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The Preference Intensity Problem

51 49
a b
b a

51% of the voters have a slight preference for a over b and 49% of the voters
have a strong preference for b over a.

I Utilitarian considerations suggests that b should win.

I Majoritarian considerations suggests that a should win.
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Systematic Minority

I If voters cast a single vote for a single candidate, the majority, no matter
how slender, is guaranteed victory.

I When group barriers are permeable, the minority can occasionally belong to
the winning side.

I When preferences are fully polarized and the power of a cohesive majority
bloc is secure, the minority remains disenfranchised.

I Some solutions:
I Ensure that the political districts are fair: https://mggg.org/
I In some instances power-sharing is imposed directly, and the constitution

grants executive positions to specific groups, typically on the basis of their
ethnic or religious identity. The problem is that constitutional provisions of
this type are difficult to enforce and heavy-handed.
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Cumulative Voting

A possible remedy is the creation of larger, less arbitrary, multi-member districts,
where multiple positions are at stake.

By itself multi-member districts do not alleviate the mechanical control granted
to the majority, but they make it possible to adopt alternative voting systems
that weaken majority control.

Cumulative Voting (CV): each voter has as many votes as there are open seats,
and the candidates with more votes win, and each voter is allowed to distribute
the votes freely among any number of candidates.
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Cumulative Voting

Cumulative Voting (CV): each voter has as many votes as there are open seats,
and the candidates with more votes win, and each voter is allowed to distribute
the votes freely among any number of candidates.

I First proposed by Charles Dodgson (aka Lewis Carroll) in 1884

I CV treats every voter equally; yet, a cohesive minority can ensure itself some
victories by cumulating its vote.

I CV was used for more than 100 years, from 1870 to 1980, to elect
representatives to the Illinois State House and is the rule now in tens of local
jurisdictions, often as the remedy imposed by the courts in response to
voting rights litigation.

I Outside local politics, it is used to elect corporate boards in approximately
10% of S&P 500 companies.
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J. Sawyer and D. MacRae. Game Theory and Cumulative Voting in Illinois: 1902-1954. American
Political Science Review, 56, 936-946, 1962.

D. Cooper and A. Zillante. A Comparison of Cumulative Voting and Generalized Plurality Voting.
Public Choice 150, 363-83, 2012.

A. Casella, J. Guo, and M. Jiang. Minority Turnout and Representation under Cumulative Voting.
An Experiment. NBER Working Paper, 2021.
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Consider a two-agent society making a binary decision represented by d ∈ {a, b}.

I An agent’s preferences are summarized by the difference in utilities between
decisions a and b: vi = ui(b)− ui(a). For simplicity, assume that each vi is
independently and identically distributed and takes on values in
{−2,−1, 1, 2}. with equal probability.

I Suppose that we wish to choose the decision that maximizes the sum of the
utilities, and in the case of a tie we flip a coin.

M. O. Jackson and H. F. Sonnenschein. Overcoming Incentive Constraints by Linking Decisions.
Econometrica, 2005.
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Consider a two-agent society making a binary decision represented by d ∈ {a, b}.
Use majority rule to make the group decision: have the agents vote over the
alternatives, the alternative with the most votes wins, and in case of a tie, flip a
coin

I The inefficiency is that we are not able to discover the agents’ intensity of
preference in the event of a tied vote. This is not an issue of inter-personal
comparisons, but rather intra-personal comparisons.

I An agent would be better off if he or she won ties when having a type −2 or
2, at the cost of losing ties when of type −1 or 1. With just one decision,
the agent would always pretend to be of higher type.
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Consider a two-agent society making a binary decision represented by d ∈ {a, b}.

I If two decisions are linked, we could, for instance, ask the agents to declare
that they are of a high type on just one of the two decisions. Essentially, by
linking the decisions together, we can ask, “Which decision do you care
more about?”

I Effectively, linking the decision problems changes the ex ante inefficiencies “I
would like to make trades over my different possible future selves” to ex
post inefficiencies “I now actually have different selves and would be happy
to make trades across them”.

