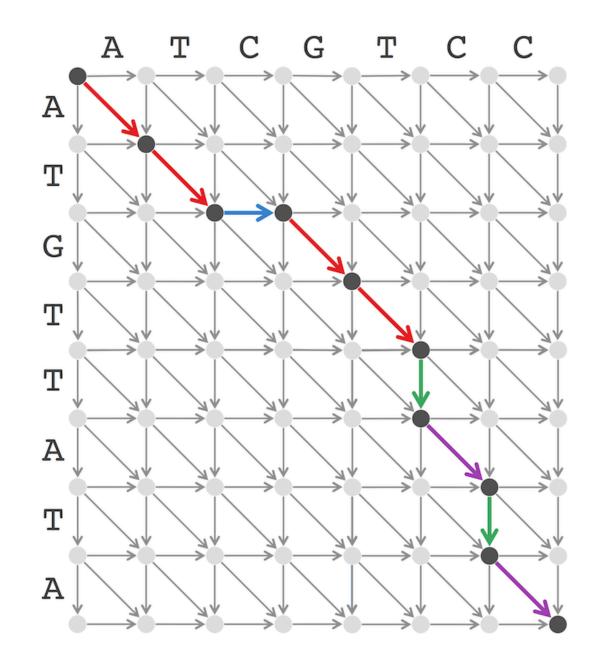
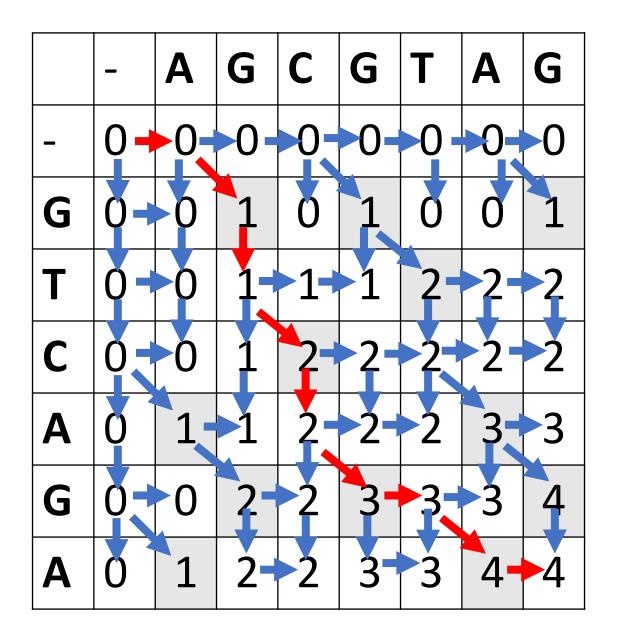

CMSC 423: Sequence Alignment

Part5


Inexact matching: why?

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged
- Aligning RNA sequences to DNA- need to account for gaps corresponding to exons
- Sequencing errors

Alignment of sequences v and w


Sequence Alignment is the Manhattan Tourist Problem in Disguise

	-	Α	G	С	G	Τ	Α	G
-	0							
G								
Т								
С								
Α								
G								
Α								

v = AGCGTAG w = GTCAGA

$$S_{i,j} = \max \begin{cases} S_{i-1, j-1} + 1, \\ if v_i = w_j \\ S_{i-1, j} + 0 \\ S_{i, j-1} + 0 \end{cases}$$

$$A G - C - G T A G$$
$$- G T C A G - A -$$

Local alignment

- What if we just want a region of similarity?
- Change the first row and column in the dynamic programming table to 0s
- Allow the alignment to start anywhere

Score[i,j] = max{0, case 1, case 2, case 3}

• Answer is the location in the matrix with the highest score

Extending to sequence alignment

- When solving for the LCS, mis-alignments are free
- What happens if we pay for our "mistakes"? (this also allows us to account for "similar" amino acids)

Value[Match] = 10 Value[Mismatch] = -5 Value[Gap] = -2 Match = [A,A], [C,C], [G,G], [T,T] Mismatch = [A,G], [A,C], [A,T], ... Gap = [A,-], [-,A], ...

The same dynamic programming algorithm works!

