
in period k ′ with probability p and each non-approved alter-
native in period k − 1 joins the set of approved alternatives
in period k ′ with probability q. For the sake of conciseness,
we only present the results for p = 0.5, q = 0.25 (which
are very similar to other reasonable p, q values we tested).
The process is repeated 1, 000 times, resulting in 12, 000
instances.

For each instance, each of the three algorithms (Rand,
GreedyCC and PGreedyCC) are used to determine a
winner for each period. Then, we iterate over all the
exponentially-many possible subgroups of voters to examine
which of the axioms are satisfied by each of the algorithms’
outputs.

To generate a sensible dataset we use the following pro-
cedure: For m ∈ {5, 10} alternatives, k ∈ {10, 30, 50}

periods, and n ∈ {10, 15} voters, we first generate a random
non-empty subset of approved alternatives (V j

i ) for each of the
voters. Then, for the Dynamic settings, for each period k ′ > 1
we (slightly) modify each voter’s approved alternatives based
on the voter’s approved alternatives in period k ′ − 1: Each
alternative approved in period k ′−1 continues to be approved
in period k ′ with probability p and each non-approved alter-
native in period k − 1 joins the set of approved alternatives
in period k ′ with probability q. For the sake of conciseness,
we only present the results for p = 0.5, q = 0.25 (which
are very similar to other reasonable p, q values we tested).
The process is repeated 1, 000 times, resulting in 12, 000
instances.

For each instance, each of the three algorithms (Rand,
GreedyCC and PGreedyCC) are used to determine a
winner for each period. Then, we iterate over all the
exponentially-many possible subgroups of voters to examine
which of the axioms are satisfied by each of the algorithms’
outputs.

A. RESULTS
Starting with the DynamicAllPeriodPJR axiom, we find that
all evaluated algorithms, including Rand, were able to satisfy
100% of the instances. Specifically, despite Conjecture 1,
it seems that the requirement is very easily satisfiable from
a practical perspective, even by randomly selecting winners.

Continuing with the more demanding DynamicSomePe-
riodJR axiom, we see that the Rand algorithm was able to
comply with the axiom for 73% of the dataset. The GreedyCC
complied with the axiom slightly more times, satisfying 79%
of the dataset and its adaptation PGreedyCC satisfied 84%
of the times. To compare between the three conditions we
use the repeated measures analysis of variance (ANOVA)
test [21] followed by the Tukey’s HSD post-hoc test [22].
All of the measures for both conditions were found to be
distributed normally according to the Shapiro–Francia nor-
mality test [23]. The ANOVA test determined that there were
significant differences between the algorithms (p < 0.05).
The post-hoc test revealed that the difference is attributed
to PGreedyCC which was found to outperform both other
algorithms, which in turn, do not differ significantly (p <

0.05). See Figure 1 for an illustration. Analysing the cases
in which each algorithm failed to comply with axiom reveals
that the PGreedyCC algorithm was not only able to comply
more often, but the average number of unrepresented groups
of voters in the unsatisfied instances was significantly lower
compared to both other algorithms. Specifically, PGreedyCC
averaged 1.6 unrepresented groups (in the cases which the
axiom was not satisfied) while the Rand and GreedyCC
averaged 2 unrepresented groups. The difference is found to
conform with the above statistical analysis, with PGreedyCC
outperforming the other algorithms which, in turn, do not
differ significantly. No statistically significant difference was
found between the average and maximal sizes of unrepre-
sented groups among the examined algorithms in cases when
the axiom is violated.
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FIGURE 1. Compliance rates according to our empirical evaluation. Bars
with horizontal lines indicate the compliance with the
DynamicAllPeriodJR axiom, doted bars indicate the compliance with the
DynamicAllPeriodPJR axiom.