M. O. Jackson and H. F. Sonnenschein. Overcoming Incentive Constraints by Linking Decisions.
Econometrica, 2005.
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Qualitative Voting

Just as we contemplate the importance of the willingness to pay in the provision
of public goods will increase efficiency, we would expect that taking into account
the willingness to influence in a voting situation will increase efficiency.

Qualitative Voting (QV): In a setting with a closed agenda of N issues, allow
voters to simultaneously and freely distribute a given number of votes among the
issues.

I Voters have a broader set of strategies than the classical ‘one person — one
decision — one vote’ but at the same time preserving equality, since all
individuals are endowed with the same ex ante voting power.

R. Hortala-Vallve. Qualitative voting. Journal of Theoretical Politics 24(4), pp. 526-554, 2011.
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Qualitative Voting

QV introduces two main improvements on the usual voting rules.

1. ‘the problem of intensity’ is solved by allowing strong minorities to decide
over weak majorities.

2. voters are allowed to trade off their voting power, adding more weight to the
issues they most care about, and so unlocks conflict-resolution situations.

R. Hortala-Vallve. Qualitative voting. Journal of Theoretical Politics 24(4), pp. 526-554, 2011.
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Qualitative Voting

Two friend Anna (i = 1) and John (i = 2) are spending an evening together.

Above all they want to be together; however, they can’t come to an agreement:
Anna wants to see a horror film and would like to have dinner in a new Italian
restaurant while John prefers a comedy film and eating sushi in a Japanese
restaurant (i.e. we have two linked battle of the sexes games).
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Qualitative Voting

If they vote on each of the issues nothing is decided and they have to stay at
home (which we assume is not optimal for either of them).

In addition, suppose that Anna really cares about the restaurant decision while
John cares more about the film. It seems sensible that, as good friends, each of
them will give up on their least preferred option; they will both go to the Italian
restaurant and the comedy film.

From a game theoretic perspective, they are both coordinating on the
Pareto-optimal allocation that maximises the sum of utilities. QV is precisely a
mechanism that allows voters to coordinate non-cooperatively on the only ex
ante optimal outcome.
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Storable Votes

In a setting with a finite number of binary issues, the Storable Votes mechanism
(SV) grants a fixed number of total votes to each voter with the freedom to
divide them as wished over the different issues, knowing that each issue will be
decided by simple majority.

I SV allows the minority to prevail occasionally and yet is anonymous and
treats everyone identically.

I SV can apply to direct democracy in large electorates, or to smaller groups,
possibly legislatures or committees formed by voters’ representatives.

A. Casella (2005). Storable votes. Games and Economic Behavior, 51(2), pp. 391 - 419.

A. Casella (2012). Storable votes: Protecting the minority voice. Oxford: Oxford University
Press.
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Although easy to describe, SV poses a challenging strategic problem: how should
a voter best divide her votes over the different issues? Note a central ingredient
of the strategic environment: the hide-and-seek nature of the game between
majority and minority voters. If the majority spreads its votes evenly, then the
minority can win some issues by concentrating its votes on them, but if the
majority knows in advance which issues the minority is targeting, then the
majority can win those too.

A. Casella, J.-F. Laslier, and A. Macé. Democracy for Polarized Committees: The Tale of
Blotto’s Lieutenants. Games and Economic Behavior, 106, pp. 239 - 225, 2017.
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Colonel Blotto game

Two opposing military leaders with given army sizes must choose how many
soldiers to deploy on each of several battlefields. Each battlefield is won by the
army with the larger number of soldiers. Each colonel could win if he knew the
opponent’s plan. At equilibrium, choices must be random.

The SV’s model can be phrased as in the classical Colonel Blotto scenario, with
“issues” and “votes” instead of “battlefields” and “soldiers”.

I The game is asymmetric— the majority has more votes

I The game is a decentralized Blotto game. Each voter, whether in the
majority or in the minority, controls a number of votes, to be allocated to
the different issues.
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I N individuals must resolve K ≥ 2 binary issues, where K = {1, . . . ,K}.

I The same M individuals are in favor of all proposals and the remaining
N −M = m are opposed to all proposals with m ≤ M .

I The specific direction of preferences is irrelevant, what matters is that the
two groups are fully cohesive and fully opposed.

