CMSC 423: Sequence Alignment

Part 2

Longest Common Subsequence (LCS)

- An alignment of two string maximizing the number of matches corresponds to the longest common subsequence
- Two strings can have more than one longest common subsequences
- How do we solve this?

LCS is similar to the Manhattan Tourist Problem

Manhattan Tourist Problem: Find a longest path in a rectangular city.

- Input: A weighted $n \times m$ rectangular grid with $n+1$ rows and $m+1$ columns.
- Output: A longest path from source $(0,0)$ to sink (n, m) in the grid.

Figure: An $n \times m$ city grid represented as a graph with weighted edges for $n=m=4$. The bottom left node is indexed as (4, 0), and the upper right node is indexed as $(0,4)$.

Greedy

 strategy doesn't guarantee longest path

Cycles could be traversed indefinitely

We are using Directed Acyclic Graphs (DAGs)

Sequence Alignment is the
 Manhattan Tourist
 Problem in Disguise

STOP and Think

What alignment is produced by this alignment graph?

STOP and Think

What alignment is produced by this alignment graph?

AT-GTTATA
ATCGT-C-C

STOP and Think

Can we use the

alignment graph to find a longest common subsequence of two strings?

STOP and Think

Can we use the alignment graph to find a longest common subsequence of two strings?

Yes, with dynamic programming!