Turning to the stronger DynamicSomePeriodPJR axiom,
we see very similar results. Once more, the Rand was able to
satisfy the axiom for 73% of the dataset. The GreedyCC com-
plied with the axiom slightly more times, satisfying 76% of
the dataset and its adaptation PGreedyCC satisfied 82% of the
times. Using the same statistical analysis as before, we find
the PGreedyCC algorithm outperforms both other algorithms
which, in turn, do not differ significantly (p < 0.05). See
Figure 1 for an illustration. In addition, the PGreedyCC algo-
rithm again outperforms both other algorithms in terms of the
number of under-represented groups of voters (in cases where
the axiom is violated) averaging 1.7 compared to 2.1 averaged
by both Rand and GreedyCC algorithms (p < 0.05). Finally,
no statistically significant difference was found between the
average and maximal sizes of unrepresented groups among
the examined algorithms in cases when the axiom is violated.

V. HUMAN STUDY
In the following, we examine what ordinary people con-
sider to be desirable outcomes in PV settings. To this end,
we devise a simple yet natural PV scenario where, given voter
preferences, ordinary people are tasked with choosing the
most appropriate outcome. Specifically, we use the following
motivational scenario in our experiment:
Motivating Scenario: Five students are about to study
towards a test for the next five days. In order to save time,
in each of the study days, the students wish to decide on a
single restaurant to order food from. There are five potential
restaurants (Restaurant A, B, . . ., E; e.g., Pizza, Hamburger,
etc.). To this end, each student has indicated, for each day,
which restaurant(s) she wants to order from. Your task is to
help the students decide where to order from in each of the
five days.1

The above scenario was devised following this rationale:
by using generic restaurants and student identities we seek
to avoid participants casting their own preferences into the
decision setting. In addition, since no explicit utility is
defined, we leave it up to the participants to decide what they

1The number of days and restaurants in our scenario were chosen empiri-
cally following a short informal trial-and-error investigation with students in
our labs.

constitute as appropriate in this generic setting without intro-
ducing potentially biasing terms such as ‘‘fairness’’.

Following the motivating scenario’s text, participants were
presented with an example instance, as shown in Figure 2.

A. DESIGN
Following the motivational scenario outlined above, we first
randomly generated two sets of PV instances (one for each
of the examined PV variants – Static and Dynamic), each
including 5 voters with preferences over 5 options, for 5
days. To examine different underlining aggregation axioms,
each generated instance was first solved using five different
aggregation methods, as detailed next. Then, six instances
for which none of the five outputs coincide were selected.
Overall, 2 Static PV instances and 4 Dynamic PV instances
(2 for each of interpretations discussed in Section III-B) were
selected.

Starting with the Static PV variant, each instance was
solved using the following five aggregation methods:

• MAX: For each day, the candidate with the maximal
number of approvals is chosen. This aggregation method
maximizes the social utility if we assume that the utility
of each voter is defined to be the number of days a
restaurant from her ballot is selected (i.e., the number
of days that voter is satisfied).

• JR: We use the GreedyCC algorithm (Definition 2),
which satisfies JR.

• PJR: We use the slightly modified GreedyCC algorithm
(Observation 1), which satisfies PJR.

• P.Quota. We use an algorithm recently proposed by [4],
which satisfies JR but not PJR. The algorithm iter-
ates over days, successively decreasing the weights of
already satisfied voters on previous days. Perhaps this
algorithm can be characterized as aweighted-MAX rule,
where a voter’s marginal utility diminishes as she gets
more satisfied with the solution. While there are many
temporally axiomatic characteristics allied with this rule
as mentioned in [4], here we concentrate on the ability of
the algorithm to elect justifiably representative solutions
albeit in temporal settings.

• RAND: We randomly choose a solution such that the
social utility, as measured by the number of days each
voter is satisfied, falls between 50% and 70% of that
achieved by MAX. The outcome is thus ‘‘reasonable’’
in terms of social utility.

Two instances for which the outcomes did not coincide
were randomly selected – i.e., we looked for instances for
which each of the rules selects a different outcome, and chose
2 such instances.

Similarly, each of the Dynamic PV instances was solved
using the same five methods discussed; yet, this time, it was
solved twice - once for each of the interpretations dis-
cussed in Section III-B. Namely, each instance was solved
using the following 5 aggregation methods where JR and
PJR are once used following their all-periods-intersection
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FIGURE 2. An example instance presented to our participants.

interpretation and once, separately, under the same-
period-intersection interpretation.
• MAX.
• JR: We use either the algorithm provided in Proposi-
tion 2 (for the All-Period-Intersection interpretation) or
the algorithm provided in Theorem 1 (for the Some-
Period-Intersection interpretation), both satisfying JR
under the corresponding interpretation.