I Each individual receives utility 1 from any issue resolved in her preferred
direction, and 0 otherwise. Thus each individual’s goal is to maximize the
fraction of issues resolved according to her—and her group’s—preferences.
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I Individuals are all endowed with K votes each. Voters are allowed to
distribute their votes freely among the different issues. Each issue is then
again decided according to the majority of votes cast. Voting on the K
issues is contemporaneous, and all individuals vote simultaneously. Ties are
resolved by a fair coin toss.

I pm the expected fraction of minority victories.

I The parameters of the game are common knowledge, in particular each
voter knows exactly the size of the two groups, and thus both her own and
everyone else’s preferences.
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Voters never cast a vote against their preferences. The focus is on each voter’s
distribution of votes among the K issues. The action space for each player is:

S(K ) = {s = (s1, . . . , sK ) ∈ NK |
K∑

k=1

sk = K}

where sk is the number of votes cast on issue k .
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Examples

I If m = 4, M = 5 and K = 3, there exists an equilibrium in which the
minority wins two of the three issues.

I If m = 1 and M = 2 and K = 4, there exists no pure-strategy equilibrium.
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If several minority members concentrate votes on a given issue, the minority may
be able to win it. But only if the majority does not know which specific issue is
being targeted. Thus, minority members need not only to concentrate their votes
but also to randomly choose the issues on which the votes are concentrated.
Mixed strategies allow them to do so.

For any c factor of K , define σc (note τ c for a majority player) as follows:
choose randomly K/c issues, and allocate c votes to each of the selected issues.

Intuitively, we expect the minority to concentrate its votes, so as to achieve at
least some successes, and the majority to spread its votes, because its larger size
allows it to cover, and win, a larger fraction
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I Suppose K = 4 and M = 10, and m ∈ {1, . . . , 10}.

I Minority voters adopt the σc strategies with c = 2 (each minority voter
casts two votes each on half of the issues, chosen with equal probability) and
c = 4 (each minority voter casts all votes on a single issue chosen randomly).

I Consider two rules for the majority: (1) each majority voter casts his votes
randomly and independently over all issues (an upper bound on pm) or (2)
all majority voters together best respond to the minority (the lower bound).
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Experiments

We designed the experiment with two goals in mind.

1. We wanted to learn how substantive are minority victories in the lab and
how well the theory predicts subjects’ behavior.

2. We wanted to compare results with and without communication. Does
communication helps or hinders the relative success of the minority?
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Experiments

Each experimental session consisted of 20 rounds with fixed values of m and M ;
the first ten round without communication, and the second ten with
group-communication.

At the start of each session, each subject was assigned a color, either Blue or
Orange, corresponding to the two groups. Members of the two groups were then
randomly matched to form several committees, each composed of m Orange
members and M Blue members.

Every committee played the following game. Each subject entered a round
endowed with K balls of her own color. She was asked to distribute them as she
saw fit among K urns, depicted on the computer screen, knowing that she would
earn 100 points for each urn in her committee in which a majority of balls were
of her color.
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After all subjects had cast their balls, the results appeared on the screen under
each urn: the number of balls of each color in the urn, the tie-break result if
there was a tie, and the subject’s winnings from the urn (either 0 or 100).

The session then proceeded to the next round. The first ten rounds were all
identical to the one just described. Subjects kept their color across rounds, but
committees were resuhffled randomly.

After the first round, subjects could consult the history of past decisions before
casting their balls. By clicking a History button, each subject accessed a screen
summarizing ball allocations and outcomes in previous rounds, by urn, in the
committee that in each round included her.
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After ten rounds, the session paused and new instructions were read for the
second part.

Parameters and choices remained unchanged and subjects kept the same color,
but now a chatting option was enabled: before casting their balls, subjects had
two minutes to exchange messages with other members of their committee who
shared their color. They could consult the history screen while chatting.

The second part of the session again lasted ten rounds, and again committees
were reshuffled after each round but subjects kept the same color.

Thus each subject belonged to the same group, m or M , for the entire length of
the session, a design choice we made to allow for as much experience as possible
with a given role.
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Results 1: No Communication

29



Results 2: No Communication
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1. There is substantial deviation from equilibrium strategies: in all treatments
and in both groups, at least forty percent of all individual allocations do not
correspond to equilibrium strategies.

