
CMSC 423: 
Sequence Alignment

Part 6



Running times

• All these algorithms run in O(mn) – quadratic time
• Note – this is significantly worse than exact matching
• BTW, how much space is needed?
• If we only need to find the best score (not the exact alignment as well) –

O(min(m,n)) 
• If we need to find the best alignment – elegant divide and conquer algorithm 

leads to linear space solution.



Running times

• All these algorithms run in O(mn) – quadratic time
• Note – this is significantly worse than exact matching
• BTW, how much space is needed?
• If we only need to find the best score (not the exact alignment as well) –

O(min(m,n)) 
• If we the exact alignment too – O(m·n) 

• If we need to find the best alignment – elegant divide and conquer algorithm 
leads to linear space solution.



Running times

• All these algorithms run in O(mn) – quadratic time
• Note – this is significantly worse than exact matching
• Next week we'll talk about speed-up opportunities
• BTW, how much space is needed?
• If we only need to find the best score (not the exact alignment as well) –

O(min(m,n)) 
• If we the exact alignment too – O(m·n) 
• If we need to find the best alignment – elegant divide and conquer algorithm 

leads to linear space solution



The Middle Node Problem

• Middle node = the node on the 
longest path belonging to the 
middle column



We can find a longest path’s middle node without 
having to construct the path in the alignment 
graph

• i-path passes through the middle column at row i
• For each i between 0 and n, find the length of the longest i-path

Length(i) = FromSource(i) + ToSink(i)

FromSource(i) = longest path from source to (i, middle)
ToSink(i) = longest path from (i, middle) to sink



FromSource(i) 
can be computed 
in 𝒪(n) space and 
𝒪(n · m/2) time



ToSink(i) can also 
be computed in 
𝒪(n) space and 
𝒪(n · m/2) time



Length(i) = FromSource(i) + ToSink(i)

• Can be computed in linear space
• Runtime is proportional to n · m/2 + n · m/2 = n · m



Now, we divide 
the problem of 
finding the 
longest path 
form (0,0) to 
(n,m) into two 
subproblems



+ n·m/4n·m + n·m/2 + ··· < 2·n·m = O(n·m)



The Middle Edge Problem