• PJR: We use the algorithm described in Proposition 3
(for the All-Period-Intersection interpretation) or the
algorithm described in Theorem 2, both satisfying PJR
under the corresponding interpretation.

• P.Quota (see [4]).
• RAND.
Two instances for which the outcomes under the

All-Period-Intersection interpretation did not coincide and
additional two instances for which the outcomes under
the Some-Period-Intersection interpretation did not coincide
were randomly selected.

Prior to the presentation of the six instances (the instances
appear in the Appendix), participants were asked to provide
their age, gender, and field of studies (as discussed next,
all participants were university students). Then, the selected
six instances were presented to the participants, in a ran-
dom order, along with the motivational scenario discussed
above. Participants were asked to choose themost appropriate
solution, i.e., decide where the students should order food
from in each day. To simplify the process, each instance
was accompanied by the five outputs calculated using the
aggregation methods above, in a random order as well, from
which each participant had to choose the most appropriate
one (as she sees fit).

Furthermore, following the six instances, participants were
asked to describe the reasoning behind their selection in free
text (this question was not mandatory). So, our survey has two
parts: one, in which participants see an instance and select the
solution they see as most appropriate for the instance; and
another, in which participants verbally explain their choices.

The survey was administered during the months of
October and November 2020 to three participant groups:

1) Information Science Master’s students from Bar-Ilan Uni-
versity (20 students, 18 male, average age of 35); 2) Indus-
trial Engineering and Management Bachelor’s students from
Ben-Gurion University (22 students, 8 male, average age
of 26); and 3) Computer Science students from Ariel and
Bar-Ilan Universities (108 students, 78 male, average age
of 26, approximately half from each university). The use of
three groups of students allows us to examine potential differ-
ences between the groups (e.g., the former two groups consist
of more female students than male, the first group is older on
average, etc.). All groups were recruited by posting ads on
the courses’ webpages given by the authors, offering them a
chance of winning one of three gift-cards, each of 100NIS
(∼$30), in a raffle.

B. RESULTS
1) PREPROCESSING
We start our analysis by omitting all answers of participants
who completed the survey in an unreasonable time (in partic-
ular, in less than 3 minutes) as to avoid possibly under-quality
responses. Fortunately, only very few participants were omit-
ted in this phase (3 from all groups combined).

Recall that, in addition to their selections, participants
were asked to describe the reasoning behind their selection
in free text. In order annotate the provided text, the authors
have randomly selected a subset of about two dozens of the
provided explanations and identified 5 underlining rationales:
Maximizing social welfare (e.g., ‘‘satisfy as many students
as possible every day’’); this roughly corresponds to the
MAX and RAND aggregation methods, Egalitarian consid-
erations (e.g., ‘‘Every student should get food from one of her
requested restaurants at least once’’; this roughly corresponds
to the JR, PJR and PQUOTA aggregationmethods), Temporal
considerations (e.g., ‘‘A student should not be unhappy two
days in a row (if possible)’’.), Ballot size considerations (e.g.,
‘‘’Flexible’ students who approve many restaurants should be
prioritized’’ and Diversity considerations (e.g., ‘‘The same
restaurant should not be selected too often’’). The authors AR
and NT have separately annotated each of the provided texts
to the appropriate subset of rationals expressed in the text. Out
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TABLE 1. The table shows the distribution of the aggregation method selected by the participants (rows) divided by their groups (columns). Columns do
not necessarily sum up to 1 due to rounding.

of 172 provided texts, the 2 annotations perfectly matched on
152 (88%). The author NH settled the remaining 20 instances.

2) CHOSEN OUTCOMES
Effectively, each participant has selected only one ‘‘most
appropriate’’ outcome in each of the six presented instances.
Through that selection, the participant has implicitly indi-
cated which aggregation method had brought about the most
appropriate outcome (according to her taste). We summed
the number of times each aggregation method was chosen
by the participants of each participant group. The results are
presented in Table 1.