2. However, equilibrium predictions have some explanatory power for minority
subjects. In all treatments, the most frequently observed allocation for
minority subjects corresponds to the equilibrium strategy, a particularly clear
result in treatment 12NC and 24NC, where more than half of all observed
allocations correspond to the predictions.
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3. Equilibrium predictions are noticeably less useful for majority subjects. We
are not sure why. We can speculate that the difference may be due to the
higher complexity of the majority members’ problem: Should they spread
their votes, or try to second-guess the minority?

4. The theory’s qualitative predictions are mostly satisfied, both across
treatments and between the two groups. We have ordered the five possible
ball allocations with concentration increasing progressively from left to right.
In all treatments, the distribution of minority allocations is shifted to the
right, relative to the majority distribution: predictably, and in line with the
theory, minority members tend to concentrate balls more than majority
members do.
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To what extent does communication influence the groups’ allocations? We find
that all subjects actively participate in the chats, and the messages are very
relevant: 91 percent of exchanges 30 mention at least one ball allocation, 36
percent refer to the opposite group, and 84 percent include an explicit agreement.

33



Results: Communication
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A. Casella, S. Turban and G. Wawro. Storable votes and judicial nominations in the US Senate.
Journal of Theoretical Politics, 29:2, pp. 243 - 272, 2016.

This paper starts from the premise that the minority has a legitimate, important
role in confirming nominations.

The expression of intense sentiment by the minority once figured prominently in
filibuster battles, and its expression was valued by the majority because it
provided an informative signal about public opinion. Yet, the power of the
minority should not trump the majority’s right to govern; it should consist in the
institutional recognition of principled support or opposition to speicific nominees.

The puzzle is how to design transparent, formal institutions that balance the
minority’s right to be heard with the majority’s right to rule.
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The proposal is to use Storable Votes confirm or reject judicial nominees on
slates submitted to the chamber.

Allows the parties a mechanism to reveal the salience of their preferences, and
grants the minority the power to prevail on some nominations, but only on those
that the minority considers a higher priority than the majority does.

The procedural innovation that we explore shares the same spirit: blocking a
nomination should be costly, and the willingness to bear that cost measures the
intensity with which the defeat of a nominee is desired.
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Our simulations show that a higher correlation of intensities within
parties—higher agreement on which nominations are most important—results in
more coordinated voting and favors the minority, whose smaller numerical size
makes coordination essential.

On the other hand, stronger correlation in intensities across parties—when the
nominees the president’s party most wants to confirm are those the opposition
most wants to block—favors the majority, because the larger party tends to win
when the two parties prioritize the same nominees.

When both types of correlations are high—the case we consider most realistic for
today’s Senate—our results show that a minority of 45 senators can prevail on
about 35 percent of nominations on any given slate.
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Can a president name a nominee so objectionable to the opposition that all its
votes are concentrated on defeating him, guaranteeing that the other
nominations are confirmed? We find that, indeed, placing on the slate one or
more “decoy” nominees can be advantageous.

Decoys work, then, but only if the remaining nominees are less polarizing. This is
a direct effect of storable votes: because the number of votes cast depend on
priorities, a decoy nominee can concentrate the votes of the opposition only if the
others nominations are on the whole acceptable. As a result, storable votes
exercise a moderating effect on the list of nominees.

38



Can a president name a nominee so objectionable to the opposition that all its
votes are concentrated on defeating him, guaranteeing that the other
nominations are confirmed? We find that, indeed, placing on the slate one or
more “decoy” nominees can be advantageous.

Decoys work, then, but only if the remaining nominees are less polarizing. This is
a direct effect of storable votes: because the number of votes cast depend on
priorities, a decoy nominee can concentrate the votes of the opposition only if the
others nominations are on the whole acceptable. As a result, storable votes
exercise a moderating effect on the list of nominees.

38



B. Laurence and I. Sher. Ethical considerations on quadratic voting. Public Choice, 172: pp.
195 - 222 2017.

E. Posner and G. Weyl. Voting squared: Quadratic voting in democratic politics. Vanderbilt
Law Review, 68, pp. 441 - 500, 2015.

