CMSC423: Bioinformatic Algorithms, Databases and Tools

Exact string matching: KMP algorithm

- Recap: Z values can be constructed in linear time
- Recap: Z values can be used to match strings in linear time
- Here: A more direct way of doing the matching

Revisiting the naïve matching

```
AAAAAAACAGTTCCCTCGACACCTACTACCTAAG
Text
AAAAAT
    AAAAAT
    AAAAAT
        AAAAAT
```

Intuition: After matching the characters in the box, we should know what matches exist after shifting the pattern.

Stop and Think!

- Assume pattern matches the text up to position i in the pattern (see below)
- Assume the full pattern matches after a shift of $\mathrm{k}<\mathrm{i}$ characters
- What relationships can we infer between substrings of the pattern?

The answer

- The last $i-k$ characters in the prefix of P that ends at position i match the first $i-k$ characters of P
- Proof is obvious (?)

Knuth-Morris-Pratt algorithm

Given a Pattern and a Text, preprocess the Pattern to compute $s p[i]=$ length of longest prefix of P that matches a suffix of $\mathrm{P}[0 . . \mathrm{i}]$

P

$$
\mathrm{k}=\mathrm{i}-\mathrm{sp}[\mathrm{i}-1] \quad \mathrm{P}^{\prime} \begin{array}{|l|l|l|l|}
\square & & & \\
\hline
\end{array}
$$

- Compare P with T until finding a mis-match (at coordinate i in P and j in T).
- Shift P such that first sp[i-1] characters match T[j - sp[i-1] + 1 .. j].
- Continue matching from T[j], P[sp[i - 1] + 1]

Walk-through

```
index: 0123456
pattern: AAAAAAA
sp: 0123456
```

AAAAABAAAAAABAAAAAAA
AAAAAAA
\

First 5 characters match.
Mismatch at position $\mathrm{i}=5$
$\mathrm{sp}[\mathrm{i}-1]=\mathrm{sp}[4]=4$
shift by $\mathrm{i}-\mathrm{sp}[\mathrm{i}-1]=5-4=1$
number of comparisons $=6$ (5 matched, one didn't)

Walk-through

index:	0123456
pattern:	AAAAAAA
sp:	0123456

AAAAABAAAAAABAAAAAAA AAAAAAA
\
First 4 characters match - no need to check.
Mismatch at position $\mathrm{i}=4$

$$
\begin{aligned}
& s p[i-1]=s p[3]=3 \\
& \text { shift by } i-s p[i-1]=4-3=1
\end{aligned}
$$

number of comparisons $=1$

Walk-through

index:	0123456
pattern:	AAAAAAA
sp:	0123456

AAAAABAAAAAABAAAAAAA AAAAAAA
\
Keep checking the position marked with an arrow number of comparisons = 1
and so on....

One more walkthrough

```
index: 0123456
pattern: ABACABC
sp:
0010120
```


ABABBABAABABACABC ABACABC -

First 3 characters match.
Mismatch at position $\mathrm{i}=3$
$s p[i-1]=1$
shift by $\mathrm{i}-\mathrm{sp}[\mathrm{i}-1]=3-1=2$
number of comparisons $=4$

One more walkthrough

```
index: 0123456
pattern: ABACABC
sp: 0010120
```

ABABBABAABABACABC ABACABC

』
First character matches - no need to check. Mismatch at position $\mathrm{i}=1$
$s p[i-1]=0$
shift by $\mathrm{i}-\mathrm{sp}[\mathrm{i}-1]=1$
number of comparisons $=1$
... and so on

KMP - Stop and Think!

- Does it work?
- Can you miss a match by shifting too far?
- How do you prove that?

Next: Run-time \& computing sp values