Starting with the Information Sci. group, using the Fried-
man test followed by post hoc Wilcoxon signed-rank test2

with Bonferroni correction, reveals that the MAX, PJR and
PQouta methods were chosen significantly more often than
the JR and RAND methods, p < 0.05. None of these three
methods was found to be chosen significantly more often
than the other, mainly due to the low number of participants
in this group. Similarly, no significant difference was found
between JR and RAND. Using the same statistical analysis,
more significant differences are found in the Computer Sci.
and Industrial Eng. groups. Specifically, for both groups sepa-
rately, we find that theMAXmethodwas chosen significantly
more often than any other method, p < 0.05. In turn, the PJR
and PQouta methods were chosen significantly more often
than the JR and RANDmethods, which in turn, do not signif-
icantly differ. No significant difference is found between the
PJR and PQouta methods.

As can be seen in Table 1 and in the above statistical
analysis, there is very little difference between the examined
groups. The results suggest that MAX is generally preferred
to any other examined method by our study participants,
regardless of the examined group. At the same time, more
than half of the participants’ choices correspond to one of
the ‘‘fairness’’ interpretations that are directly captured in our
proposed theoretical framework (i.e., JR, PJR, and PQuota –
recall that the latter satisfies JR). (Note that, while PQuota
also satisfies JR, the outcomes are not necessarily coinciding
as there might be several solutions satisfying JR.) Combining
these results with the fact that no significant difference were
found when comparing PJR and PQuota leads us to believe
that our participants display two central tendencies: first, out-
comes which maximize social welfare are generally deemed

2The use of Friedman and Wilcoxon tests is since normality cannot be
adequately assumed for the collected data.

TABLE 2. Participants’ individual consistency in their selections. Rows
denote the maximal number of participant’s selections, which coincide
on the same aggregation method divided by participant group (columns).
For example, in the Industrial Eng. group, 25% of the participants chose
exactly four outcomes (out of 6) that coincide on the same aggregation
method. Columns do not necessarily sum up to 0 due to rounding.

appropriate by our participants; second, outcomes that satisfy
some notion of fair representation are generally preferred to
those that do not satisfy them.

3) INDIVIDUAL CONSISTENCY
We further examine the participants’ individual consistency:
that is, we look at how consistent participants were in their
six selections, in terms of the preferred aggregation methods.
In particular, we say that a participant is:

• inconsistent if no more than 2 of her selections corre-
spond to the same aggregation method;

• reasonably consistent if 3 or 4 of her selections coincide
on the same method;

• and consistent if at least 5 of her selections coincide on
the same method.

For all groups, approximately 65% of the participants were
reasonably consistent; see Table 2.

Overall, despite the inherent complexity of the task, most
participants were reasonably consistent in their choices. This
result strengthen our confidence in our analysis.

For all groups, no significant differences were found
between men and women. Similar results are observed when
all participants are grouped together.

4) EXPLANATIONS
We turn to analyze the participants’ provided explanations
as to what guided their selections. Recall that the provided
free-form texts were annotated by the authors. Specifically,
each text was labeled using at least one of the following
underlining rationales: Maximizing social welfare, Egalitar-
ian considerations, Temporal considerations, Ballot size con-
siderations, and Diversity considerations.

Out of the 172 provided texts (recall, this question
was not mandatory), 141 (82%) were labeled as Maximiz-
ing social welfare, 73 (42%) were labeled as Egalitarian
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FIGURE 3. Static instance: 1 out of 2.

considerations, 8 (5%) were labeled as Temporal consider-
ations, 12 (7%) were labeled as Ballot size considerations
and 14 (8%) were labeled as Diversity considerations. Inter-
estingly, 75% of those who mentioned Egalitarian consider-
ations have also indicated that they are maximizing social
welfare. In addition, all participants who have mentioned one
of the last three consideration types (i.e., Temporal, Ballot
size, or Diversity) have indicated only one of which and have
also mentioned maximizing social welfare in their answer.