S. Lalley and G. Weyl. Quadratic voting. Unpublished manuscript, June 2016.
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Quadratic Voting

The thought animating QV is that if we put a price on votes, then voters could
express their preference intensity—more passionate voters are willing to pay
more—and we solve the problem preference intensity problem.

Specifically in QV, it costs v 2 dollars to purchase v votes, which can then be
used to vote for either alternative.

The alternative with more votes wins.
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There is a systematic divergence between utility and willingness to pay: if a rich
person and a poor person care about a decision equally—the decision has the
same impact on their utility—the rich person will be willing to pay more than the
poor person for that decision to be made.

This is because the rich person will have to give up only certain luxuries if she
spends $y, whereas the poor person will have to give up more basic wants or
necessities for the same expenditure.

So under QV, the preferences of the rich will be overrepresented relative to their
true ethical weight.

This could mean that majority voting is better than QV from a utilitarian point
of view.
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If preferences are independent of wealth, in the sense that overall poor voters
have the same distribution of utilities for outcomes as rich voters, then QV will
be optimal from a utilitarian perspective. The divergence between willingness to
pay and utility will not cause any distortion in the outcome.

If, on the other hand, preferences are polarized by wealth, so that the poor prefer
one thing and the rich another, then the louder voice of the rich under QV may
win out even when the poor care more.

If there are more poor than rich, then under majority voting the poor win, as the
utilitarian would have liked.

It is fundamentally ambiguous whether QV or majority voting is better
from a utilitarian standpoint.
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x ∈ {0, 1} where 0 represents decision 0 and 1 represents decision 1.

N = {1, . . . , n} is the set of agents.

Each i ∈ N has a wealth endowment w e
i ∈ R+ representing i ’s initial wealth.

An outcome for i is a pair (x ,wi) where x is the public decision and wi is i ’s final
wealth holdings.

For each i , there is a quantity of money ûi such that i is indifferent between
(0,w e

i ) and (1,w e
i − ûi).
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Assuming i likes money, ûi > 0 if i prefers decision 1 and ûi < 0 if i prefers
decision 0.

So, |ûi | is i ’s willingness to pay for decision 1 to replace decision 0 if i prefers 1,
and is the minimum payment i is willing to accept for 1 to replace 0 if i prefers 0.

i ’s preference over outcomes (x ,wi) are represented by the quasilinear utility
function

Ûi(x ,wi) = ûix + wi

If x = 0, then ûix = 0 and if x = 1 then ûix = ûi . So we can think of i ’s utility
for decision 0 as being normalized to zero and i ’s utility for decision 1 is ûi .
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Let v ∈ R be a quantity of votes.

If v is positive, then v represents |v | votes for decision 1 and if v is negative,
then v represents |v | votes for decision 0.

Let c : R→ R+ be a costly voting rule that maps votes into dollars. Assume
that c is even, which means that c(v) = c(−v).

So we can think of c as a function of the absolute value |v |. Assume that c is
differentiable, convex, and strictly increasing in |v |, and that c(0) = 0.

The interpretation is that it requires $c(|v |) to purchase |v | votes, which can
then be cast for either alternative, decision 0 or decision 1.

The alternative that receives the most votes wins.
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Election proceeds are refunded (approximately) equal to all citizens. Let vj be the
votes purchased by voter j .

Then voter i is refunded

$

∑
j∈N\i c(vj)

n − 1

This is is the average payment made by voters other than i .

Voter i ’s refund is independent of how i votes, and even whether i votes at all,
so as not to affect i ’s incentive to vote.
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Voting is a market in which voters purchase influence. This is the price-taking
model.

A collective decision problem is a tuple {N , S , u} where N is the collection of
agents, S , a positive real number, is the supply of influence, and
u = (ûi : i ∈ N) ∈ RN is the profile of utilities for decision 1.

A price-taking equilibrium of a collective decision problem under voting rule c is
an influence vector I

∗
= (I ∗i : i ∈ N) ∈ RN , a price p∗ ∈ R+ and a decision

x∗ ∈ {0, 1}. such that

I I ∗i maximizes ûi Ii − c(p∗Ii) over all Ii ∈ R
I

∑
i∈N |I ∗i | = S

I x∗ = 1 iff
∑

i∈N p∗I ∗i ≥ 0
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Let Q∗i be the probability that decision 1 would win the election if i did not
purchase any votes.