Penalizing insertions and Deletions

- Linear scoring model
 - σ = penalty for insertion or deletion of a single simple
 - $\sigma \cdot k$ = penalty for insertion or deletion of k symbols

GATCCAG	GATCCAG
GA-C-AG	GACAG

Penalizing insertions and Deletions

Mutations are often caused by errors in DNA replication that insert or delete an entire interval of *k* nucleotides as a single event (instead of *k* independent insertions or deletions)

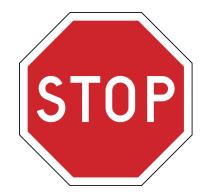
GATCCAG	GATCCAG
GA-C-AG	GACAG

Penalizing insertions and Deletions

Mutations are often caused by errors in DNA replication that insert or delete an entire interval of *k* nucleotides as a single event (instead of *k* independent insertions or deletions)

Affine gap penalties

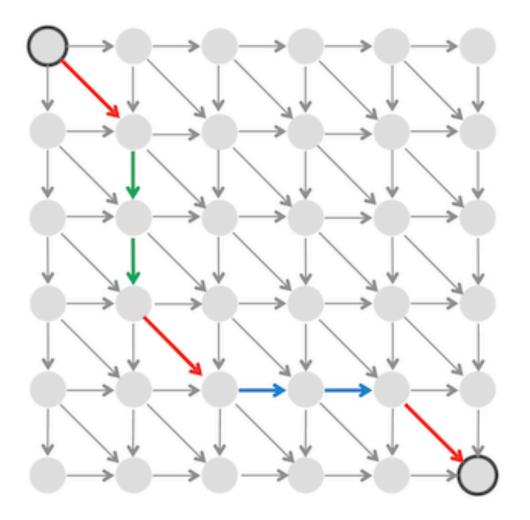
Cost(k gaps in a row) = Cost(gap open) + (k-1)* Cost(gap) = σ + (k-1) $\cdot \epsilon$

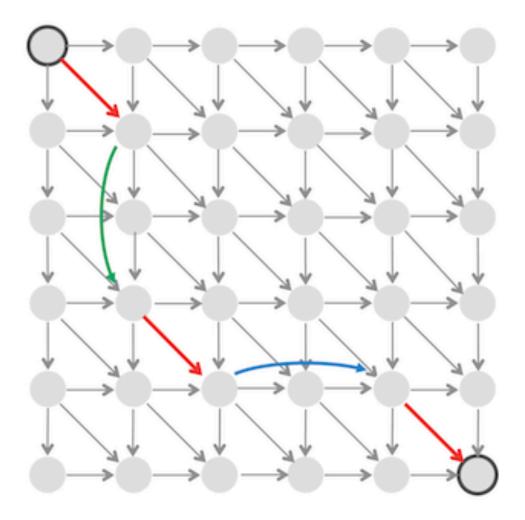

Gap opening penalty is high and gap extension penalty is low (once we start a gap we might as well pile more gaps on top)

STOP and Think

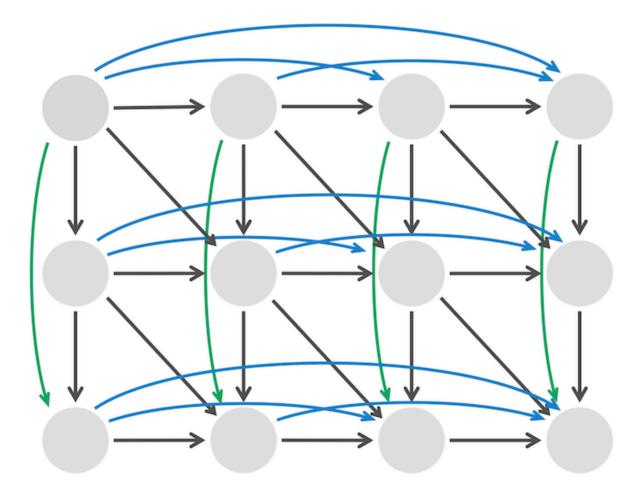
How are the following alignments penalized using the new affine gap penalties?

and Think

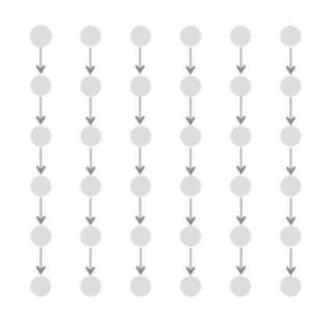

How are the following alignments penalized using the new affine gap penalties?

