
CMSC423: Bioinformatic Algorithms, 
Databases and Tools

Exact string matching:
KMP – analysis and computation of 

sp values



• Recap: The KMP algorithm uses suffix-prefix (sp) values to 
decide how far to shift the pattern along the text

• Here we analyze why the algorithm works, and describe an 
algorithm to compute sp values efficiently.



KMP – speed
• How many character comparisons are made during the 

execution?

• If a character in the text matches a character in the pattern, 
do we have to look at it again?

• How many times can a character in the text fail to match the 
pattern?



Run time analysis

T

i

j

A

CP

P'
i – sp[i - 1]

Observation 1: after each shift, the prefix of the pattern matches the 
text. Only need to check whether T[j] matches.

Corollary: Once a character in the text matches the pattern, we no 
longer need to look at it. 

Observation 2: We can get “stuck” mismatching T[j] over multiple 
rounds
.
BUT: each time we do, the pattern shifts by at least one character.



Runtime – putting it all together
• # of times a character in text matches the pattern: O(n) – 

length of text
• # of times a character in text mismatches the pattern: O(n) – 

after each mismatch the pattern advances to a new location

• Hence: Runtime(KMP) = O(n) + O(n) = O(n) 

T

i

j

A

CP

P'
i – sp[i - 1]



KMP – computing sp values
• Can sp values be computed efficiently?

• Stop and think: Can you use Z values of P to compute the 
sp values?

• Stop and think: Can you use a similar algorithmic strategy 
(induction) as for computing the Z values?

• Stop and think: what is the relationship between sp[i] and 
sp[i + 1]?

   sp[i]
i

P



Computing sp values

   sp[i]
i

P
i+1

?
=

sp[i + 1] = sp[i] + 1, if and only if P[i+1] == P[sp[i]+1]

what if P[i+1] != P[sp[i]+1] ?

i
P

i+1

?
=

sp[i]sp[sp[i]]

simply check P[i + 1] == P[sp[sp[i]]+1]
if yes, then sp[i + 1] = P[sp[sp[i]]] + 1
else
    repeat with sp[sp[sp[i]]] ...



Computing sp values – runtime?

   sp[i]
i

P
i+1

?
=

sp[i + 1] = sp[i] + 1, if and only if P[i+1] == P[sp[i]+1]

what if P[i+1] != P[sp[i]+1] ?

i
P

i+1

?
=

sp[i]sp[sp[i]]

simply check P[i + 1] == P[sp[sp[i]]+1]
if yes, then sp[i + 1] = P[sp[sp[i]]] + 1
else
    repeat with sp[sp[sp[i]]] ...

This case
has one 
operation 
per sp value
(linear)

This case may have an 
arbitrary number of 
operations.  

Worst case quadratic?

I.

II.



A bank analogy

   sp[i]
i

P
i+1

?
=

sp[i + 1] = sp[i] + 1, if and only if P[i+1] == P[sp[i]+1]

i
P

i+1

?
=

sp[i]sp[sp[i]]

I.

II.

simply check P[i + 1] == P[sp[sp[i]]+1]
if yes, then sp[i + 1] = P[sp[sp[i]]] + 1
else
    repeat with sp[sp[sp[i]]] ...

each iteration is a comparison
but...sp value becomes lower too

sp grows slowly – by 1 every time 
case I occurs



The bank analogy
• sp grows by at most 1 per round – hence max(sp) <= len(P)
• in round i, # of comparisons <= sp[i]
• then it takes a while to regain “potential” in sp
• hence – runtime = O(len(p)) = O(m)

• In bank terms, if you are paid 1$/day, you cannot spend 
more than $7/week



The End (or is it?)
• More exact matching in Chapter 9

• In preparation, Stop and Think!

Can you find a linear time algorithm to find the longest 
match between a prefix of a pattern and the text? The whole 
pattern match (this module) is a special case

Can you find a linear time algorithm that finds the longest 
match (not restricted to the beginning of the pattern) 
between the pattern and the text?


	CMSC423: Bioinformatic Algorithms, Databases and Tools Lecture 2
	Slide 2
	Slide 3
	Knuth-Morris-Pratt algorithm
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