By buying votes, voter i purchases influence.

Let Ii be the additional probability that i ’s favorite alternative wins given the
number of votes that i purchases.

Given the influence that i obtains by purchasing votes, the probability that the
outcome is decision 1 is Q∗i + Ii .

Ii > 0 if i votes for decision 1 and Ii < 0 if i votes for decision 0.
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Acquiring Ii units of influence vi = p∗Ii votes. Thus, p∗ is the “price of influence”.

Equivalently, we can think of 1
p∗

as a voter’s marginal pivotality, that is, the
additional probability of being pivotal she purchases with an additional vote.

For what follows, it is not essential that the is conversion from votes to pivotality
probabilities be linear; it matters only that each voter perceives (approximately)
the same marginal pivotality.
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The voter’s problem is

max
Ii

 ûi × (Ii + Q∗i )︸ ︷︷ ︸
expected value of decision

− c(p∗Ii)︸ ︷︷ ︸
vote cost
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QV is the costly voting rule c(v) = kv 2 for some k > 0. For simplicity assume
k = 1 so that c(v) = v 2.
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Under QV , the voter’s optimization problem is

max
Ii

ûi Ii − (p∗Ii)
2

The first-order condition for an optimum is ûi = 2(p∗)2I ∗i . Equivalently, I ’s
optimal influence is I ∗i = ûi

2(p∗)2
. Converting influence into votes (using

v ∗i = p∗I ∗i ), i purchases

v ∗i =
ûi

2p∗

So, under QV ,

x∗ = 1 iff
n∑

i=1

ûi ≥ 0
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2(p∗)2
. Converting influence into votes (using

v ∗i = p∗I ∗i ), i purchases

v ∗i =
ûi
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Each costly voting rule c and collective decision problem {N , S , u} determine a
unique price-taking equilibrium.

c is robustly efficient if for all collective decision problems, this unique
price-taking equilibrium satisfies:

x∗ = 1 iff
n∑

i=1

ûi ≥ 0

Proposition 1 (Lalley and Weyl 2015) A costly voting rule c is robustly efficient
if and only if c(v) = kv 2 for some k > 0.
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QV vs. Majority Rule

Suppose there are three voters: Ann, Bob, and Carol.

Ann and Bob each prefer decision 0, and each would be willing to pay $1 to
cause decision 0 to replace decision 1.

Carol prefers decision 1 and willing to pay $3 for her preference.

Under majority voting, there are two votes for decision 0, and one vote for
decision 1. So decision 0 wins.

Yet ûAnn + ûBob + ûCarol = −1 +−1 + 3 = 1 > 0.

So decision 0 wins while the aggregate willingness to pay for decision 1 to replace
decision 0 is positive.

As we have seen above, under QV, decision 1 wins.
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1. From a utilitarian point of view, decision 1 (the outcome of QV) is better
than decision 0 (the outcome of majority voting) because the sum of utilities
for decision 1 is greater.

2. If we enact decision 0, then everyone could be made better off: we could
instead enact decision 1, and Carol could make a payment of $4

3
to Ann and

a payment of $4
3

to Bob. The utility of each of the three agents would rise
by 1

3
. So we should not enact decision 1. Majority voting, unlike QV, enacts

an outcome against which there is a decisive argument.
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We make an ethical assumption on utility that is widespread in the utilitarian
tradition, namely, the assumption that the marginal utility of a dollar is
decreasing in wealth. Under this assumption, if we had one dollar, and could
either give it to a rich person or a poor person, then, other things being equal, it
would be ethically better to give it to the poor person. Intuitively, the dollar
makes more of a difference to the poor person.
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Ui is the ethical utility and Ûi from above is the value function and ûi is the
willingness to pay.

Ui(x ,wi) = uix + g(wi)

x ∈ {0, 1} is the public decision, wi is the final wealth of i .

ui can be positive or negative and is i ’s utility of public decision 1 (and the utility
of public decision 0 is 0).