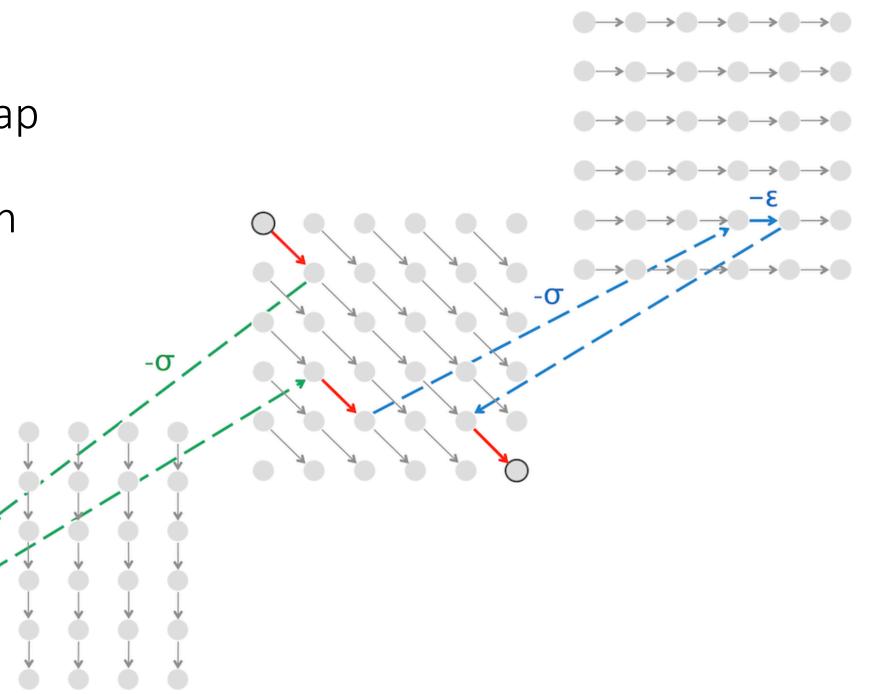

Cost(k gaps in a row) = Cost(gap open) + (k-1)* Cost(gap) = σ + (k-1) $\cdot \epsilon$

GATCCAG GA-C-AG $= \sigma + (1-1) \cdot \varepsilon + \sigma + (1-1) \cdot \varepsilon =$ $= 2 \sigma = 2 \sigma$


GATCCAG GA--CAG $= \sigma + (2-1) \cdot \varepsilon$ $= \sigma + \varepsilon$ This Photo by Unkn

Adding Affine Gap Penalties to the Alignment Graph




Adding Affine Gap Penalties to the Alignment Graph

Adding Affine Gap Penalties to the Alignment Graph

Adding Affine Gap Penalties to the Alignment Graph

Where do the alignment scores come from?

- PAM matrices
 - PAM1 based on frequency of mutations between closely related proteins (within 1 "evolutionary step")
 - PAM 2 ... within 2 evolutionary steps ...
 - PAM 250 commonly used
- BLOSUM matrices Frequency of mutations between proteins that are x% similar
 - BLOSUM100 based on proteins that are exactly the same (e.g. score(A,A) is defined but not score(A,G))
 - BLOSUM62 commonly used
- gap scores usually determined empirically

BLOSUM62

Ala 4 Arg -15 -2 Asn 0 6 -2 -2 Asp 6 1 0 -3 Cys -3 -3 9 Gln -1-3 1 0 0 5 Glu -12 -4 0 0 2 5 -2 -3 Gly 0 -2 0 $^{-1}$ -2 6 His -2 -3 -2 0 1 -10 0 8 -3 lle -1-3 -3 -3 -3 -1-4 4 Leu -2-2 -1-3 -3 -1-3 -4 -4 2 4 -3 1 -2 -1 -3 Lys -12 0 $^{-1}$ 1 -2 5 Met -3 -2 -3 2 -1-1-2 -10 -2 5 -11 Phe -2 -3 -3 -3 -2 -3 -3 -3 0 -3 6 0 0 $^{-1}$ Pro -1-2 -3 -2 -2 -3 -3 -1 -2 -1 -1-1-4 7 -1-1 -2 -2 Ser -10 0 0 -2 1 1 0 0 -1-14 Thr -2 -2 -1 -2 -1 -1-1-1-10 0 -1-15 $^{-1}$ -1Trp -2 11 -3 -3 -3 -2 -2 -3-2 -2 -3 $^{-1}$ 1 -4 -4 -4 Tyr -2 -2 -3 -2 -2 -3 -2 -13 -3 -2 -2 2 -2 -17 Val -2 0 -3 -3 -3 -1 -2 -2 -3 -3 1 -1-2 -2 0 -3 3 1 -1- 4 Ala Arg Asn Asp Cys Gln Glu Gly His lle Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

https://en.wikipedia.org/wiki/BLOSUM#/media/File:BLOSUM62.png