The above results are very much aligned with the partici-
pants’ selections analyzed above. Specifically, the vast major-
ity of participants have indicated that they are interested in
maximizing some form of social welfare, a statement which
can be easily expressed inmany natural ways. However, at the
same time, nearly half of the participants have also indicated
Egalitarian considerations. It is important to note that one
cannot expect ordinary people to articulate different notions
of fairness (in particular, JR or PJR), especially without prior
knowledge in the field and as part of a short Internet-based
survey. The fact that very few participants have expressed
any other type of consideration (i.e., Temporal, Ballot size,
or Diversity) further supports our previous results, indicating
that our participants consider both aspects desirable.

No significant differences were found between the exam-
ined groups or between men and women.

VI. CONCLUSION
We proposed and studied several adaptations of the
well-known multiwinner axioms of JR and PJR to two

perpetual voting settings: Static and Dynamic. For the Static
case, where voter preferences do not change over time,
we showed that our natural adaptations of JR and PJR can
always be satisfied in polynomial time. For the more complex
and perhaps more realistic Dynamic setting, where voter
preference do change over time, we showed that some of our
adaptations can always be satisfied in polynomial time while
the rest can be always satisfied in general. Using very simple
heuristics, we showed that, despite having no polynomial
time algorithm for our more demanding adaptations, all our
adaptations can nevertheless be empirically satisfied in a
large majority of the cases we considered.

The human study provides strong evidence to support the
conclusion that fairness, potentially in the form of JR and
PJR, is desirable.

A. FURTHER WORK AND EXTENSIONS
We believe that PV, as studied here and through additional
interpretations and possible extensions, is an important yet
currently understudied social choice setting with various
application to the study of multi-agent decision-making,
human-agent interaction, and mechanism design, to name
a few. Next, we briefly discuss some directions for future
research.

1) FIELD EXPERIMENTATION
Following [24], we plan to conduct a field experiment
in a Mars analogue environment. The analogue mim-
ics real space habitation by applying artificially delayed
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FIGURE 4. Static instance: 2 out of 2.

FIGURE 5. Dynamic instance: 1 out of 4.

communication with ground control, enforcing strict oper-
ation protocols (e.g., the use of spacesuits and relevant
equipment), and other means aimed at replicating space
conditions. We propose to integrate a decision-support

system, relying on our findings, as part of a future mis-
sion through which we could examine individual satisfac-
tion and social fairness in this real-world perpetual voting
setting.
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FIGURE 6. Dynamic instance: 2 out of 4.

FIGURE 7. Dynamic instance: 3 out of 4.

2) DESIGNING EFFICIENT ALGORITHMS
As some of our adaptations seem computationally intractable,
it is natural to study further parameterizations, as well as the
possibility of approximation algorithms.

3) DOMAIN RESTRICTIONS
In fact, our Static PV setting can be considered as a domain
restriction. Generally speaking, studying further domain
restrictions for PV might help in better understanding PV in
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FIGURE 8. Dynamic instance: 4 out of 4.

general. E.g., it is natural to consider single-peaked prefer-
ences in the context of PV.

4) BALANCING SOCIAL WELFARE AND FAIRNESS
A natural future study would be to investigate algorithms that
aim at balancing social welfare and proportionality; this is
especially meaningful given our human study results.

5) ORDINAL PERPETUAL VOTING
PV settings in which voters provide ordinal preferences,
as opposed to the Approval model considered here, is another
natural model for PV. In particular, adapting the proportional-
ity axioms of this paper to the ordinal preferences model may
reveal new insights for PV in general.

6) ONLINE PERPETUAL VOTING
Here we concentrated on an offline model, in which voter
preferences are given completely as an input to the aggre-
gation method. A natural variant of our model is an online
model, in which the algorithm has to make its decision for
each day based only on the preferences of the voters up to
that day, and voter preferences for a specific day may depend
on the selected winners so far.

APPENDIX
HUMAN STUDY INSTANCES
The six instances used in our human study (see Section V)
appear from Fig. 3 - Fig. 8. The instances are presented
in Hebrew (and thus should be read from right to left) yet

they are easily understandable. For each instance, the first
five rows indicate the voter’s preferences over the five
days (columns) whereas the next five rows indicate the five
outputs of the examined aggregation methods.
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