The utility of wealth function g(wi) measures the utility an agent receives from
having wealth wi . For simplicity, g is the same for all agents i . We assume that
g is concave to capture the diminishing marginal utility of wealth.

For simplicity, we assume that ui is not a function of wealth wi .
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Let the agents be N0.

The utilitarian objective is: ∑
i∈N0

Ui(x ,wi)
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Now that utility is understood in an ethical sense, we can see that QV’s refund is
ethically significant because it amounts to a transfer among voters with
potentially different marginal utilities of wealth. But is the refund’s effect on
total utility positive or negative?
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I Imagine that voters are split into two groups A and B . Voters in A care
passionately about the election and voters in B are relatively indifferent. So
voters in A purchase a large number of votes while voters in B purchase a
small number of votes.

I As proceeds are refunded equally to all voters independently of voting
behavior, the refund then amounts to a net transfer from A to B . B could
be large or small in comparison to A and voters in B could be wealthy or
poor in comparison to voters in A.

I Depending on how these parameters are resolved, the transfer could be from
rich to poor or from poor to rich and its effect may be larger or smaller. So,
the refund could have a positive or negative effect on aggregate utility.
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A. Casella and L. Sanchez. Democracy and Intensity of Preferences: A Test of Storable Votes
and Quadratic Voting on Four California Propositions. The Journal of Politics, 84:1, 2022.
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Four proposition on the November 2016 California ballot:

1. Bilingual education (BE): re-instate the possibility of bilingual classes in
public schools. (The proposition was included in the November 2016 ballot
and passed.)

2. Immigration (IM): require all state law enforcement officials to verify
immigration status in case of an infraction and report undocumented
immigrants to federal authorities. (The proposition was not included in the
final ballot.)

3. Teachers’ tenure (TT): increase required pre-tenure experience for teachers
from two to five years. (The proposition was not included in the ballot.)

4. Public Vote on Bonds (PB): require voters’ approval for all public
infrastructure projects of more than $2 billion. (The proposition was
included in the ballot and failed.)
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We then recruited 647 California subjects via Amazon Mechanical Turk (MTurk).

We first asked each subject how (s)he would vote on each of the four
propositions, presented in random order, allowing for the option to abstain.

We then elicited measures of intensity of preferences. Each subject was asked to
distribute 100 points among the four propositions, with the number of points
used as scale of the importance attributed to each proposal (“How important is
this issue to you?”). We used examples to clarify that importance is independent
of whether the respondent is in favor or against a proposition, and summarized
responses in terms of priorities, allowing for revisions and asking for a final
confirmation.
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After this first part of the survey, common to all respondents, subjects were
randomly assigned either to the SV treatment (324 subjects; 306 after data
cleaning) or to the QV treatment (323 subjects; 313 after cleaning).

In the SV treatment, the subjects were told that each was granted one extra
vote, in addition to the regular votes cast earlier, and were asked to choose the
proposition in which to use it. The vote was cast in the direction indicated in the
first part of the survey, and the final outcome under SV was calculated summing
regular and bonus votes.
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The design of the QV scheme required some innovation.

We asked respondents to choose one of four classes of votes, distinguished by
color and weight.

1. Blue votes are regular votes, four in number; a person choosing blue votes
casts one vote on each proposition.

2. Three green votes, each worth more than a regular blue vote.

3. Two yellow votes, each stronger than a green vote.

4. One red vote, stronger than a yellow vote.

The weights we assigned to the different votes are 1 for blue votes, 1.2 for green
votes, 1.5 for yellow votes, and 2 for the red vote. A subject who chooses
green/yellow/red votes casts votes on only three/two/one proposition(s).
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The simple four-class classification respects the convex cost of concentrating
votes at the heart of QV. A voter casting votes on all four
propositions—choosing blue votes—has a total weight of 4, but the total weight
declines as votes are concentrated: the total weight corresponding to the three
green votes is 3.6, to the two yellow votes is 3, and to the single red vote is 2.
The decline is increasing with concentration, and increasing at an increasing rate,
capturing the core feature of QV.
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Our study confirms the theoretical promise of the two voting schemes. SV and
QV allow for occasional minority victories on those issues over which the
minority’s intensity of preferences is sufficiently stronger than the majority’s to
make a minority victory desirable.
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